Wealth-Lab Pro™

WealthScript Language Guide

© 2003-2006 FMR Corp. All rights reserved.

Wealth-Lab Pro™ WealthScript Language Guide

by FMR Corp.

Revised: Tuesday, May 30, 2006

Wealth-Lab Pro™ WealthScript Language Guide

© 2003-2006 FMR Corp. All rights reserved.

No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the
publisher.

Third party trademarks and service marks are the property of their respective owners.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use or misuse of information contained in this
document or from the use or misuse of programs and source code that may accompany it. In no event shall the
publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have
been caused directly or indirectly by this document.

Printed: Tuesday, May 30, 2006

Special thanks to:

Wealth-Lab's great on-line community whose comments have
helped make this manual more useful for veteran and new users
alike.

EC Software, whose product HELP & MANUAL printed this
document.

WealthScript Language Guide, Wealth-Lab Pro™

Table of Contents

Foreword
Part | Introduction 5
Part Il WealthScript Language Syntax 7
O Y= Y T SRS 7
A 070 Y1 411 4 1=T o) £SO PPRNt 8
3 Statements AN DEIIMITEIS ..oouuiiiii et e e e e et e e e e e e e e e s st e e eeeeeeeebbaaneaeeaeees 8
4 Variables and Data TYPES ..uuuuuuiiiieeiiiiiiiieieee e e s sest e e e e e e s s st e e e e e e e s ans e e e eeessaansreareeeeesannnnrrennaeeenn 9
OVEBIVIBW ooiiiiii i e e e ettt e e e e ettt et e e e s ettt eeeeeae s teaeeeeaeeaassseeeeeee e e s sste e e eeeeaas s s teeeeeeeesnssseeeeaeeeanssnneeaeeennnnnaneneeeaennnrnen 9
[D=Tod B TN o V2= U= oY =Y SRR
Variable NamMING RUIESciiiiiii ettt e e e e sttt e e e e e st ae e e e e e s s steaeeeee e e s ssbaeeaaeeaanssneeaeeeesnnnraeaeaeenns
(D=1 = B I ¢ 11 PP PP RRRT R PPPT
R LEToTo T €0 B Y =T O PSPPSR OPPPPRPN
Enumerated Typesc..c.....
5 ASSIGNMENT STALEMENTS ..uuiiiiiiii e e e s e e e e e s s s s e e e e e e e s s st ereeeeeesannnarneeeeeeeas

6 Constants

7 Operations

Overview
Mathematical Operations

Lo Lol L=T: 1ol @ oT=T - 14 o] 4 I PO U PRSP PPOPPPPPN

(oL TTof= TN @] o L= =14 o] K-S PO SPUPPPPPPPP

SUMMATY ...ttt ettt e e e e et e e e e e e e et et et e e e 2 s st e et e e e 4o s R e s ettt e e e e s e R e e et e e e e e Re e e et e e e nssren et e e e e e nnnnreeeeeeenanane

F N g Lo J @] o T=Tr= 1 (o SO PSP TP PP UUPTOUPPPUPPRN

(g0 o= = o] OO PPPPPRRPT

Xor Operator....

[N (1R O] o T=T = 1o FH PSSP PP RERR PP

11 g aTo O] o1=T =14 To] o[- O T PP PP PP OUPPPUPPRN

SR OTe] oo Th T Y= U] = =T =T o) £ PP
LS T 0= 1o = 1= 1= 31
10 LOOPING STALEMENTSeiieiiiiieeiiiie ittt e ettt e e e e e s s bbb et e e e e e e e e anbbeeeeeaaeesaannbbsseeeaeeaaannnes 33
SUMIM A Y oo e aaaaaaaaaas 33
[0 1 o N 34
VAT 1 (=3 e Yo « TP U PO T PP PPPTRUOPP 35
REPDEAL LOOD ettt e 35
Breaking OUL OF 8 LOOP ..eiiiiiiiiiiiiie ettt ettt e e e ettt e e e e e s b ettt e e e e e s abe b e e e e e e e eanbb e e e e e e e asnbbbbeeeaaesnnnneeeas 36
11 FUNCLIONS AN PrOCEUUIES ...uuiiiiiiiiiiiiieiuierererersrerereeeesrreseeeresesrsrersreee........—.—.—.....—.—.———.—.———————. 37
(@ =T 1= TP PP PP PP OUPPPPPPRN 37
[D=Tod P TN g o TN o o T = To [-SRI 38
[=Tod F= U1 o TN U1 o1 T] B SRR 39
Calling FUNCLIONS @Nd PrOCEAUIES ...ieiiiiiiiiiiee e e ettt e e ettt e e e e e st e e e e e e s asate e e aeeessssbaeeeeeesassseneeaeeesssnranaeeeennnnnes 41

[Y [Lo o T 1] (=T USSP

SCOPE OF VANADIES ...ttt h et et e e s bt e e bbe e e e bt e e e nbe e e e aneeeeane

o q T Lo = (oY =T [RSP

Native and Re-usable Functions

© 2003-2006 FMR Corp. All rights reserved.

Contents Il

2 o T gl =T o 1Yo SRR 46

R L g - V£ O PPPPPRP 47
Part Ill Working with Price Series 51
1 INtrodUCLION tO PriCE SEIES ..oiiiiiiiiiiiie ettt s e e e e e e e e e e e e s s st re e e e e e s e e snnrnneeeaeeeaannnes 51
N L - W o 1o =TT A= PP 51

3 HANAIES 10 PrICE SEIIES ...coevittiiii e ettt ettt e e e e e e e e e et ee e e e e e e eeasa b e eeeeeesebtaanaaeeeeees 52

OV IV B oo 52

Standard Price Series and Their CONSANTScoooiiiiiiiii i 53

Functions that Return a Price SEries HaNIEuuuuiiiiiiiiiii s 54

Functions that Accept @ Price Series HanUIeoooo it e e 56

4 Creating YOUT OWN PriCE SEITES ..ocoiiiiiiiiiiii ettt e ettt e e e e e s e bbb e e e e e e e e e annbeeeeas 57

5 Accessing a Single Value 0f @ PriCe SISuuiiiiiiiiiiiiiiiiiie e e e nnnee e e 59

6 Using @ Syntax to Access Values from @ PriCe SEri€Scccccviviciiiiiieie s e sseee e 61

T SEIIES MALN oottt ettt e e e e et e e e e e e e et et eeeeeeear e aaaaeraebraaaaaaes 62

[1> T € o= 62

PN ST TP 63

8 PlICE SEIIES FA QS oot ——————— 66

Part IV Painting the Chart 68
O Y = Y = SRR 68

2 CRAIT PANES ..ottt et e e e e e e ettt e e e e e et e e e e e e e e et e aaaaerae bt aaaaaes 69

3 Creating NEW PaAnESccuuiiiiiii ettt e e e s st e e e e e s s s st e e e ee e e s s ssnt b ereaeeeeannnnttneneeeeeas 70

4 Plotting an INdicator iN @ PANEcoiiiiiiiiiiic e e e e s e e e e e e s e ae e e e e e e e e ennreneees 71

5 Plotting MUILIPIE SYMDOIS .veeiiiii e e e e e e e e 73

B SPECITYING COLOTS oottt e e e e e e ettt e e e e e e s e aaabbe e e e e e e e e aannbaeeeaaaaeas 73

7 Drawing TEeXE iN @ PANEuuuiiiiiii it e ee e e s e e e e s e s st e e e e e e e s s snnsbeee e e e e e e annnnnaneeeeeeeas 74

8 Drawing ODbJECES IN @ PANE ...cviiiiii it e e e e e e e e e s s r e e e e e e snnnnraneeeeeees 75

Part V Writing Your Trading System Rules 77
V2= T o VAT PP SRR 77

2 SCripting Trading RUIESuuiiiiii e e e s s e e e e e s s s r e e e e e e snnnnrneeeeeeeas 77
OVEBIVIBW ooiiiiiiiii i e e e ettt e e e e e ettt e et e e e sa e taeeeeeeaa s tetaeeeeeeaasssee e e e e e e e anssseeeeeee s sseeseeeeeeennssbeeeeeeeannnneeeeaeeeennnnraneeeeenannnes 77

L ALCR = UL o o T o O TP U PR PT PP PPPPPTPPN 78

Triggering @ Market BUY OFOErc.uuiiiiiee et e e e ettt e e sttt e e e e e sttt e e e e e e st eeeeeeesssbanaeaeesanssneaeeeeesnnsraeeeaeenns 79

Triggering a Limit OF STOP BUY OFUEI ...oiiiiiiiiiiiie ittt e bt et e e e e nbeeeenseeee s 79

Checking fOr OPEN POSITIONS ..c...viiiiiiii ittt h e e e ab et e sab et e e bt e e e e bt e e e sbeeesanteeeanes 80

USING AULOMABLEA STOPS ooiuiiiiiiiiie ittt ettt et s bt ekttt e e s et e ea b et e ek bt e e e bb et e e b et e e bbb e e enbe e e e nabeeesneeeeannnes 81

Y=Y 1 o TS o1 6 AR SUSPSERR 83

3 Implementing Trading SYStemM RUIESccooiiiiiiiiic e 83

4 Managing MUItIPIE POSITIONScoiiiiiiiiiee ettt e e e e e e e bereeas 84

Part VI Working with Technical Indicator Functions 88
O Y = Y = SRR 88

© 2003-2006 FMR Corp. All rights reserved.

[WealthScript Language Guide, Wealth-Lab Pro™

2 ACCESSING INAICALOTN VAIUES .ooveeeeiiiiieiee ettt e e e e e e e e e e s et e e e e e e e snnnaaneeeaeees 88

3 Accessing Indicator Price Series HandIescovviiiiiiiiiiiiie e 89

Part VIl Accessing Data from Files 91
O A= Y AT PRSP 91

2 Creating and OPENING FIlES ...oovioiiieiee e e e s rr e e e e e e snanare e e eeees 91

I ST To LYo =Yoo INVAY L 4141 o o R TR RTT RPN 92

A ClOSING FIlES ittt e oottt e e e e e s e bbb be e e e e e e e e e abbbbe e e e e e e e s annbeneeas 93

Part VIII Understanding Time Frames 94
O A= Y AT PSPPSR 94

2 Accessing a Higher Time Framet a e 95

3 EXPANAING the SEIIES ..o e e e e e e e e e e e s e e ea s 96

4 Accessing Higher Time Frame Data By Barccuvveiivieiiiiiiiieiicee e 99

SRS Yoz 11 a Yo =T a Lo B I = To [1a Vo PR 100

Part IX Creating a Custom Indicator 101
L OVEIVIEW coiieitiiie ettt ettt ettt e ettt e ekttt e e ok bt e e e ekt e e e aa b bt e e e an b be e e e anbbe e e e anbbe e e e anbbe e e e anbbeeeennnes 101

2 Using the New INdicator WIZardcceeoiiiiiiiiiieee e e e e s s s re e e e e e s e nnnnaeneeee e 102

3 Deleting @ CusStOmM INAICALON ...coooiiiiiiii e e e e e s enbbeeeaaaeeas 105

4 The Guts Of @ CUSLOM INAICALOT ...ooiiiieiiie e a e 105

5 Other PoSSibilities and FAQS ...ccooiiiiieieiiieeece ettt 107

Part X CommissionScripts 109
L OVEBIVIBW et e ettt oottt e e e e oo oo a kb bttt e e e e o4 oo h R b be et e e e e e e e R b b be et e e e e e e aannbbeee e e e e e e e nnntbeneaaaaaas 109

2 CommiSSIONSCIIPt VariableS ..occoiiiiieiiiie et e s e e e e s s are e e e e e 109

3 Creating and Testing COMMISSIONSCIIPES .uuuvviiiiiie i e e e e rnrrerr e e e e 110

Part XI PerfScripts 112
L OVEBIVIBW et e ettt oottt e e e e oo oo a kb bttt e e e e o4 oo h R b be et e e e e e e e R b b be et e e e e e e aannbbeee e e e e e e e nnntbeneaaaaaas 112

2 PerfSCript FUNCLIONS .ot e e e e e e e e e e e e s e e st be e e e e e e e annnnanneeeeeeas 112

I O =T LA o [l =Y o] T o) R 113

O W] oo Tl T g Ao F1] £SO PPPPPRRRO 114

Part XIl SimuScripts 116
L OVEIVIEW coiieiiiiie ettt ettt ettt e ettt e okttt e e okttt e e sttt e e e et bt e e e aa b bt e e e anbbe e e e anbbe e e e anbbe e e e anbbeeeennnes 116

2 SIMUSCIIPt FUNCLION NOTES .ooiiiiiiiiiiiiiee e s e e e e e s e e e e s e st ae e e e e e s e s nnnrnneeeeeeas 116

3 HOW d0O SIMUSCIIPLS WOTK? ettt e e e e s eabae e e e e e 118

4 Creating @ SIMUSCIIPT coiii it e e s e e e e e s s s r e e e e e s s arr e ereeeeeeannreneees 119

I =TS T = TS 11 U ST 1 o SR 120

SIS Y1 TV RS Tod] o A A O SRR 121

© 2003-2006 FMR Corp. All rights reserved.

Contents v

Part XlIll Using Fundamental Data 123
L OVEIVIBW eeiiiiii ittt et et e e e ettt e e e e e e e e e e ettt e eeee e e e e bbbt saeeeeeeasbbaaaaaeeseeessbtansaaeeeseesrrnnn 123
2 Fundamental Data ACCESS FUNCLIONScoiiiiiiiiiiiiiii et e e e 123
3 Fundamental Data in Trading SYSTEMS ...cooiciiiiiiiie e e e e s e e e e e s nnnrrere e e e e 126
4 Fundamental FAQS ..o 130

Part XIV Objects 132
L OVEBIVIBW ooitiiuiiieiiiiettttetetteeererer eeeeeerere s ee e eae e eeeseesseesesseeseees e eess s s aesss s s s se s s eesesesesesssesesasssesnnnnnsnnernrnnes 132
2 ODbjJeCt TYPE DECIAIALIONS ..vveeiieeii it s s r e e e e s s e e e e s e s st rr e e e e e s annsnnreneeeeeeas 133
3 Providing ACCESS VIia PrOPEITIES .uuuuiiiiiie e iiiiiiieee e s sttt e e e s s s e e e e s s s st e e e e e e s s nnnaneeeeeeeas 135
4 Creating and Using INStances Of @ TYPE .ot 136
5 PUtting it @ll TOGEINET ... e e e e s e e e e e e 138
(ST 0L =T 1= T o 139
A o 14 14101 ¢ T =3 2 R 140
8 THE TLIST ODJECT .ottt e e e e e et e e e e e e e e nnbbeeeeaaeeas 142

OVEBIVIBW ooiiiiee ittt e e e e ettt e e e e e ettt e e e e et ea et eaeee s s s baeeeeeeaas s seeeeeeeaesasssaeeee e e e s sseeeeaee e nsesaeeeeeesnssnneeeeeeaansnnnneeeeennns 142
LI A T 1 oY PSR 143
X L IO TR 143

X [0 | I - USSP 144

Yo o (@] o =T o PSP 145

L 0 N 146

L 1= L= N 146

[L= PSP PPPPPPPY 146
=] 0 TR 147
10 = (@ USSPt 148

[0 Lo (@ 7 1 - USSPt 149

[0 Lo (@ (@] o) =T o AU PSPt 149

(@] o] =T o S TP PP UUPPPRPUPRN 150
LI A T =T [PSP 151
(1 3 F= 14 T 11 1 (=T oo T USSR 151
L1 T LSRR 152

[0 1= 1= SO PEPRSE 152
I oo 153

1o 111 0 =T oSSR 153

1o 165 111 P USSR 154
Index 155

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Guide, Wealth-Lab Pro™

Introduction

Welcome to the WealthScript Language Guide

The main purpose of the WealthScript Guide is to provide you with the basic (and some
not-so-basic) concepts to express your trading strategies in WealthScript, which is the
scripting language that you'll use within Wealth-Lab Pro. WealthScript is a complete
programming language based on the standard computing language Pascal. You'll be
amazed with what you can accomplish by coding trading systems with WealthScript!

Though many of the most essential WealthScript functions are used in this guide to
demonstate programming and trading system development concepts, it is not within the
scope of the WealthScript Guide to highlight every single WealthScript function. All
functions with syntax, descriptions, and examples, may be found in the WealthScript
Function Referencels.

For COM Support in WealthScript, please refer to the Wealth-Lab Pro User's Guide.

Following Along with the Examples

As you come across examples in the Reference we suggest actually typing the code or at
least copying and pasting the examples to get a feel for how to create scripts. To do this,
perform the following steps:

1. Click the New button h or select the "File/New ChartScript" menu item. This
action will create a new ChartScript Window, and position you within the
ChartScript Editor.

2. The Editor will contain some boilerplate code common to most new scripts. Delete
this code.

Type in the code from the example, or copy and paste it into the Editor.
4. To execute the script, change to the Chart view in the ChartScript Window. Then,
click any of the stock symbols in the DataSource Tree.

So that you can see dynamic data or data stored in variables, many examples output
their results to the Debug Messages window. To see this window you can do one of the
following actions:

e Strike the F11 key, or,

e Select View/Debug Window, or,
e Click the Debug Messages button ﬁ in the toolbar.

Syntax Notes

Some topics include code syntax. When an optional statement is encountered, it shall
be enclosed in brackets. For example, in the following code fragment the 'begin' and
'end;' statements are optional.

if booleanexpression then
[begin]
statement;

© 2003-2006 FMR Corp. All rights reserved.

Introduction

[end;]

WealthScript Function Reference

For a complete list of functions available in Wealth-Lab Pro, please refer to the
WealthScript Function Referencels.

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Guide, Wealth-Lab Pro™

2.1

WealthScript Language Syntax

Overview

The following sections describe the basic syntax you must use when writing scripts in
Wealth-Lab Pro. When you become comfortable using the basic syntax, more advanced
programming techniques are available under the Obijectsh topic and also the Wealth-
Lab Pro Add-On API on the Wealth-Lab web site.

Comments/ &)
Use comments to annotate your code.

Statements and Delimiters| &
A WealthScript program is composed of a series of statements that are delimited by
semicolons.

Variables and Data Types| ¢}
Variables are place holders in computer memory that store values that will likely vary
(hence "variables") during the execution of your code.

Assignment Statements/:5)
Use assignment statements to place values into your variables.

Constants/6)
Declare constants for values in your scripts that will never change. WealthScript pre-
defined constants/i6) give you quick access to named price series and help make your
code more readable.

Operations| 18}
Use operators to manipulate numeric and string expressions within your WealthScript
code.

Conditional Statements|2"
Use conditional statements to compare and test expressions with the purpose of
controlling the flow (order) of execution in your WealthScript code.

Case Statement/sf)
Group a set of cases into blocks of code to improve your script's organization and
readability.

Looping Statements/s3)
Use looping statements to repeat the execution of one or more statements numerous
times

Functions and Procedures|sH
Write your own functions and procedures when you use the same block of code over
and over in different parts of a script. Go one extra step by saving them to the
"Studies" folder and you'll be able to use them over and over

Error Handling/4)
Write robust scripts by expecting and handling errors that occur in your code.

© 2003-2006 FMR Corp. All rights reserved.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=24

WealthScript Language Syntax 8

Arrays|4h
Use arrays to index and then iterate through a list of elements of the same data type.

2.2 Comments

You can use comments to annotate your code. Comments don't affect the execution of
the WealthScript, and can be a useful documentation tool. There are several forms of
comments available.

Comment Blocks

Use the curly braces to create a comment block.

Example

{ This is a conmment bl ock
this text will not be executed
by the script }

Single Line Comments

Use the "//" characters to create single line comments.

Example

/1 This is truly the Holy Grail of Trading Systens!
{ Code Onmitted }

2.3 Statements and Delimiters

A WealthScript program is composed of a series of statements. WealthScript executes
the statements in order, from top to bottom. You can use Conditional Statements|2# and
Looping Statements/s3] to control this flow of execution.

Semicolons

Each WealthScript statement must end with the semicolon character (;). The semicolon
lets WealthScript know that one statement is completed and another one is beginning.
The following example indicates that carriage return/line feeds and other formatting
characters are essentially ignored by the compiler.

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Guide, Wealth-Lab Pro™

2.4
241

Example

This is one statenent;
This is another statenent;

This is

one statenent;
This is

anot her

st at enent

lI'hi S is yet another;

This is one statenent; This is anot her;

Note: An exception exists to using line feeds - a string typelif] cannot extend across
more than one line.

Be sure to read the WealthScript Style Guide article on the Wealth-Lab.com site for
guidance on formatting your code. A consistent block-formatting style will help reduce
programming errors and make your code easier to read and maintain.

Variables and Data Types

Overview

Variables

A variable is a placeholder in computer memory that can store a particular value. Each
variable has its own unique name, much like a PO Box in a Post Office. You can use the
variable name to recall or modify the value contained in the variable.

Declaring Variables/15)
You cannot refer to a variable in your code without declaring it first.

Variable Naming Rules|15)
Name a variable anything you like, but follow the rules!

Data Types/if
Declare your variables based on the type of data they will hold.

Record Types|12)
Record Types are useful structures for grouping varied, yet related data into a single
variable type. They can be used, for example, to pass data between procedures in
order to make long parameter lists saner.

Enumerated Types|13]
Enumerated Types are special data types that you define. When defining an
Enumerated Type you specify a list of possible values, each with its own unique label.
Variables declared for the type can only assume one of these values.

See Also: Scope of Variables/4) in the chapter Functions and Procedures|s?)

© 2003-2006 FMR Corp. All rights reserved.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=44

WealthScript Language Syntax 10

2.4.2 Declaring Variables

Use the var statement to declare a variable in your WealthScript code.

Syntax
var variablelist : variabletype;
Item Description
variablelist A single variable name, or a comma-separated list of variables that
follow the variable-naming rules|101,
variabletype One of the valid data type names/111.
Remarks

e You can declare multiple variables of the same data type with a single var statement
by separating each new variable name with a comma as shown below.

e The variable declaration must occur before you use the variable in your code.

e Variable names are not case sensitive. Therefore, you may refer to a variable
declared as MyVariable equally as MYVARIABLE, myVariable, MyVaRIAble, etc.

Example

var MyVari abl e: integer;

var Varl, Var2: integer;

var Varl: integer; var Var2: float;
var Nane, Rank, Serial Number: string;
var |sLong: bool ean;

Tip: If you forget to declare a variable in your code, the compiler with give you an
"Unknown name" error when you try to run your script. You can quickly fix this
error by pressing F4 or by selecting "Chart/Fix ChartScript" from the main menu.

2.4.3 Variable Naming Rules

You can name your variables anything you like, provided that you follow these rules:
Rule 1: Variable names must begin with an alphabetic character.

Rule 2: Variable names can contain alphabetic, numeric, or underscore characters
only.

Rule 3: You cannot create variables that have the same name as WealthScript
reserved words or built-in function names.

Tip: When using many variables, sometimes it can be difficult to remember their data
type without referring to their declaration. You can help yourself by using the

© 2003-2006 FMR Corp. All rights reserved.

11 WealthScript Language Guide, Wealth-Lab Pro™

same prefix for all variables of the same type. For example you could use "f" as a
prefix for variables of type float (e.g. fSimpleMovingAvg, fStdDeviation, etc.).

These are suggested prefixes using a 1-letter or 3-letter "Hungarian-style" notation.
Use them only if they seem helpful to you.

flt, f float (examples: fClose, fltClose)
int, i integer

bln, b boolean

str, s string

vnt, v variant

rcd, r record type

I st, | TList object

pne, p pane reference (integer)

hdl, h Price Series handle (integer)

2.4.4 Data Types

A variable must be declared as one of the following data types. For typical syntax, see
the Assignment Statements |15} topic.

integer
Stores whole number values. Values can range from -2,147,483,648 to
2,147,483,647. You can perform mathematical Ogerations@ﬁ on integer variables.

float
Stores floating point values. The WealthScript engine treats declared floats (and arrays
of type float) with double-precision, which have 14 to 15 digits of significance.
Approximate valid ranges are as follows:

Negative values: -1.7 x 10°°® to -4.9 x 1073*
Positive values: 4.9 x 10°* to 1.7 x 103

You can perform mathematical OQerationsHﬁ on float variables.

Note: Price Series values are stored as single-precision floating point values, which
maintain 7 to 8 significant digits and can range from 1.5 x 10™° to 3.4 x 10%%.
For more information, see Data Precision Considerations in the User Guide.

string
Can store textual data of any length. You can perform string Operations|# on string
variables.

boolean

Can contain one of two logical values: true or false. You can perform logical
Operations/18 on boolean variables.

variant
A special type of variable that can be assigned to any basic data type. A variant can be
useful if you need to use the same variable for multiple types at run time.

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 12

datetime (not supported)
In WealthScript code, dates are accessed as integer values, allowing date comparison
using standard arithmetic operators. For more information, see GetDate and all the
Date/Time functions in the WealthScript Function Reference.

See Also: Record Typesli?] Object Type Declarationsi38 TList Object/i4?

2.45 Record Types

A useful structure for organizing a related set of data is a user-defined Record Type.
Record Types are multi-dimensional variables that can be used in passing data between
procedures, for example, to make long parameter lists saner.

Although they are not necessary for programming in WealthScript, it's nice to know these
types of structures are available if you need them.

Note: Records cannot be added to a TList objectl4?. Instead, you can add an object
using the AddObject method. Objectslis2 can contain different data elements
just like a record type.

Syntax

type
rtypename = record
vlistnamel : datatype;
vlistname?2 : datatype;

vlistnameN : datatype;

end;

Item Description

rtypename A valid[10) variable name.

vlistnameN A single variable name, or a comma-separated list of variables that
follow the variable-naming rules/91,

datatype A data typeli expression (e.g., integer)
or an array declaration (e.g., array[O .. 0] of float)

Example

{ define a record type naned PriceData having
1 datetine, 4 floats, 1 integer, and 1 bool ean }

type
PriceData = record
dT: integer;
O H L, C float;
V. integer;
| sl ndex: bool ean;
end;

© 2003-2006 FMR Corp. All rights reserved.

13 WealthScript Language Guide, Wealth-Lab Pro™
{ function to convert a boolean to a string }
function Bl nToStr(bln: boolean): string;
begin
if bln then
Result := "True'
el se
Result := 'Fal se';
end;
{ declare variables as the record type PriceDat a}
var pdl, pd2: PriceData;
const fmPd = "'#. 00";
pdl. dT := 20030520;
pdl. O := 12.10;
pdl.H := 14. 31;
pdl.L := 11.92;
pdl. C : = 14. 24;
pdl.V := 1023500;
pdl. I sl ndex := Fal se;
{ copy the data to another PriceData type }
pd2 := pdi;
Print(IntToStr(pd2.dT) + ',
+ Format Fl oat (fntPd, pd2.0 + ',
+ Format Fl oat (fntPd, pd2.H + ',
+ Format Fl oat (fntPd, pd2.L) + ',
+ Format Fl oat (fntPd, pd2.C) + ',
+ IntToStr(pd2.V) + ', '
+ Bl nToStr (pd2.1slndex));
{ just for practice, let's do the sane with an array of a Record Type }
var pda: array[O0..1] of PriceData,;
pda[0] := pd2;
pda[1] := pda[0];
Print('Second array contents:');
Print(IntToStr(pda[l].dT) + ',
+ Format Fl oat (fntPd, pda[l1l].0O + ',
+ Format Fl oat (fntPd, pda[l].H) + ',
+ Format Fl oat (fntPd, pda[1].L) + ',
+ For mat Fl oat (f nt Pd, pda[l] o + ',
+ IntToStr(pda[1l].V) + ',
+ Bl nToStr(pda[1].1sl ndex));
2.4.6 Enumerated Types

The Enumerated Type is a special data type that contains a list of distinct values. You
create a distinct label for each possible value of an Enumerated Type. Enumerated Types
can be used to make your code more self-descriptive. For example, your trading system
might look for a complex sequence of events before triggering a signal. Rather than
using an integer variable to store the system's state, you could use an Enumerated Type.
The script is then easier to understand because the labels of the Enumerated Type values

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 14

are descriptive.

Syntax
type TMyType = (valOne [, valTwo] ...[, valLast]);

Item Description
TMyType A valid[16) variable type name.
valOne - vallLast Each possible value of the Enumerated Type must be provided a

unique valid/15) label. By convention, each label begins with the
same brief prefix. You must provide at least one label.

Enumerated Type Values

A variable that is an Enumerated Type can only contain a value that was defined in the
Enumerated Type's list. Internally, the values are stored as integers. You can convert an
Enumerated Type variable to an integer by casting it as an integer value.

Example

type TEnum = (enun¥ero, enumOne, enuniwo);
var n: integer;

var et: TEnum

et := enunine,

n:=integer(et);

ShowMessage(IntToStr(n));

See Also: Creating Synchronized Arrays/4h

State Machines

The example below is a simple trading system "state machine". The system can be in
one of three different states. The state is controlled by an Enumerated Type variable.
Example

type
TSystenState = (ssSetup, ssTactical, ssPinpoint);

var Bar: integer;
var State: TSystenfttate;

Instal | StopLoss(5);
Install ProfitTarget(10);

© 2003-2006 FMR Corp. All rights reserved.

15 WealthScript Language Guide, Wealth-Lab Pro™

for Bar := 20 to BarCount - 1 do
begi n

Appl yAut oSt ops(Bar);

if not LastPositionActive then

begin
case State of
ssSet up:
i f CunDown(Bar, #C ose, 4) >= 9 then
State : = ssTactical;
ssTactical :
if RSI(Bar, #CO ose, 14) < 40 then
State := ssPinpoint;

ssPi npoint:
i f CunDown(Bar, #C ose, 2) >= 3 then

begin
BuyAt Market (Bar + 1, '');
State : = ssSetup;
end;
end;
end;
end;

2.5 Assignment Statements

Use assignment statements to place values into your variables. Assignment
statements use the assignment operator, which is typed as a colon immediately
followed by an equal sign.

Example
var n: integer;
n := 100;

var s: string;
{ Note that a string cannot extend across nultiple lines in the Editor }
s :="'My nane is Smth';

var f: float;
f := 3.1415;

var b: bool ean;
b := true;

It's illegal to assign the wrong data type into a variable. The following examples will
generate an error.

Example
var n: integer;
n := 1.234;

var s: string;
s 1= 200;

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 16

2.6

var f: float;
f :="1llegal"';

You can also assign the value from one variable into another.

Example

var varl, var2: integer;
varl := 2001;
var2 := varl,

Initializing Variables

Generally, you should initialize variables, i.e., assign known values to variables, before
using them for the first time in a calculation. The above examples of variable
declarations and assignments is one of the methods you can use to initialize a variable.

Another spacing-saving technique involves declaringl) and initializing a variable in a
single var statement. In some cases, such as within procedures or functions for example,
this type of combined declaration/initialization may make your code more clear or
readable. The expression on the right side of the assignment can also be a function/sf.

Example

var Yr, MDay: integer;
var |Ing: string;

Yr := 2001;
MyDay : = 16;
Inmg := 'RedDi anond';

Can be coded equivalently as follows. Note that an equals sign is used, not the
assignment operator.

var Yr: integer = 2001;
var MyDay: integer = 16;
var Ing: string = 'RedD anond';

Constants

A constant is a numeric or string value in a script that will never change. Using constants
can save you from having to repeat the same values multiple times in a script with the
added advantage of making your code more concise and readable. Since constants are
not variable they are never used on the left side of the assignment operator/15).

For example, you might use a format string to format a value for debug printing. Rather
than specifying the format argument each time you use a Pri nt statement, you could
define it as a constant and then use the constant as the format argument in each
statement.

© 2003-2006 FMR Corp. All rights reserved.

17

WealthScript Language Guide, Wealth-Lab Pro™

Declaring a Constant

To declare a constant, use the keyword const followed by the equal sign and then the
value of the constant. In the example below, the constant FMT is set to a string, and
therefore may be used in any function requiring a parameter of type string. You can,
however, declare a constant with a numeric value (integer or float) as well.

Example

const FMI = ' $#, ##0. 00" ;
var Bar: integer;
Bar := BarCount - 1;

DrawLabel (' Open = + Format Fl oat (FMI, PriceOpen(Bar)), 0);
DrawLabel (" H gh = + Format Fl oat (FMI, PriceH gh(Bar)), 0);
DrawLabel ('Low ="' + FormatFloat(FMI, PriceLow(Bar)), 0);
DrawLabel ("Close ="' + FormatFl oat (FMI, PriceC ose(Bar)), 0);

Pre-defined Constants

WealthScript has several constants available for you to use that will improve your code's
readability. For more information, click the links.

Price Series constants/s3)
#Open, #H gh, #Low, #C ose, #Vol ume, #QOpenlnterest, #Aver age, #Aver ageC

#Equi ty (PerfScriptshi® only)

Color value constants|73)
#Bl ack, #Maroon, #G een, #Oive, #Navy, #Purple, #Teal, #G ay, #Silver,
#Red, #Linme, #Yellow, #Blue, #Fuchsia, #Aqua, #Wite, and finally #W nLoss,
which is used primarily for PerfScripts/i13.

Light colors, normally used for shading the chart background:
#RedBkg, #Bl ueBkg, #G eenBkg

Plot formatting constants/71:
#Thi n, #Dot t ed, #Thi ck, #Hi st ogr am, #Thi ckHi st , #Dot s

Style parameter constants (see PlotSymbol):
#OHLC, #Candl e, #Li ne

PerfScript Style parameter constantsfu?
#Bol d, #ltalic

Time Frame constants (see ChangeScale):
#Dai | y, #Weekl y, #Mont hl y

Day of the Week constants (use with DayOfWeek function):
#Monday, #Tuesday, #Wednesday, #Thur sday, #Fri day

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 18

Current SimuScript Position 8 :
#Cur r ent

Shortcut to Closing All Positions|e#1: (use with SellAt and CoverAt functions)
#A |

ChartScript Optimization Variables

#OptVars are values that will be replaced with a range of different values during the
optimization process. You can use up to 10 #OptVars, #0ptVarl through #OptVarl0.

#Opt Var 1, #0pt Var 2, ..., #Opt Var 10

Set Mode constants
The Set Aut oSt opMbde WealthScript function allows you to control how the parameter
of AutoStops are interpreted.
#AsPer cent (default), #AsPoi nt, #AsDol | ar

The first two constants are also used in the Set Peak Tr oughMbde WealthScript
function to control how the Reversal parameter of Peak and Trough functions are
interpreted.

2.7 Operations

2.7.1 Overview

There are four different types of operations you can perform in WealthScript;
mathematical, boolean, logical, and string.

Mathematical Operations/i%)
Use the standard mathematical operators to manipulate numeric expressions.

Boolean Operations/25)
Test relationships between expressions using boolean operators.

Logical Operations/211
Make logical comparisons between two numeric expressions with this subset of
boolean operators.

String Operations/26)
Concatenate and compare string variables and expressions.

© 2003-2006 FMR Corp. All rights reserved.

19

WealthScript Language Guide, Wealth-Lab Pro™

2.7.2

Mathematical Operations

Standard Operators

You can use the standard mathematical operators summarized in the table below in your
WealthScript code.

Syntax
Result := Operandl Operator Operand2;

Operator Description

+ Addition
- Subtraction

Multiplication
/ Division

Multiplication and division operations are evaluated first, otherwise expressions are
evaluated from left to right. You can use parenthesis to modify the standard order of
evaluation, where the innermost expression is evaluated first.

Example

var Xx: integer;

x =11/ 2

X 1=x* 5+ 1,

X :=(x-5)/1 (x*2);
X:=x- (27 (3*x));

More advanced mathematical operations can be completed using the built-in Math
Functions.

Modulo Operator

The Mod operator is used to divide two floating-point numbers, which are first rounded to

integers, and returns only the remainder as type float. Although the divisor may be a
negative number, the result will always maintain the sign of the dividend.

Syntax
Result := dividend Mod divisor;

Example

{ ywll equal -5 and and z equals 0 }

var y, z: float;

y := -21 Mod 7.8;

z .= 21 Md 7. 3;

ShowMessage(FloatToStr(y) + #9 + FloatToStr(z));

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 20

See Also:

ModX function and IGArithmO1 functions in the Wealth-Lab Code Library on the
Wealth-Lab site.

Div Operator

There are times when you may want to be sure that the result of an integer division
returns an integer. Whereas Mod returns a remainder, division with the Di v operator

returns an integer quotient (without a remainder).

Syntax

Result := dividend Div divisor;

Remarks

dividend and divisor must be integer expressions.

Example

{ i will be assigned the value -3}
var i, j: integer;

j 1= -6;

i =21 Dv -j;

ShowMessage(IntToStr(i));

2.7.3 Boolean Operations

Nearly all programs require you to test [boolean] relationships between numeric variable
and perhaps even string variables. For these tests you'll use the standard set of of Pascal
boolean operators found in the table below:
Syntax

Result := Operandl Operator Operand2;

Operator Description
= Equal to
<> Not equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to

© 2003-2006 FMR Corp. All rights reserved.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=Library.htm

21

WealthScript Language Guide, Wealth-Lab Pro™

2.7.4
2741

The result of comparing two expressions with the operators above is a boolean (True or
False). Consequently, you'll often assign the result of relational operations to a boolean
variable as in the example below:

Example

var b: bool ean;

var x1, x2: float;

x1 := 10;

X2 = 20;

:= true, {true}
fal se; {fal se}

x1l = x2; {fal se}
x1l <> x2; {true}
x2 > x1,; {true}

CTOT T

You can also use boolean expressions whenever a boolean is required without assigning
the result to a boolean variable, as in the i f/t hen statement below.

Example

var b: bool ean;
var x1, x2: float;
x1 := 10;
X2 = 20;
if x2 < x1 then
x1 := x1 * x2;
b:=(x1>x2) O (x1>1); {true}

Note that when using a logical operator you must group the individual expressions in
parenthesis, as in the final assignment using O in the example above.

See Also: Logical Operations/2)

Logical Operations

Summary

The following operators allow you to perform logical comparisons between two numeric
expressions. With these operators, you have the additional capability to perform bitwise
comparisons of two identically positioned bits in two numeric expressions.

And Operator/22)
Perform logical conjunctions of expressions with the And operator.

Or Operator/23)
Perform logical disjunctions of expressions with the Or operator.

Xor Operator/24)
Perform logical exclusions of expressions with the Xor operator.

Not Operator|25)
Perform logical negations of expressions with the Not operator.

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 22

Note: When using a logical operator to obtain the result of two boolean expressions, you
must group the individual boolean expressions in parenthesis.

Example

var TestlsTrue: bool ean;

TestlsTrue := (2
If TestlsTrue the

>1) And (2 + 2 =5);
n

ShowMessage(' The expression is True!')

el se

ShowMessage(' The expression is False!');

2.7.4.2 And Operator

You may perform logical conjunctions of expressions with the And operator.

Syntax

Result := Expressionl And Expression2;

Item Description

Result A boolean variable.

Expression1 Any boolean expression. Expressions including operators should be
enclosed in parentheses.

Expression2 Any boolean expression. Expressions including operators should be

enclosed in parentheses.

Result Summary:

Expressionl Expression2 Result
False False False
False True False
True False False
True True True

© 2003-2006 FMR Corp. All rights reserved.

23 WealthScript Language Guide, Wealth-Lab Pro™
Example
var bl, b2, bR bool ean;
bl := True; b2 := False;
bR := bl And b2; { bR is assigned Fal se }
bl := 20 < 23; b2 := 30 > 29;
bR := bl And b2; { bR is assigned True }
Integer Bitwise Comparison
Likewise, you may also use the And operator to compare two identically positioned bits in
two numeric expressions.
And Bitwise Comparison Result Summary:
bit in Expressionl bit in Expression2 Result
0 0 0
1 0 0
0 1 0
1 1 1
Example
var X, Yy, z:. integer;
X =9, y: =1
zZ .= x And vy; { z equals 1; 1001 And 0001 = 0001 }
X =7, y =12
zZ .= x And vy; { z equals 4; 0111 And 1100 = 0100 }
2.7.4.3 Or Operator

You may perform logical disjunctions of expressions with the Or operator.

Syntax
Result := Expressionl Or ExpressionZ;

Item Description
Result A boolean variable
Expression1 Any boolean expression. Expressions including operators should be

enclosed in parentheses.

Expression2 Any boolean expression. Expressions including operators should be
enclosed in parentheses.

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 24

Result Summary:

Expressionl Expression2 Result
False False False
False True True
True False True
True True True
Example

var bl, b2, bR bool ean;

bl := True; b2 := Fal se;

bR := bl O b2; { bR is assigned True }

bl :
bR :

20 < 23; b2 := 30 > 29;
bl O b2; { bR is assigned True }

Integer Bitwise Comparison

Likewise, you may also use the Or operator to compare two identically positioned bits in
two numeric expressions.

Or Bitwise Comparison Result Summary:

bit in Expressionl bit in Expression2 Result

0 0 0
0 1 1
1 0 1
1 1 1
Example
var X, Yy, z:. integer;
X =9, vy =3
zZ :=x O vy; { z equals 11; 1001 And 0011 = 1011 }
X =7, y =8
zZ :=x O vy; { z equals 15; 0111 And 1000 = 1111 }

2.7.4.4 Xor Operator

You may perform logical exclusions of expressions with the Xor operator.

Syntax

Result := Expressionl Xor Expression2;

© 2003-2006 FMR Corp. All rights reserved.

25

WealthScript Language Guide, Wealth-Lab Pro™

Item Description
Result A boolean variable
Expressionl Any boolean expression. Expressions including operators should be

enclosed in parentheses.

Expression2 Any boolean expression. Expressions including operators should be
enclosed in parentheses.

Result Summary:

Expressionl Expression2 Result
False False False
False True True
True False True
True True False
Example

var bl, b2, bR bool ean;

bl := True; b2 := Fal se;

bR := bl Xor b2; { bR is assigned True }

bl := 20 < 23; b2 := 30 > 29;

bR := bl Xor b2; { bR is assigned Fal se }

Integer Bitwise Comparison

Likewise, you may also use the Xor operator to compare two identically positioned bits in

two numeric expressions.

Xor Bitwise Comparison Result Summary:

bit in Expressionl bitin Expression2 Result

0 0
0 1
1 0
1 1
Example
var x, Yy, z: integer;
X =9 y =3
Z 1= X Xor vy; { z equals 10;
X =7, y =8
zZ 1= X Xor vy, { z equals 15;

o = = O

1001 And 0011

0111 And 1000

1010 }

1111 }

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 26

2.7.45 Not Operator

You may perform logical negations of expressions with the Not operator.

Syntax
Result := Not Expression;

Item Description
Result A boolean variable
Expression Any boolean expression. Expressions including operators should be

enclosed in parentheses.

Result Summary:

Expression Result
False True
True False
Example
var b, bR bool ean;
b := True;
bR := Not b; { bR is assigned Fal se }
b := 20 > 23;
bR := Not b; { bR is assigned True }

2.7.5 String Operations

The only valid string operation that changes the value of a string variable is
concatenation (+), which appends multiple strings into a single string.

Example

var sl, s2, getty: string;

sl := 'Four score and';

s2 .= 'seven years ago';

getty :=s1 +' ' + s2;

ShowMessage(getty);

{ getty now holds the string 'Four score and seven years ago' }

For non-printable characters, use the Chr (.asciicode) function instead of a literal string,

where asciicode is the decimal ASCII code of a printable or non-printable character.
Alternatively, you may use the shorthand "#asciicode" notation. Below is a partial list of

handy non-printable characters.

© 2003-2006 FMR Corp. All rights reserved.

27

WealthScript Language Guide, Wealth-Lab Pro™

2.8

Decimal Code Description

9 TAB, tab character
10 LF, line feed
13 CR, carriage return

Tip:

If you want to break a string into multiple lines, add carriage return and line break
character codes to the location of the line break. In the example above, replace the
string-assignment statement as follows:

getty := sl + Chr(13) + Chr(10) + s2;

{ O, using the shorthand notation: }
getty := sl + #13#10 + s2;

String Comparison

You may also make comparisons between string variables using the
boolean operators/291. A boolean operation on alphanumeric strings results in a binary
(case-sensitive) comparison of the string expressions.

When comparing strings, characters are tested from left to right until an inequality is
found. The value of a string character used for comparison is its associated ASCII code.
Therefore, an alphanumeric character such as '3' having an ASCII code of 53, will
evaluate as being less than any letter, which have ASCII codes starting at 65.

Example

var sl, s2: string;

var bool ean;

sl :="0U812";

s2 := "'Ch, ne?";

b sl <s2; { bis True}

O

s2
b

'Qu8l2';
sl =s2; { bis False }

Conditional Statements

Conditional statements allow you to control the flow of execution in your WealthScript
programs. You'll use thei f, t hen and el se statements for this purpose.

If /Then Statements

Use the i f/t hen statement to perform logical tests. The program can branch to one set

of statements if the test is true, and another if the result is false. You can use any of the
logical operations in the i f/t hen statement.

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 28

Syntax

if booleanexpression then

[begin]

statement;

lend;]

Note that the i f/ t hen and the statements contained within it are considered as a single
WealthScript statement, so you place a semicolon after the final statement executed, as

shown below.

Example
var X:. integer;
x = 10;
if x > 10 then
X =X + 1 {wi Il not execute}
if x <= 10 then
X =X * 2 {wi Il execute}
if (x=20) or (x =10) then
X :=x1 3 {will execute}

You can also test a boolean variable directly. This can make your code more readable if
you creatively name your variables.

Example
var f1, f2: float;
var | sTrue: bool ean;
fl1 := 30.5;
f2 := 29.0;
IsTrue := f2 < f1;

if IsTrue then

Print('Sell

Nowd) ;

Executing Multiple Statements After an If/Then

Often you'll want to execute more than one statement after ani f/t hen. In this case
you must use a begi n/ end statement pair to create a "code block" that encloses the
statements. The begi n/ end code block concept is used in other areas of WealthScript,
whenever a group of statements need to be treated as a single statement.

Syntax

if booleanexpression then
begin
statementl1,
statement2;

statementX;
end;

The begi n/ end code block is considered a single statement, so the semicolon goes after
the end portion of the pair. However, you can place as many other statements as you

© 2003-2006 FMR Corp. All rights reserved.

29 WealthScript Language Guide, Wealth-Lab Pro™

like within the begin/end code block. These individual statements within the begi n/ end
should end with semicolons.

Example

var Xx: integer;

x = 10;

{ This code block contains no statenents }
if x < 20 then

begin

end;

{ This if/then will execute 3 statenents }
if x* 2 =20 then

begin

X 1= X * 2

X =X - 1;

x = x [/ 10;

end;

Note that each of the 3 statements within the begi n/ end clock ends with a semicolon.

The Else Statement

You can use the else statement to execute statements if the i f/ t hen test resolves to
false. In this form, the i f/t hen/ el se is considered a single statement, so the
semicolon goes at the very end of the statement only.

Syntax

if booleanexpression then
statement

else
statement;

Example

var X:. integer;

X .= 10;

if x 5 then
X :=x * 20

el se
X

x | 20;

Complex If/Then/Else with Begin/End

You can, of course, use begin/end code blocks in either or both portions of the
i f/then/ el se statement.

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 30

Example

{ if/then/else with begin/end bl ocks, no code in the blocks }
var X:. integer;

x = 10;

if x <10 then

begin

end

el se

begin

end;

{ if/then/else with begin/end blocks, with code in the bl ocks }
var X:. integer;

X .= 10;
if x < 10 then
begin
X =X * 2 + 1;
X :=x [5
end
el se
begin
X = X * X;
X :=x 1/ 2
end;

Note that there is no semicolon after the first begi n/ end pair in the i f/t hen/ el se with
code blocks. The semicolon appears after the last end only.

Nested If/Then If/Then/Else

You can "nest" one or more if/then/else statements within another.

Example

var Xx: integer;
X = 10;

{ These are two nested if/then statenents }
if x = 10 then
if x* 2 < 20 then
begin
X
X
end;

!/ 3;
+ 2:

X
X

© 2003-2006 FMR Corp. All rights reserved.

31 WealthScript Language Guide, Wealth-Lab Pro™
{ This is a nested if/then/else block. }
if X <2 then
begi n

X 1= x * 10;
X 1= X - 5;
end
el se
if x >5 then
begi n
X 1= Xx * 100;
X 1= X * X;
end
el se
begi n
X :=(x+1) [/ x;
X =X * 2
end;
Note that the first if/then block in the example above is equivalent to the following
if/then block that uses the And logical operator.
Example
var Xx: integer;
x = 10;
{ Remi nder: bool ean expressions nust be grouped in parentheses
when conbined by a | ogical operator }
if (x=10) And (x * 2 < 20) then
begi n
X :=x/ 3
X 1= X + 2
end;
2.9 Case Statement

A case statement examines a variable and lets you execute a different statement or
group of statements depending on its value. Each "case" can include a single value, a list
of values separated by commas, or define a range between two values (included in the
range) using a double-dot notation (..) between the values. Place a colon after the end
of the value lists. After each case is defined, you can place a single statement to be
executed, or a group of statements surrounded by a begi n/ end block.

Use the el se statement to execute statements when a value doesn't fall within any of
your pre-defined cases. The begi n/ end statements are optional after el se in a case
statement, even if you have multiple statements in the el se block.

Note: You can use all comparative data types in the case instruction, i.e., including
strings, floats, and even booleans; although use of floats and booleans in case
statements are uncommon.

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax

32

Single Value Case Statements
Syntax

case testexpression of
casevaluel:
[begin]
statements;
[end;]
casevalue2, casevalue3, ..., casevalueX:
statement;
casevalueY:
statement;
else
[begin]
statements;
[end;]
end;

The example below shows a case statement that operates on single values only.

Example

var n: integer;
n := Round(Random* 5) + 1;

case n of

1:

ShowMessage(' One');
2:

ShowMessage(' Two');
3:

ShowMessage(' Three');
4.

. ShowMessage(' Four');
el se

ShowMessage(' None of the Above');
end;

Case Statements Using a List of Values

The example below uses a list of values for the cases. It also shows how to use
begi n/ end blocks to execute multiple statements for a case.

© 2003-2006 FMR Corp. All rights reserved.

33 WealthScript Language Guide, Wealth-Lab Pro™

Example

var n: integer;
n := Round(Random * 10) + 1;
case n of
1, 2:
begin
ShowMessage(' One, Two');
ShowMessage(' Buckl e nmy Shoe');
end;
3, 4
begin
ShowMessage(' Three, Four');
ShowMessage(' Trade Sone More');
end;
5..8:
ShowMessage('Between 5 and 8, inclusive: ' + IntToStr(n));
el se
ShowMessage(' Col l ect your Profits now');
end;

2.10 Looping Statements
2.10.1 Summary

Use looping statements to repeat the execution of one or more statements numerous
times. There are several types of looping techniques possible:

For Loop!s4)
The f or loop uses an index variable to repeat a statement or block of statements.

While Loop/s5
This type of loop continues to execute while a test condition evaluates True.

Repeat Loop /)
Similar to a the While loop, a Repeat loop makes sure that the statements within the

loop are executed at least once.

Breaking Out of a Loop /3
It's not always necessary to run a loop to its completion. When the code inside a
loop has served its purpose, use the br eak statement to terminate a loop to save

processing time.

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 34

2.10.2 For Loop

The f or loop uses an index variable to repeat a statement or block of statements. Within
the repeated statement block you can access the value of the variable used to control the
loop.

Syntax

for numericvariable := start to end do
[begin]

statements;
[end;]

If you want the f or loop to repeat more than a single statement you must enclose the
statements in a begi n/ end block.

Example

var n: integer;
var x: float;
X = 2;

{ Repeat a single statenent 10 tines }
for n :=1to 10 do
X =X * 2

{ Repeat a group of statenents 10 tines }

for n :=1to 10 do

begi n
X
X

end;

X * 2;

X + 5;

{ Use the index variable in the |oop }
for n:= 1 to 10 do

begi n
X
X
end;

*

X + n
x /| n;

Counting Backward

You can count backwards instead of forward in your f or loop by using downt o instead of
t o in the loop.

Example
var n: integer;
for n := 10 downto 1 do
begin
end;

© 2003-2006 FMR Corp. All rights reserved.

35 WealthScript Language Guide, Wealth-Lab Pro™

2.10.3 While Loop

Use the whi | e loop to execute statements as long as a certain boolean condition is true.
The condition should be enclosed in parenthesis, and can be any value Boolean

Operation.

Syntax

while booleanexpression do

[begin]

statements;

[end;]

Example

var nl, n2:
nl := 10;

n2 := 50;

whi |

e

(n1 <n2) do

begin

print(IntToStr(nl));
nl :=nl + 3;

end;

2.10.4 Repeat Loop

The r epeat loop will execute statements until the specified condition is true. This is
similar to the whi | elss] loop, but the r epeat loop checks the condition after the first
pass of the loop. This guarantees that the statements within the loop will execute at

least once.

Note that this loop does not require begi n and end for multiple statements since the
block of loop code is fully contained within the repeat .. until keywords.

Syntax

repeat

statements;
until booleanexpression ;

Example

var nl, n2:
nl := 10;
n2 := 50;

r epeat

print(IntToStr(nl));
nl :=nl + 3;
until (nl1 > n2);

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax

2.10.5 Breaking Out of a Loop

36

Sometimes it's necessary to break out of a loop before it completes. There are two ways

you can do this.

The br eak statement takes you completely out of the loop, and resumes execution at the

statement immediately after the loop.

Syntax

break;

Example

var i: integer;
for i :=1 to 10 do
begin

if Random > 0.5 then

br eak;

end;
/ | Executi on resunes here
Print(IntToStr(i)) ;

The cont i nue statement takes you back to the beginning of the loop and continues with

the next iteration, skipping any statements after the cont i nue.

Syntax

continue;

Example

var i, n: integer;
n := 0;
for i :=1 to 10 do
begi n
if Random > 0.5 then
conti nue;
n:=n+i;
end;

© 2003-2006 FMR Corp. All rights reserved.

37

WealthScript Language Guide, Wealth-Lab Pro™

2.11
2111

Functions and Procedures

Overview

Functions and procedures are blocks of code that you can execute whenever needed
from any point within your script. You give these code blocks their own "name", and can
then execute the code by calling it by name.

A rule of thumb is that when you find yourself writing the same block of code more than
once in your scripts, there's a good chance that you should convert that block of code
into a function (if you need a value returned) or a procedure (to do some other repetitive
operation, like drawing trendlines on a chart).

Declaring Procedures/ss)
Procedures must be declared above the calling routine using the syntax found in this
topic.

Declaring Functions/s8)
The main distinction between a function and a procedure is that a function returns a
value to the caller, while a procedure does not. Like procedures, functions must also
be declared above the calling routine.

Calling Functions and Procedures|4f)
Similar to double-clicking on a Windows shortcut to run a program, you call functions
and procedures using the name in their declarations. When the name is encountered
in code, the "small program" found within the function/procedure block is run. When
the function/procedure completes its routine, program execution begins at the next
statement following the call.

Passing Parameters 42
More often than not, you'll want to pass values (or objects) to functions and
procedures for further manipulation. Using the parameter list, you have the choice of
passing arguments by value or by reference.

Scope of Variables/4)
It's possible for variables to be accessed in more than one routine. If you're not
careful with the placement of your
variable declarations you could unknowingly be modifying the value of a variable
used in multiple routines.

Exiting a Procedure/4)
Use the Exi t statement to terminate a function or procedure without executing any

remaining statements.

Native and Re-usable Functions/4!
One characteristic of functions and procedures is that they are re-usable. You can
build your own library of functions and procedures and include them in different
ChartScripts. WealthScript itself is made up of hundreds of other "native" functions
and procedures. You'll call native functions just like a function you have written
yourself, but since they are part of the WealthScript language, you don't have to
declare them!

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 38

2.11.2 Declaring Procedures

Like
This

functions, procedures must be declared before they can be referenced in your script.
means that they must appear towards the beginning of your script, above the main

routine of your ChartScript code.

Use the pr ocedur e statement followed by a unique name to declare a procedure, as
shown below. Procedures follow the same naming rules/10] as normal variables.

Syntax

procedure procedurenamel[([var] variablelistl: typel; [var] variablelist2: type2; ...
[var] variablelistX: typeX) 1;
begin

[procedure-scope variable declarations]

[statements]

end;

Item Description

procedurename A valid name that follows variable naming rules/1d).

variablelist A single variable name, or a comma-separated list of variables that
follow the variable-naming rules[191. When multiple types exists in
the parameter list, they are separated by semicolons.

type One of the valid data type names/11.

statements WealthScript function/procedure code

Remarks:

Use procedures when you do not need to return a value to the caller.

After the procedur e statement is a begi n/ end block that contains the code that
will execute when you call the procedure.

By default, variables are passed by value to procedures and functions. Use the
optional statement var within the argument list when you want to pass an argument

by reference. For more information, see Passing Parameters|+?] in this chapter.

Declarations of the variables in the parameter list are sufficient for their use
throughout the procedure. In the procedure-scope declarations, declare only
additional variables you need for use within the procedure; for interim calculations,
for example.

Excluding object and record types, procedure-scope variables can be declared in the
procedure declaration, i.e., immediately after the pr ocedur e statement and before
the first begi n. For this method, use one var statement followed by variablename:
type; as shown below.

© 2003-2006 FMR Corp. All rights reserved.

39 WealthScript Language Guide, Wealth-Lab Pro™

Example

{ This is a procedure and therefore has no return val ue }
procedur e DoSonet hi ng;

var
i, j: integer;
f: float;
str: string;
begin
/1 Your "do something" procedure code would go here
end;

2.11.3 Declaring Functions

Like procedures, functions must be declared before they can be referenced in your script.
This means that they must appear towards the beginning of your script, above the main
body of your ChartScript code.

Use the f unct i on statement followed by a unique name to declare a function, as shown
below. Functions follow the same naming rules/19] as normal variables.

Syntax

function functionname[([var] variablelistl: typel; [var] variablelist2: type2; ... [var]
variablelistX: typeX)]: returntype;
begin

[function-scope variable declarations]

[statements]

[Result := expression ;]

end;

Item Description

functionname A valid name that follows variable naming rules/:1.

procedurename A valid name that follows variable naming rules/18).

returntype One of the valid data type names/1i1.

variablelist A single variable name, or a comma-separated list of variables that
follow the variable-naming rules[191. When multiple types exists in
the parameter list, they are separated by semicolons.

type One of the valid data type names/i.

statements WealthScript function/procedure code

expression An expression of type returntype

Remarks:

e Use functions when you need to return a value to the caller. Specify the data type
(returntype) of the return value (Result) at the end of the f unct i on statement,

preceded by a colon.

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 40

o After the functi on statement is a begi n/ end block that contains the code that
will execute when you call the function.

e By default, variables are passed by value to procedures and functions. Use the
optional statement var within the argument list when you want to pass an
argument by reference. For more information, see Passing Parameters/4?1 in this
chapter.

e Declarations of the variables in the parameter list are sufficient for their use
throughout the function. In the function-scope declarations, declare only additional
variables you need for use within the procedure; for interim calculations, for
example.

e Excluding object and record types, function-scope variables can be declared in the
procedure declaration, i.e., immediately after the f uncti on statement and before
the first begi n. For this method, use one var statement followed by variablename:
type; as shown below.

Example

{ This sinple function returns the integer 1 }
function MyFunction: integer;
var
i: integer;
f: float;
begi n
P

.b2;
= Round(i * f);

{ And this one returns the string '<WD>!" }
function Func2: string;
begi n
Result := 'Walth-Lab Pro!";
end;

/1 Call the functions and show the result
ShowMessage(Func2 + ' is Nunber ' + IntToStr(MyFunction) + '!');

Function Return Values

Although it is optional, it makes little sense to declare a function that does not return a
value. Notice in the above function examples that an expression of type returntype is
assigned to a variable named Result. The Result variable is a special variable that is
available only in functions. Always assign the return value of your functions to the Result
variable. The assignment may be found at any point within the function block, although
as it is a "result", this statement is often the last one.

Recursion

Recursion refers to the ability of a function to call itself. Using recursive techniques, you
can write very compact and efficient code that performs tasks that might be otherwise
unmanageable. Recursive, or "reentrant", functions may be programmed in

© 2003-2006 FMR Corp. All rights reserved.

41 WealthScript Language Guide, Wealth-Lab Pro™

WealthScript. A classic example of a recursive function is one that calculates the factorial
of a number, x!.

Example
function Xfactorial (x: integer): float;
begin
var i: integer;
var f: float;
i 1=x - 1;
if i <2 then /1 No nore calls!
Result := x
el se
Result := x * Xfactorial (i);
end;

{ test the function }
var y: float;

var j: integer;
for j :=0to 10 do
begin

y := Xfactorial (j);
Print(IntToStr(j) + #9 + FloatToStr(vy));
end;

2.11.4 Calling Functions and Procedures

Since procedures do not return values as do functions, some differences exist in the
manner in which they can be called. In both cases, remember that the function or
procedure must be declared before you can access it by name. Also, it's perfectly valid to
call functions from within functions, procedures from functions, etc.

Procedure Calls

There's only one way to call a procedure - by using its name in your script code as a
single statement. If the procedure has an argument list, you must supply properly-
typed expressions for each argument in the procedure declaration.

Example

{ This procedure colors the volune histogramof all up bars green and all
down or flat bars red. It is included with your installation of Walth-
Lab Pro in the "Studies" ChartScript folder }
procedur e Vol umeCol or;
var Bar: integer;
begi n
for Bar := 1 to BarCount - 1 do
if PriceClose(Bar) > PriceC ose(Bar - 1) then
Set Seri esBar Col or (Bar, #Volunme, #G een)
el se
Set Seri esBar Col or (Bar, #Vol une, #Red);
end;

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 42

{ Execute the procedure by calling it }
Vol unmeCol or;

Function Calls

Because functions return a result, more possibilities exist. As with procedures, use the
function's name and provide properly-typed expressions for each argument in the
function declaration.

e Most commonly, you will use a function like an expression. If the function returns a
boolean, for example, you can assign the function to a boolean variable. The
function call appears on the right side of the assignment.

e Likewise, you may use the same boolean function in any expression that requires a
boolean expression - as the conditional test expression in an If/Then statement for
instance.

e If you do not care about the function's result, you may call the function in the same
manner as a procedure - as a stand-alone statement. The function's processing will
be the same whether or not you choose to use its result in an expression or store it
in a variable.

Example
function MyFunc: integer;
begin
Result := 100;
end;

var IntVar: integer;
Print(MyFunc + MyFunc); /I/Prints 200 to the debug wi ndow
I ntVar := MyFunc; [/l ntVar now contains 100

2.11.5 Passing Parameters

You pass parameters to a function or procedure by defining a parameter list in the
function or procedure declaration. The parameter list occurs after the function or
procedure name, and contains a list of parameters enclosed in parenthesis. Each
parameter is declared by name and data type separated by a colon. Parameter
declarations with different data types should be separated by semicolons. You can
declare multiple parameters of the same data type by separating them by commas.

The parameter list that appears in the function/procedure declaration is in itself a formal
declaration of the variables that will be used in the function/procedure. Of course, if you
need other variables for interim calculation within the routine, they must be declared
using the conventional notation/16.

Note: You may see some examples of function or procedure calls in which two empty
parentheses are used for following the name, as in Bar Count (), which is the
WealthScript function to return the total humber of bars in the chart. These are
simply calls to functions/procedures with blank parameter lists. In Wealth-Lab
Pro you can be sure that calling such routines with or without the empty
parentheses will yield the same result. However, calls to COM methods

© 2003-2006 FMR Corp. All rights reserved.

43

WealthScript Language Guide, Wealth-Lab Pro™

containing blank parameter lists may require the empty parentheses to be
included.

Example

{ Declare Functions and Procedures }
function Cube(Paranil: float): float;
begin

Result := Paraml * Paraml * Parant;
end;

procedure Witelt(Bar, Value: integer);
begin

Print(IntToStr(Bar) + ': ' + IntToStr(Value));
end;

function MySMA(Bar, Series, Period: integer): float;

begin
var i: integer;
var total: float;
total := 0O;
for i := Bar downto Bar - Period + 1 do
total :=total + GetSeriesValue(i, Series);
Result := total / Period;
end;

{ Now call them}

var n, X: integer;

n := BarCount - 1,

X := Round(Cube(MySMA(n, #C ose, 20)));
Witelt(n, x);

By Reference or By Value

When the var statement is not used in a variable declaration within the argument list of
a procedure or function declaration, variable parameters are passed by value. This
means that a copy of the variable's value is created and "passed" to the
function/procedure for use. Changes made within the function/procedure to a variable
passed by value will not affect the original value of the variable in the caller, or calling
procedure.

The opposite is true when the var statement js used. In a function's or a procedure's
parameter list, the var statement marks the variable(s) to be passed by reference.

When passed by reference, changes to the variable within the function/procedure will
affect the value of the variable in the calling procedure as demonstrated below. (In
reality, the routine operates on the same variable and what is passed is actually a pointer
to that variable in computer memory.)

Example

procedure PassParans(var ChangeMe: integer; WontChange: integer);
begin

ChangeMe := 100;

wont Change : = 100;
end;

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 44

var Onel nteger, Twolnteger: integer;

Onel nt eger 1;

Twol nt eger 2;

PassPar ans(Onel nt eger, Twol nteger);

ShowMessage(' Onelnteger is now' + IntToStr(Onelnteger));
ShowMessage(' Twol nteger is (still) ' + IntToStr(Twolnteger));

Note that although a procedure does not provide a return result, it's perfectly legal to use
by-reference parameters in a procedure to alter variables in the calling routine. The
downside is that this advanced coding technique can lead to equally complex problems
that are difficult to trace since the same variables can be altered in more than one
procedure.

2.11.6 Scope of Variables

Variable scope is the extent to which your code has access to declared variables.
Depending on the location of a variable declaration, it may be accessible only by a
function, a procedure, the main ChartScript routine, or all of the above! Variables
declared for objects using the Type statementfs3 have their own special scope as
described in the Obijectss chapter.

Generally speaking, three levels of scope exist in your ChartScripts:

e Script-wide scope: Variables declared at the top of a ChartScript can be referenced
by any routine below the declaration.

e Procedure or function scope: Variables declared within a function or procedure can
be accessed only by the function or procedure in which they are declared.

e Main routine scope: Like script-wide scope, variables are available to routines below
the declaration, but because of its placement, these variables cannot be accessed by
code above the declaration.

These concepts are illustrated in the following example. Note that if you try to use the
MainRoutineScope variable within the Scoping procedure, an error would result.

Example

{ A variable declared here can be accessed by any
procedure or routine bel ow }
var Scri pt Scope: integer;

procedure Scopi ng();

{ Variables declared within a function or procedure can be
accessed only by the function or procedure }

begin

var ProcedureScope: integer;

Scri pt Scope : = 100;
Pr ocedur eScope : = 2;
end;

© 2003-2006 FMR Corp. All rights reserved.

45 WealthScript Language Guide, Wealth-Lab Pro™

{ Variabl es decl ared bel ow are not accessible by any routine above }
var Mai nRouti neScope: integer;

Mai nRout i neScope: = 1;

Scopi ng;

Showvessage(' Scri pt Scope set by Scoping procedure ="' +
Int ToStr(ScriptScope));

Scri pt Scope : = 200;

2.11.7 Exiting a Procedure

Functions and procedures exit automatically upon processing the last statement
contained therein. To terminate a function or procedure prematurely so that Wealth-Lab
does not execute any of the statements that follow, use the exi t statement. When you
call exi t, program control is passed away from the current procedure immediately, and
program control resumes with the next statement following the procedure call. Ifexit is
found in the main body of the ChartScript (i.e., not within a function or procedure), it
terminates script processing altogether.

Syntax

exit;

Example 1

{ Don't run the script on the synbol 'T }
var Bar: integer;
if GetSynbol ='T then

exit;

for Bar := 20 to BarCount - 1 do
begin

{ Trading system here }

end;

The next example demonstrates the optimization technique used for custom indicators in
accessing their data. If the function has been called previously from elsewhere in the
script, the former result is found and returned to the caller. In this case, Exi t

terminates the method immediately so as not to waste time recalculating all the
indicators values.

Example 2

{ Typical indicator usage }
function I nverseFi sherSeries(Series: integer): integer;
begin

var Bar: integer;

var sName: string;

var Val ue, e2y, y: float;

sNanme := 'InverseFisher(' + GetDescription(Series) + ')';
Result := Fi ndNanedSeri es(sNane);
if Result >= 0 then
Exit;
Result := CreateNanedSeries(sNane);

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 46

for Bar := 0 to BarCount - 1 do
begi n
e2y (= exp(2 * GetSeriesValue(Bar, Series));
Value := (1 e2y - 1) / (e2y + 1);
Set Seri esVal ue(Bar, Result, Value);
end;
end;

2.11.8 Native and Re-usable Functions

2.12

Native Functions and Procedures

WealthScript contains hundreds of built-in functions and procedures that you'll use
extensively in your scripts to control trading rules, plot indicators, and annotate the
chart. You call these functions and procedures just as you'd call one that you'd created
yourself. The WealthScript Function Reference!s1 and the Function QuickRef contain a
full list of the native functions and procedures available in WealthScript.

Including Functions and Procedures

You can build your own library of re-useable functions and procedures and include them
in different ChartScripts. This is a powerful capability that can save you hours of copy
and pasting effort, and makes it much easier to maintain your code. See the Include
Manager topic for more information.

Error Handling

When a ChartScript encounters a compilation or run-time error, processing stops and an
error message appears below the ChartScript Editor. You can click on the error message
to pinpoint the line of code that generated the error.

Other run-time and logic errors occurring in a function or procedure can be more difficult
to isolate and solve. This is because the error in the ChartScript Editor will point to the
statement calling the function or procedure. See the ChartScript Integrated Debugger
topic in the Wealth-Lab Pro Users Guide for information in troubleshooting these and
other types of coding bugs.

Handling Errors

There might be cases where you expect that an error might occur, but you want to
continue processing in the script regardless. WealthScript uses the concept of structured
exception handling to let you handle errors.

Use the t ry/ except / end statement block to enclose sections of code that might contain
errors. If an error occurs anywhere within the try and except statements, program flow is
transferred immediately into the first statement after the except. If you want to handle
errors silently just don't write any statements between the except and the end.

© 2003-2006 FMR Corp. All rights reserved.

a7 WealthScript Language Guide, Wealth-Lab Pro™

In this example we try and store a value in a custom Price Series without having created
the Price Series using CreateSeries. We trap and report the error and continue with
execution of the script.

Example

var MySeries: integer;
try
Set Seri esVal ue(100, MySeries, 1.234);
except
ShowMessage('CreateSeries wasn''t called!');
end;
ShowMessage('but Script Continues to Execute');

2.13 Arrays

An array is a collection of values of the same data type that you can access by index
number. For example, you can create an array that can hold 100 integer values, or 25
string values. You access the elements of an array by their index numbers. See the
COM Support Chapter in the Wealth-Lab User Guide for a description and examples on
COM Variant Arrays.

Declaring Arrays

Arrays are declared with a special form of the var statement. You provide the name of

the array and the upper and lower bounds, which must be a literal integer or a declared
constant that appears before the array declaration.

Example

{ Declare an array that can hold 100 integers }
var MyArray: array[l..100] of integer;

{ Declare an array that can hold 25 strings }
var BunchOf Strings: array[l..25] of string;

{ Use a constant to specify the upper bound }
const UB = 10;
var Root BeerFl oats: array[0..UB] of float;

To declare a multi-dimensional array, simply append of arr ay statements as shown in
the following example.

Example

{ Each elerment of this nulti-dinmensional array are assigned a val ue
equal to the product of its indices }

var i, j: integer;

var arMulti: array[1l..10] of array[l..20] of float;

{ Fill the array }
for i :=1to 10 do
for j :=1to 20 do

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 48

begi n
arMilti[i, j 1 :=1i *7j;
Print('[" + IntToStr(i)
+', " 4+ IntToStr(j) +" 1 ="
+ FloatToStr(arMulti[i, j 1));
end;

Accessing Array Elements

Use the index humber to access individual elements of the array. You can read the
values from an array, and set values to an array.

Example
var MyArray: array[1l..100] of integer;
var nunber: integer;

number = MyArray[1l] + MyArray[2];
MArray[3] := nunber;

Looping through Array Elements

The various Looping Statements in WealthScript provide a powerful way to work with
array elements.

Example
var MyArray: array[l..100] of integer;
var i, nunber, TheSum i nteger;
TheSum : = 0;
for i :=1 to 100 do

TheSum : = TheSum + MyArray[i];

Creating Synchronized Arrays

The number of elements of an array must be specified in the var statement that declares
an array, and it must be a constant value. However, you can create a special type of
array that automatically contains the same number of elements as bars in your chart.
Just specify zero as both the upper and lower bounds of the array.

Example

{ Create an array synchroni zed to the nunber of bars in the chart }
var Snoot hedAverage: array[0..0] of float;

var i: integer;
Srmoot hedAverage[0] := (PriceH gh(0) + PriceLow(0)) / 2;
for i := 1 to BarCount - 1 do
Snoot hedAverage[i] := (((PriceH gh(i) + PriceLowi)) / 2) +
Snmoot hedAverage[i - 1]) [/ 2;

It can be useful to declare a synchronized array of an enumerated type[13) to hold state
data for a particular bar in the chart.

© 2003-2006 FMR Corp. All rights reserved.

49

WealthScript Language Guide, Wealth-Lab Pro™

Example

var Bar, AvgH : integer;
type H Cond = (H Rise,H Flat,H Fall);
var Hi Mt Cond: array[O0..0] of Hi Cond;

AvgH = SMASeries(#Hi gh, 20);
for Bar := 20 to BarCount - 1 do
If @\wgHi [bar] > @\gHi[bar-1] then
Hi Mkt Cond[bar]:= Hi Ri se
else if @\wgHi[bar] = @\wgHi[bar-1] then
Hi Mkt Cond[bar]: = Hi Fl at
el se
Hi Mkt Cond[bar]:= Hi Fall;

Passing Arrays as Parameters to Functions and Procedures

You can pass an array as a parameter to a Function or Procedure. To do this you must
use the t ype statement (normally used when creating new Objecths? types) that
describes the type and bounds of the array. You then declare the array using this type.
You use the same type within the function or procedure parameter list.

Note: Types must be defined outside of a type declaration. In other words, you cannot
define a type within another type.
Ref: http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/topic?id=4691
Example

type TW/Array = array[0..0] of float;

{ Note AnArray is passed by reference }
procedure ZeroArray(var AnArray: TMyArray);

begin
var i: integer;
for i :=0 to BarCount - 1 do

AnArray[i] := 0;
end;

var MyArray: TMyArray;
var Bar: integer;

{ Put values in the last 10 elenents of M/Array }
for Bar := BarCount - 10 to BarCount - 1 do

begi n
MyArray[Bar] := Bar;
Print('ZeroArray[' + IntToStr(Bar) + '] =" +
Format Float ('#.0', MyArray[Bar]));
end;

ZeroArray(MyArray);
{ MyArray, which has the same nunber of elements as the chart,
now has all of those elements initialized to zero. }

Print(');
for Bar := BarCount - 10 to BarCount - 1 do
Print('ZeroArray[' + IntToStr(Bar) + '] =" +

Format Float ('#.0', MyArray[Bar]));

© 2003-2006 FMR Corp. All rights reserved.

WealthScript Language Syntax 50

Note: If the var statement were not included in the argument list of the procedure,
the array would be passed by value. In other words, a copy of the array is made
available to the procedure to which it is passed. Therefore, changes made to the
copy of the array (AnArray) will not affect the original array (MyArray) in the
calling procedure.

© 2003-2006 FMR Corp. All rights reserved.

51

WealthScript Language Guide, Wealth-Lab Pro™

3.1

3.2

Working with Price Series
Introduction to Price Series

In every ChartScript you will in some way change, manipulate, test, etc. a Price Series.
We recommend that you take some time to fully understand the concepts explained in
this chapter.

What is a Price Series?/st)
This special internal data structure, which always has the same number of elements

as bars in the chart, provides quick access to your data and an easy way to refer to
it.

Handles to Price Series|s?)

To use a Price Series you just need to get a handle on it. See how in the topics in
this chapter.

Creating Your Own Price Series/s?
Sometimes you'll want to generate a brand new series one element at a time.

Accessing a Single Value of a Price Series/ss
These functions return individual values of standard price series.

Using @ Syntax to Access Values from a Price Series/e)
Are you tired of typing the Set/GetSeriesValue function syntax? Use the @-symbol
shorthand notation instead.

Price Series Frequently-Asked Questions|es!
. in case you still have some.

What is a Price Series?

A Price Series is a special type of internal data structure in WealthScript. Simply put, a
Price Series is a sequence of values, one value for each bar in the chart. Consequently,
you can think of a Price Series as a 1-dimensional array of values in which the index of
the array are the bar numbers of the chart.

In ChartScripts, you will refer to Price Series using handles. A handle is an integer value
used to reference a Price Series in memory. You don't have to worry about the values of
handles (Wealth-Lab takes care of these details for you), rather, using WealthScript
functions you will obtain and assign handles to your own well-named integer variables to
remind you of the contents of series to which the handle refers, like
"My15PeriodAvgSeries."

To learn more about handles, read the topics in the next section, Handles to Price Series.

© 2003-2006 FMR Corp. All rights reserved.

Working with Price Series 52

Characteristics of all Price Series:

e A Price Series is a series of data values of type f | oat . Each value is single
precision, which has 7 to 8 significant digits.

e A Price Series always contains the same number of values as bars in your chart.

e A Price Series has a constant value, called a handle (of type i nt eger) which you
use to make reference to the complete series of values.

See Also:

Standard Price Series and Their Constants/s?]
Functions that Return a Price Series Handle/s4)

3.3 Handles to Price Series

3.3.1 Overview

In Wealth-Lab Pro, the proper use of Price Series and their handles is essential to
obtaining accurate back-testing results. Once you have mastered these concepts, you
will be well on your way to understanding how to create trading systems as simple or
complex as you like.

Standard Price Series and Their Constants/s3)
Several pre-defined named constants provide access to Price Series that you will
continually use in your ChartScripts. Find out which ones they are.

Functions that Return a Price Series Handle/s4
WealthScript contains a great number of functions that return handles of new Price
Series. With these functions, you can create indicators to your specification or even
perform operations across complete Price Series with just one statement! However,
to use a new Price Series, you'll have to designate your own handles.

Functions that Accept a Price Series Handle/sé!
When a WealthScript function calls for a Series as an integer argument, you must
insert a valid Price Series handle. By doing this, you're making reference to the Price
Series on which the function will operate.

© 2003-2006 FMR Corp. All rights reserved.

53

WealthScript Language Guide, Wealth-Lab Pro™

3.3.2

Checklist for Creating Price Series Handles

Still have doubts? Follow this handy checklist for using Price Series handles in
ChartScripts. Note that the following is not necessary if you're going to use a Standard
Price Series constant, such as #Cl ose or #Vol une.

Step 1. Declare an integer variable that you will use as the handle for your new Price
Series.

Step 2. Assign a function that returns a Price Series handle, an integer, to your
variable. If this function is not CreateSeries, you're finished!

Step 3. If you used Cr eat eSeri es in step 2, then you should use the

SetSeriesValue function to assign values to your new series. If you don't do
this, the series will hold the value zero (0.0) for every element.

Standard Price Series and Their Constants

Some Price Series are ubiquitous, such as the series of OHLC values. These are referred
to as the Standard Price Series. For these series, and for a few others described below,
Wealth-Lab has established "constant handles" that you can use to rapidly access those
series. Four of these pre-defined handles are #Open, #High, #Low, and #Close.

The handle #0pen always refers to the series of all the opening prices of a chart's
primary data source. Likewise, #High refers to the series of all the high prices of a
chart's data source, and so on.

Remember, these handles make reference to the entire series and not just one particular
value in the series. To find out how to obtain a single value from a Price Series, see the
topic, Accessing a Single Value of a Price Series/=91.

Let's visualize what we have described by considering the following illustration.

© 2003-2006 FMR Corp. All rights reserved.

Working with Price Series 54

MSFT Daily
as of 12j04)02 o
2 2002 Wealth-Lab, Inc, ;

&.00

780

l |
.0
. 7.75)
7.70
Bar Index
| 7.E0

Murnber
T.50
Bar Mum. n] 1 2 3 4] G 7 g 9 10 11 Price Series
e #Open TE1 | 755|764 |TEBE (775 | 791 | 309 | 511 | 306 | 766 | 763 | 755 =l {(#Open)
Series #High FE3 | YB9 | ¥72 | ¥77 | 755 | 806 | 514|516 | 813|784 | TES | TE4
Handles By FAT | Y56 | ¥59 | FE3 | T73 | THE | BOS | 503 793 | TEE | TSE | TS Price Series
#Close F53 | 7B3 | Y67 | VEBE | 784 | 802 (505|513 | 784 | 770 | 785 | 775 «i— (#Close)

Assuming that this chart's data source has no other values to the left or right (early or
later in time, respectively), we can observe four of the Standard Price Series, each having
12 bars, which are numbered 0 to 11. Later, we'll show you how to

access a single value of a Price Series|ss).

Completing the list of Standard Price Series we have #Volume, #Openlnterest, #Average
and #AverageC. The last two, which are handles to the average of other Standard Price
Series, merit a definition:

#Average
Returns the complete Average Price Series (all bars) as defined by the equation:
(High + Low)/ 2

#AverageC
Returns the complete Average Price Series weighted by closing prices as defined by
the equation:
(High + Low + Close) / 3

3.3.3 Functions that Return a Price Series Handle

It's impossible to show examples using Price Series without describing WealthScript
functions that accept, and most often, return handles to Price Series. WealthScript has
many such functions, which generally fall into two groups - Indicator Series Functions
and Price Series Operator Functions.

© 2003-2006 FMR Corp. All rights reserved.

55

WealthScript Language Guide, Wealth-Lab Pro™

Price Series Indicator Functions

By using WealthScript Indicator Series Functions, you will discover how easy it is to
create a new Price Series of averages, oscillators, statistical measurements, etc. Let's
demonstrate this by means of an example in which we create a new Price Series of the 5-
period Weighted Moving Average of closing prices.

Example

{ Create a 5-period Weighted Moving Average Series
fromthe series of closing prices }

var ser WWA5: i nteger;

ser W5 : = WVASeri es(#Cl ose, 5);

/1 Plot the new series
Pl ot Series(serW®5, 0, #Blue, #Thick);

What's going on here? After declaring one integer variable, serWMAS5, to hold the handle
of the new Price Series (the WMA series), we've created the new series using just one
statement. The WVASer i es statement returns the handle of the complete WMA series,
which is assigned to serWMAS5. Notice that one of the WWMASer i es arguments was the
pre-defined handle of the Standard Price Series of closing values, #Close. Take a closer
look at the example with typical values:

Bar Mumber] 1 2 3 4 = =] 7 =] El 10
#Close 22,58 22,55 19.79| 20,22 18,50 18.06 18.60 17.04|17 .40 16.41 16.26 ...
serWMAS| 0.00 0.00) 0.00 0.00 2003 1914 18,73 18.07 17.71|/17.20 16.79 ...

You'll notice that the first four values of the new series are zeroes. This is because the 5-
period WMA series cannot be calculated until the fifth sample of data (Bar Number 4),
therefore the initial samples are filled with zeroes. This is typical with indicators that
require seed data, such as with any moving average function.

See Also:

The Technical Indicator Functions category of the WealthScript Function Reference! s
contains detailed information and examples of all the intrinsic indicator functions in
Wealth-Lab Pro.

Price Series Operator Functions

Using Price Series Operator Functions you can perform operations on an existing Price
Series and store the result in another. For example, you may want to rescale an entire
series to normalize all of its values. The example below shows how you can create a new
Price Series by dividing each value in the #Close series by a single value.

Example

{ Divide every bar's closing value by the value in the variable dvsr }
var dvsr, serDivC ose: integer;

dvsr := 2;
serDi vC ose := DivideSeriesVal ue(#C ose, dvsr);
Pl ot Seri es(serDivC ose, 0, #Red, #Thin);

© 2003-2006 FMR Corp. All rights reserved.

Working with Price Series 56

Finally, here's an example of what NOT to do:

Example

{ Don't use use handles in ordinary math operations! }
var dvsr, serDivC ose: integer;

dvsr := 2;
serDivC ose := #C ose / dvsr; // THS 1S A LOE C ERROR
Pl ot Seri es(serDivC ose, 0, #Red, #Thin);

You might think this would accomplish the same thing as in the preceding example.
Instead, the error "Not a valid Price Series" occurs when you try to refer to the new Price
Series in the Pl ot Seri es statement. This is because ordinary division does not create a

new Price Series. You must use a WealthScript function that returns a Price Series
integer handle as in the previous example with Di vi deSeri esVal ue.
See Also:

The WealthScript Function Referencel s has detailed documentation for all Price Series
functions.

3.3.4 Functions that Accept a Price Series Handle

WealthScript contains numerous built-in functions that provide access to common
technical-analysis indicators. All of these functions, which may be applied to any Price
Series, are well documented in the WealthScript Function Referencel s, but let's pick a
familiar one to get a flavor for their use.

For example, you may like to obtain the simple moving average of a Price Series at a
specific bar. Simple enough (no pun intended), you would choose the SMA function to
return a Simple Moving Average. Here's the syntax for the SMA function that returns a
single float value:

SMA(Bar, Series, Period);

Item Description

Bar Integer. Numeric expression representing the Bar Number of the
chart for which you want to obtain the moving average value.

Series Integer. The handle of a Price Series on which to base the moving
average. You may use any of the following:

e a Standard Price Series handle such as #Qpen, #C ose, #Vol une,
etc

e an integer variable to which a handle was previously assigned;
from a WealthScript function for example

e the complete syntax of any WealthScript function that returns a
Price Series [integer handle]

Period Integer. Numeric expression that is the Period of the moving
average.

© 2003-2006 FMR Corp. All rights reserved.

57 WealthScript Language Guide, Wealth-Lab Pro™

Recalling that functions return values, the following example shows how to get the 10-
period SMA at the 51st bar and assign it to a variable of type float named mySma:
Example

var nmySma: float;

mySma = SMA(50, #C ose, 10);

ShowMessage('nySma = ' + Format Fl oat (' #0. 00", mySma));
You may be asking, "Why is the argument 50 and not 51?" In programming, arrays are
typically, but not always, 0-based. Wealth-Lab internally uses 0-based arrays for Price
Series, consequently the first bar number of a chart is actually 0, the second bar number
is 1, and so on. This is an important tedious detail, but, in general you don't have to be
conscious of it.
In the previous example and in those of the topic
Functions that Return a Price Series Handle[s41, only the series of price closes, #Close,
has been used. Note however, that any valid Price Series handle may be used for the
Series argument in a WealthScript function. In the example below, we use the
SMASer i es function to return the handle of the complete 15-period SMA Price Series.
Example

{ Divide every bar's closing value by the value in the variable fd

then take its 15-period Sinple Mving Average }

var fd : float;

var serDi vC ose, ser SMA: integer;

fd := 2.0;

serDivC ose := DivideSeriesVal ue(#C ose, fd);

ser SMA : = SMASeries(serDivd ose, 15);

/1l Plot the new series

Pl ot Series(serSMA, 0, #Red, #Thin);
In a subtle way, another important aspect of WealthScript functions has just been
introduced in the above examples. Nearly all indicators functions have two associated
forms: one that returns the value of the indicator on a specific bar, like the SMA function,
and, another that returns the complete Price Series of the indicator, as in the SMASer i es
function. This is explained in greater detail in the topic,
Working with Technical Indicator Functions/ed.

3.4 Creating Your Own Price Series

You can create a new, blank Price Series and plug whatever values you need into it. You
may be wondering why you would bother storing calculated values into a Price Series.
Generally speaking, if you cannot find a WealthScript function or combination of functions
that generates the series or indicator you're looking for, you'll have to resort to creating
the series yourself.

If this sounds difficult, it's not. Simply use the Cr eat eSeri es function to prepare a new
Price Series and then the Set Seri esVal ue to place values into it. Later, use the
Cet Seri esVal ue function to access the values within your newly created Price Series.

© 2003-2006 FMR Corp. All rights reserved.

Working with Price Series 58

The latter of these functions is covered in its own topic,
Accessing a Single Value of a Price Series/s51. For more information, refer to the
Checklist for Creating Price Series Handles|s21.

Here's the syntax of the Set Ser i esVal ue procedure:

Syntax
SetSeriesValue(Bar, Series, Value) ;

Item Description

Bar Integer. Numeric expression representing the Bar Number of the
chart for which Value is to be associated.

Series Integer. The handle of a Price Series.

Value Float. Numeric expression of the data to be assigned to Bar in
Series.

In the example below the functions Pri ceHi gh and Pri ceLow are used to retrieve
values from the specified bar of the #High and #Low Standard Price Series. Using these
values we can create a new Price Series that is equal to the current bar's midpoint
between high and low. (You may recall this as being the #Average Standard Price
Series, but we'll create our own new series for the sake of example.) As we loop through
each of the chart's bars, a new value is calculated and inserted into the new series using
the Set Seri esVal ue function.

Example
var M DPO NT, BAR i nteger;
var fValue: float;

{ The CreateSeries function creates and assigns the handl e of a
new Price Series that is initially filled with zeroes }

M dPoi nt := CreateSeries;
for Bar := 0 to BarCount - 1 do
begi n

fvalue := PriceLow Bar) + (PriceHigh(Bar) - PriceLow Bar)) / 2
' Set Seri esVal ue(Bar, M dPoint, fValue);
end;
/'l Plot the new series
Pl ot Series(MdPoint, 0, #Blue, #Thin);

BarCount

In order to work with Price Series properly, you first need to know how many bars of data
you have available in the chart. Use the Bar Count function to return this information.

Example
var BarsAvail able: Integer;
Bar sAvai | abl e : = Bar Count ;

The next example cycles through the chart data and accumulates the closing prices for

© 2003-2006 FMR Corp. All rights reserved.

59

WealthScript Language Guide, Wealth-Lab Pro™

3.5

"up" bars in one variable, and the closing prices for "down" bars in another variable, and
then divides the result.

Example

var SUMJUP, SUVDOMN, SUMJUPDOMWN: fl oat;
var BAR i nteger;
SumJp = 0;
SunbDown :
for Bar
begin
if (PriceCose(Bar) >= PriceC ose(Bar - 1)) then
SunmJp := Sump + PriceC ose(Bar)
el se
SunDown : = SunDown + PriceCl ose(Bar);
end;
SunmJpDown : = Sump / SumnDown;

0;
1 to BarCount - 1 do

Note that in the example, the loop ends at Bar Count - 1. This is because the first bar
of a chart has an index number of 0, the second bar has index number 1, and so on.
Consequently, you must terminate your loops at BarCount - 1, the last bar, or earlier.

You may also have noticed that the loop started at 1 instead of 0. This was necessary
due to the argument of the second Pri ceC ose statement: (Bar - 1). If Bar were

allowed to be zero, the argument would have evaluated to -1, which does not refer to any
bar of the chart, therefore a run-time error would have resulted.
See Also:

Using "@" Syntax to Access Values from a Price Series|s!]

Accessing a Single Value of a Price Series

Single Values of Standard Price Series

WealthScript has easy-to-remember functions that return the core price and volume
values from your ChartScript data source. These functions are Pri ceQpen, Pri ceHi gh,
PriceLow, PriceC ose, Vol une, Openl nterest, PriceAverage, and

Pri ceAver ageC. They return a single value at a specific bar from the

Standard Price Series/s8] that they describe, consequently, it is not necessary to specify
the Price Series as a function argument.

The general syntax for this group of Data Access functions, all of which return a number
of type float, is shown below.

Syntax (general)

functionname(Bar) ;

Item Description

© 2003-2006 FMR Corp. All rights reserved.

Working with Price Series 60

functionname Any one of the data access function names: PriceOpen, PriceHigh,
PriceLow, PriceClose, Volume, Openlnterest, PriceAverage, or
PriceAverageC.

Bar Integer. Numeric expression representing the bar of the chart from
which data is to be retrieved.

GetSeriesValue Function

To obtain a single price value from any series, use can use the Get Seri esVal ue
function. Generally speaking, however, you will this function to obtain values from Price
Series created using the Cr eat eSer i es function. As we have just seen, shorthand
methods exist to retrieve single values from Standard Price Series/s1. Later, you'll
discover that Technical Indicators Functions also have a more-intuitive method /e to
obtain their value at a specific bar.

Get Ser i esVal ue returns a float value of the series at the Bar number.

Syntax
GetSeriesValue(Bar, Series) ;

Item Description

Bar Integer. Numeric expression representing the bar of the chart
from which data is to be retrieved.

Series Integer. The handle of a Price Series.

Note: It's perfectly legal to use Get Seri esVal ue to retrieve, for example, the

closing price of Bar by passing #Cl ose as the Price Series handle. However,
Pri ceCl ose is a shorthand statement that a/lways refers to the #Cl ose Price
Series and therefore gives your code better readability.

In the illustrations below, Get Seri esVal ue is used to obtain the values from the Price

Series MidPoint. MidPoint is the handle to a Price Series we created in the example for
Creating Your Own Price Series/s?).

© 2003-2006 FMR Corp. All rights reserved.

61

WealthScript Language Guide, Wealth-Lab Pro™

3.6

@ 2003 Wealth-Lab, Inc,

Price Series
MidPaoint

17.00

Price Series 1680
#Close

16.60

Barbum 187
HCloze |17 42 (17 54 [T72 LA 1T T2 M7 54 1T BB 1754 |17 48|17 54
MiclPoirt | 16.98 1?.4 FAOAT 24 AT 287 491757 1748 |17 4517 48|17 54

180 | 151 185

186

185 | 189 | 190 | 191

BarMum| 180 | 181
#HCloze |17 42|17 5

185 | 186 | 187 | 183 | 189 | 190 [19
ST .F2(17 54|17 E6(17.54 | 17.45(17.54

PriceCloze | BarNum):

The arrow diagram indicates that if the integer expression BarNum evaluates to 182, the
GetSeriesValue function will return the value of 17.31 when MidPoint is specified.
Likewise, the Pri ceCl ose statement evaluates to 17.19, which is the closing price at bar

number 182.

Using @ Syntax to Access Values from a Price Series

A simpler method is available to access values in a Price Series. If you precede the Price
Series handle variable with a "@", you can access the values in the Price Series as if it
were an array. You can read and write values to a Price Series using this syntax. This
eliminates (*see Note) the need to code GetSeriesValue and SetSeriesValue, and can
substantially reduce the verbiage in a script's code.

© 2003-2006 FMR Corp. All rights reserved.

Working with Price Series 62

Example

var Series: integer;
var x: float;
Series := CreateSeries;

Set Seri esVal ue(0, Series, 123.45);
{ becones }
@series[0] := 123.45;

X := GetSeriesValue(0, Series)
{ becones }
X 1= @peries[0];

Note: The @ syntax is not compatible with Price Series whose handles are stored in a
declared array as the following example demonstrates. In this case, you must use
the GetSeriesValue or SetSeriesValue WealthScript functions, as required.

Example

var Bar, i: integer;
var h: array[O0..1] of integer;

{ Create 2 price series and store their handles in the array }
h[0] := WvASeries(#C ose, 5);
h[1] := WvASeries(#C ose, 20);

{ Retrieve the value of each series on the last bar }
Bar := BarCount - 1;
for i :=0to 1 do

Print(FloatToStr(GetSeriesValue(Bar, h[i])));

{ This is not valid! }
for i :=0to 1 do
Print(FloatToStr(@[i][Bar]));

3.7 Series Math

3.7.1 Practice

Let's take some time to drive home some points that some users seem to have trouble
grasping (especially those coming from other technical analysis platforms). Please take
the time to do these simple exercises and check your answers in the next topic.

Exercise 1

Imagine that you want to create a Price Series that holds the change in closing price
relative to the first bar of the chart. To do this, you need to obtain the value of the first
bar of the chart and subtract it from the closing prices from all of the remaining bars.
How? Try to plot the new resultant series in a new pane.

Exercise 2

© 2003-2006 FMR Corp. All rights reserved.

63

WealthScript Language Guide, Wealth-Lab Pro™

3.7.2

Similar to Exercise 1, create a Price Series that holds the percentage change in closing
price relative to the first bar of the chart. Plot the resultant series. Use the following
formula:

Pct Change = 100 * (CurrentPrice / ValueOnFirstBar - 1)

Exercise 3

In both of the preceding examples, we performed math operations on Price Series by
subtracting, multiplying, and dividing by a single constant value. Now let's use two
different Price Series as the operands by finding the average closing price between the
#High and #Low series. Use the following formula and plot the resultant series:

Avgd osingPrice = (High + Low + Close)/ 3

Exercise 4

Create and plot the difference of the current closing price minus the closing price from 2
bars ago.

Exercise 5

After reviewing the answers to the above exercises, explain the main difference in the
techniques used between the "Answer A's" and the "Answer B's".

Answers

Please try performing the exercises on your own first before peeking at the
answers.
It's better to make the mistakes now!

Exercise 1

{ Answer A}
var DiffSerl: integer;
DiffSerl := SubtractSeriesVal ue(#Cl ose, PriceCose(0));

{ Answer B}
var Bar, DiffSer2: integer;
DiffSer2 := CreateSeries;
for Bar := 0 to BarCount - 1 do
@i ffSer2[Bar] := PriceCose(Bar) - PriceClose(0);

{ Create a pane to plot the new series }

var DiffPane: integer = CreatePane(100, true, true);
Pl ot Seri esLabel (DiffSerl, D ffPane, #Blue, #Thick, 'Difference from Bar
0);

Pl ot Seri esLabel (DiffSer2, D ffPane, #Red, #H stogram 'Difference fron
Bar 0');

As you can see there are at least 2 correct answers. Notice though, that Answer A
utilizes a special WealthScript function, SubtractSeriesValue, to subtract a single value
from each element in the Price Series identified in its first parameter. This results in

© 2003-2006 FMR Corp. All rights reserved.

Working with Price Series 64

fewer statements and code that executes faster.

Exercise 2

{ Answer A}
var PctSerl, DivSer, D ffSer: integer;
Di vSer := DivideSeriesValue(#C ose, PriceCose(0));

D ffSer := SubtractSeriesValue(DvSer, 1);
PctSerl := MultiplySeriesValue(D ffSer, 100); }
{ Answer B}

var Bar, PctSer2: integer;

Pct Ser2 := CreateSeries;

for Bar := 0 to BarCount - 1 do
@ctSer2[Bar] := 100 * (PriceCl ose(Bar) / PriceCose(0) - 1);

{ Create a pane to plot the new series }
var PctPane: integer = CreatePane(100, true, true);
Pl ot Seri esLabel (PctSerl1, PctPane, #Blue, #Thick, 'Pct Change from Bar 0

)
Pl ot Seri esLabel (PctSer2, PctPane, #Red, #H stogram, 'Pct Change from Bar
0);

Again, we can perform the same calculation in at least two different ways - the choice is
yours! Use whichever makes the most sense to you. Note that the solution in Answer A
can be also written without the use of the interim variables. Below we use a block-

formatting technique to help show the relationship of the parameters to their functions.

{ Answer A2 }
var PctSer1: integer;
PctSerl := MultiplySeriesVal ue(
Subt ract Seri esVal ue(
Di vi deSeri esVal ue(#Cl ose, PriceCose(0)),
1),
100);

Exercise 3

{ Answer Al }
Pl ot Seri es(#AverageC, 0, #Gay, #Thick);

{ Answer A2 }

var AvgCSerl: integer;

AvgCSer 1 : = DivideSeriesVal ue(
AddSeri es(AddSeries(#Hi gh, #Low), #C ose),
3);

{ Answer B}
var Bar, AvgCSer2: integer;
AvgCSer2 := CreateSeries;
for Bar := 0 to BarCount - 1 do
@\wgCSer2[Bar] := (PriceH gh(Bar) + PriceLow(Bar) + PriceC ose(
Bar)) / 3;

{ Plot the new series in the Price Pane, 0 }

© 2003-2006 FMR Corp. All rights reserved.

65

WealthScript Language Guide, Wealth-Lab Pro™

Pl ot Seri esLabel (AvgCSer 1, 0, #Fuchsia, #Dotted, 'Avg Cosing Price Al

);
Pl ot Seri esLabel (AvgCSer2, 0, #Blue, #Thin, 'Avg Cosing Price B);

Did you recognize this as the formula for the #AverageC Standard Price Series|ss1?

Exercise 4

{ Answer Al }
var DiffSerl: integer;
DiffSerl := Monmentunteries(#C ose, 2);

{ Answer A2 }
var DiffSer2: integer;
DiffSer2 := SubtractSeries(#Cl ose, OfsetSeries(#C ose, -2));

{ Answer B}
var Bar, DiffSer3: integer;
DiffSer3 := CreateSeries;
for Bar := 2 to BarCount - 1 do
@iffSer3[Bar] := PriceClose(Bar) - PriceClose(Bar - 2);

{ Plot the new series in a new Pane }

var Di ffPane: integer = CreatePane(100, true, true);

Pl ot Seri esLabel (DiffSerl, DiffPane, #G ay, #ThickHi st, 'Difference Al
)

Pl ot Seri esLabel (DiffSer2, DiffPane, #Fuchsia, #Hi stogran, 'Difference
A2l .

Pl otSériesLabeI(DiffSer3, DiffPane, #Blue, #Thick, 'Difference B);

Al: The WealthScript function MomentumSeries provides the easiest solution. Many of
the WealthScript Indicator functions provide ready-made solutions for the most
common operations, and only through experience can you get familiar with them.

A2: Here we delay the #Close series by 2 bars using OffsetSeries. After that, we simply
perform a series difference operation on the original #Close series and its offset.

B: You can always fall back to doing the calculations one bar at a time and filling the
Price Series created by you. Note that the loop must start at Bar #2 here. Why?
Try putting 0 or 1 for the starting the loop index and execute the script again (F5).
What happens?

Exercise 5
Answer A's technique:

1. Declare an integer variable to hold a Price Series handle, a reference.

2. Use the result of a WealthScript *Series function to assign a series to the variable.
Answer B's technique:

1. Declare an integer variable to hold a Price Series handle, a reference.

2. Use CreateSeries to assign a new blank price series (filled with zeroes) to the
variable.

3. Loop over bars in the chart to fill the new series with values.

© 2003-2006 FMR Corp. All rights reserved.

Working with Price Series 66

3.8 Price Series FAQs

How do I get the data from the Open, High, Low, Close, or Volume of a bar?

The preferred method is to use the WealthScript functions specifically designed for this
purpose: PriceQpen(Bar), PriceHi gh(Bar), Pri ceLow Bar), PriceC ose(Bar),
Vol une(Bar) , Openl nt er est (Bar) , Aver age(Bar) , Aver ageC(Bar) , where Bar is
the Bar Number of the bar for which you want the data.

Example

{ Get the opening price of the last bar in the chart }
var fQOpen: float;

var Bar: integer;

Bar := BarCount - 1,

fOpen := PriceQpen(Bar);

Equally effective, you may use the general syntax for getting data from any Price
Series, GetSeriesValue or its shorthand @ syntax efl.

Example

{ Get the opening price of the last bar in the chart }
var fOpen: float;

var Bar: integer;

Bar := BarCount - 1,

f Open : = Cet SeriesVal ue(Bar, #Open);

{ or use the shorthand @syntax }
fOpen : = @Open[Bar];

How do I get an indicator's value at a specific bar?

Each indicator has a syntax form that is specifically designed for this purpose. If you
know in advance which indicator you will be using, like SMA, RSI , St ochK, etc. you can
use its syntax. For more information see Accessing Indicator Valuesles) in the chapter
Working with Technical Indicator Functions|es).

Example
{ Find the 10-period Sinple Myving Avg at Bar Nunber 50 }
var nySma: float;
nmySma : = SMA(50, #C ose, 10);
Showivessage('nySma at Bar Number 50 = ' + FornmatFl oat (' #0. 00", nySma)

Sometimes you will not know in advance which Price Series you will be using. This
may sound strange, but it's the basis of the manner in which re-useable functions and
procedures work. In this case, use the general syntax for getting data from any Price
Series, GetSeriesValue or its shorthand @ syntax efl.

© 2003-2006 FMR Corp. All rights reserved.

67

WealthScript Language Guide, Wealth-Lab Pro™

Example

{ Returns the nunber of bars ending with EndBar since
Series2 crossed over Seriesl. }
function BarsSi nceCrossOver (EndBar, Seriesl, Series2: integer):

i nteger;
begi n
var i, CntBar: integer;
CntBar := O;
for i:= EndBar downto O do
if GetSeriesValue(i, Series2) < GetSeriesValue(i, Seriesl) then
br eak
el se

CntBar := CntBar + 1;

Result := CntBar;
end;

{ test the function by passing the handles fromtwo different Price
Series }
var b, MySMAHandl e, Bar: integer;

MySMAHandl e : = SMASeri es(#Cl ose, 20);
Pl ot Seri es(MySMAHandl e, 0, #blue, #thin);
Bar := BarCount - 1,

{ Pass MySMAHandl e as Seriesl and #H gh as Series2 to the function }
b := BarsSi nceCrossOver(Bar, MySMAHandl e, #Hi gh);
Print(' The nunber of bars since cross over is: ' + IntToStr(b));

{ Draw a circle on the bar just prior to crossover }
DrawCircle(8, 0, Bar - b, PriceH gh(Bar - b), #red, #thick);

How can I access a Price Series from a symbol other than the one in my
ChartScript?

You can obtain information from Price Series that are not part of the primary
ChartScript Standard Price Series by using the Get Ext er nal Seri es function. See its

entry in the WealthScript Function Referencel s for more information.

See Also: Plotting Indicators Based on Other SymboIsFﬁ

© 2003-2006 FMR Corp. All rights reserved.

Painting the Chart 68

4 Painting the Chart

4.1 Overview

WealthScript provides a set of functions to control how your chart information is
displayed. You can plot indicators, create new chart panes, add text, annotations, and
drawing objects, or even draw bitmap images. Whenever you need to programatically
perform display tasks in the Chart window, open the Cosmetic Chart category to find the
function that serves your purpose.

To view a chart, open a ChartScript by selecting File/New ChartScript. In the ChartScript
window, the "Chart" tab is selected (by default) to view the chart of the item selected in
the DataSource Tree.

Chart Panes|es)
It is not essential that your code displays additional information on the chart. A
trading system will function the same if you choose not to draw lines, add
annotations, or plot indicators on the chart. However doing so can help you
troubleshoot your scripts, give you visual affirmation that your system is functioning
as designed, or even provide insight for improving methods.

Creating New Panes|d)
The default panes for price and volume is just one possibility. See how to make new
panes to plot additional indicators.

Plotting an Indicator in a Pane[h
Tell Wealth-Lab where and how you want to plot your Price Series by specifying the
pane's index and drawing style. Also plot indicators based on symbols other than
your primary symbol.

Plotting Multiple Symbols/#
Instead of drawing just a single #Close Price Series of another symbol, display all of
the available information in full OHLC bar or candlestick representations.

Specifying Colors|7
Give life to your charts by adding color to bars, text, indicators, backgrounds, and
more!

Drawing Text in a Panel#
Did you forget what that blue line on the chart represents? Leave no doubt by adding
colorful text legends and other useful annotations.

Drawing Objects in a Pane[
Make your charts come to life by programmatically drawing objects such as lines,
rectangles, and ellipses. You'll be amazed with the way some users are able to
visually express even esoteric concepts in Wealth-Lab Pro - like probability
distributions and frequency spectrums!

© 2003-2006 FMR Corp. All rights reserved.

69

WealthScript Language Guide, Wealth-Lab Pro™

4.2

Chart Panes

Panes refer to the subdivided areas of a chart in which price, volume, and other data is
presented. A basic chart contains two panes - one that displays price information and
another that displays volume. Because it contains less information, the volume Pane is
typically smaller than the price Pane.

Useful Chart Panes facts:

1. When it does not make sense to plot an indicator's Price Series in the price or volume
panes, you can create new panes|#) to display the additional information.

2. Conversely, if the volume pane is not important to you, use the Hi deVol une function
to make more room for other panes.

3. You can manually resize chart panes by dragging the line that divides two adjacent
panes.

4. Override a auto-scaling of a pane using the Set PaneM nMax WealthScript function.

Pane Indices

Each chart pane has an associated integer index that is used whenever a WealthScript
function requires a Pane argument. Use this index to specify the pane that will receive
the action of a drawing or plotting function. The two most common panes, the price and
volume panes, always have indices of 0 and 1, respectively.

In previous chapters, we've already seen the Pl ot Seri es statement used, so let's look
at its syntax:

PlotSeries(Series, Pane, Color, Style);

With emphasis on the Pane argument, if we want to plot a series in the price pane we
would pass the value 0 (or a numeric expression that evaluates to 0) as Pane.

Example

{ Connect the high values in the price pane by a thick blue line
and envel ope the volunme histogramw th a thick green line }

var PricePane: integer;

Pri cePane := 0;

{ The Pane argunent can be a nunmber or a nuneric expression }

Pl ot Seri es(#Hi gh, PricePane, #Blue, #Thick);

Pl ot Series(#Volunme, 1, #G een, #Thick);

© 2003-2006 FMR Corp. All rights reserved.

Painting the Chart 70

4.3

Creating New Panes

You can create new chart panes to draw other indicators and Price Series using the

Cr eat ePane function. This WealthScript function returns the integer value of the new
pane's index. Therefore you should assign Cr eat ePane to an integer variable in order to
prepare a new pane that you'll use later in a plotting or drawing function. Although the
Price and Volume panes have indices of 0 and 1, respectively, you should never assume
that newly-created panes will have indices of 2, 3, 4, etc. The function's syntax is:

CreatePane(Height, AbovePrices, ShowGrid): integer;

Specify the Height as an integer in pixels of the new pane in the first parameter. A
height of 100 is a good general-purpose value. Pass a boolean value as AbovePrices to
indicate whether this pane will appear above (true) or below (false) the price pane.
ShowGrid is another boolean used to control whether or not grid lines are drawn for the
new pane. If you do not enable the standard grid lines you can call Dr awHor zLi ne to

manually draw your own lines at specific values on the pane.

Your new pane will automatically scale to the various Price Series that you plot within it.
You can use the Set PaneM nMax function to override these calculated values.

In the following example a new Pane is created to draw RSI (Relative Strength Index).
Since RSI can fluctuate between 0 and 100, the Pane is set to min/max at these values.
The default grid is disabled, and we draw our own horizontal lines at the 70 and 30
levels.

Example
var MyRSI, PaneRSl: integer;
M/RSI := RSl Series(#C ose, 14);
PaneRSI := CreatePane(100, true, false);

Set PaneM nhax(PaneRSI, 0, 100);

Pl ot Series(MyRSI, PaneRSl, #Navy, #Thick);

Dr awHor zLi ne(30, PaneRSI, #Silver, #Dotted);

Dr awHor zLi ne(70, PaneRSI, #Silver, #Dotted);

Dr awHor zLi ne(50, PaneRSI, #Gay, #Dotted);
DrawText ('RSI 14 day', PaneRSl, 4, 4, #Navy, 8);

© 2003-2006 FMR Corp. All rights reserved.

71

WealthScript Language Guide, Wealth-Lab Pro™

4.4

RSI 14 day

Fane created
with CreatePane

GM Daily
as af 12J26/02
Z1 2002 Wealth-Lab, Inc,

o

Price Pane
findex 0)

Walume

¢i¢ﬂl++*+¢+*+*

“Valume Pane
(index 1)

Notice that each time a new pane is added, it is automatically separated from the others
by a thin horizontal line. For aesthetic reasons you may wish to remove these lines. To
do so, simply add the Hi dePaneLi nes function to your ChartScript code.

Plotting an Indicator in a Pane

As we've seen, the Pl ot Seri es function plots the specified Price Series in the desired

Pane. Since PlotSeries can accept any Price Series, you now see the value of being able
to obtain the handle to an indicator, and to creating your own custom Price Series. For
reference, the syntax is as follows:

PlotSeries(Series, Pane, Color, Style);
After specifying the Price Series and the Pane, you then pass the desired Color (using the

color formulated as described in the topic Specifying Colors|71) and a drawing style. The
drawing style can be one of the following constants:

#Thin Normal Solid Line
#Dot t ed Dotted Line
#Thi ck Thick Solid Line
#Hi st ogr an Histogram Format
#Thi ckHi st Thick Histogram
#Dot s Dots

Example

{ Plot a 30 day SMA in green and a 200 day SVMA in red }
Pl ot Seri es(SMASeries(#Cl ose, 30), 0, #Geen, #Thin);
Pl ot Seri es(SMASeries(#C ose, 200), 0, #Red, #Thin);

Pass -1 to the function SetSeriesBarColor to prevent drawing of an indicator for
the specified bar(s). This may be useful during periods when an indicator's value
is invalid or in transition.

Tip:

© 2003-2006 FMR Corp. All rights reserved.

Painting the Chart 72

Plotting Indicators Based on Other Symbols

After working with WealthScript a short time, you'll see that plotting a symbol's Price
Series and indicators based on those Price Series is simply a matter of accessing their
data, and more precisely, obtaining a handle to their data. Once you have a reference to

the data series, you can use it for plotting, and more importantly for calculations that
lead to trading decisions.

Either of the WealthScript functions, GetExternalSeries or SetPrimarySeries, can be used
to access data for a symbol other than the one selected in a ChartScript's DataSource
tree. Generally speaking, SetPrimarySeries is used when you want to be able to access
all the Standard Price Series|s3) of another symbol, or perhaps to generate a trading
signal on the selected symbol while looping through a WatchList. GetExternalSeries
returns a handle to only a single named Series for another symbol, and is sufficient for
most operations requiring the use of external data.

The following two examples, which highlight the use of these functions, produce identical
results.

Example

{ Plot HPQ and its 50-day SMA along with ny chart using CGetExternal Series
}

var HPQC ose, HPQBO, HPQPane: integer;

HPQCl ose : = CetExternal Series('HPQ, #C ose);

HPQBO0 : = SMASeries(HPQC ose, 50);

HPQPane : = CreatePane(150, true, true);

Pl ot Seri es(HPQC ose, HPQPane, #Bl ue, #Thick);

Pl ot Seri es(HPQ®O0, HPQPane, #Bl ack, #Dotted);

Example

{ Plot HPQ and its 50-day SMA along with nmy chart using SetPrimarySeries
}

var HPQC ose, HPQ@O, HPQPane: integer;

Set PrinmarySeries('HPQ);

HPQCl ose : = #Cl ose;

HPQB0 : = SMASeri es(HPQC ose, 50);

Rest orePri marySeri es;

HPQPane : = CreatePane(150, true, true);

Pl ot Seri es(HPQC ose, HPQPane, #Bl ue, #Thick);

Pl ot Seri es(HPQ@O0, HPQPane, #Bl ack, #Dotted);

© 2003-2006 FMR Corp. All rights reserved.

73

WealthScript Language Guide, Wealth-Lab Pro™

4.5

4.6

Plotting Multiple Symbols

It's easy to plot a full OHLC representation of a symbol other than the one selected in a
ChartScript's DataSource tree. Using PlotSymbol allows you to create a reference plot of
another symbol, however it does not provide access to its data. To access Price Series
data of an external symbol, see the topic Plotting Indicators Based on Other Symbols/.

Syntax
PlotSymbol(Symbol, Pane, Color, Style);

Example

var P: integer;

Pl ot Synmbol (' MSFT', 0, #Silver, #Candle);
P := CreatePane(100, true, true);

Pl ot Synbol ("I BM, P, #Blue, #OHLC);

Conversely, you may have data for four Price Series that are not associated with a
symbol. These could be data that you have created based on calculations from an
indicator, for example. To combine these Price Series into a single OHLC representation,
use the PlotSyntheticSymbol function.

Syntax

PlotSyntheticSymbol(Symbol, OpenSeries, HighSeries, LowSeries, CloseSeries, Pane,
Color, Style)

Example

var RSIO RSIH RSIL, RSIC, RSIPANE: integer;

RSI O : = RSI Seri es(#Open, 14);

RSIH : = RSI Seri es(#Hi gh, 14);

RSIL := RSI Series(#Low, 14);

RSIC : = RSI Series(#C ose, 14);

RSI Pane : = CreatePane(100, true, true);

Pl ot Synt heti cSynbol (' RSI Candle', RSIO RSIH, RSIL, RSIC, RSIPane, #Red,
#Candl e);

DrawLabel (' RSI Candl es', RSl Pane);

If you run the example above, notice that the candles will often times appear incorrect.
This is because the RSI of low prices is not always less than the RSI to open, high and
close, so the candle values do not always form into traditionally correct candles.

Specifying Colors

Many of the WealthScript Chart functions require parameter types the describe a Color
value. WealthScript uses a simple mechanism to pass color information. Colors are
broken down into different intensities for red, green and blue (RGB). Each intensity level
can have a value between 0 (no intensity) to 9 (full intensity). A single 3 digit number
expresses a complete color value.

© 2003-2006 FMR Corp. All rights reserved.

Painting the Chart 74

900 = Bright Red 090 = Bright Green 009 = Bright Blue
550 = Olive 050 = Dark Green 444 = Dark Gray

You can also use the following special constants to specify color values:
#Bl ack, #Maroon, #G een, #Oive, #Navy, #Purple, #Teal, #Gay, #Silver,
#Red, #Linme, #Yellow, #Blue, #Fuchsia, #Aqua, #Wite, and finally #W nLoss
(used primarily for PerfScripts/112))

Finally, the three constants that follow refer to lightly-shaded colors often used with
Set Backgr oundCol or to fill the chart's background or Set PaneBackgr oundCol or to

color a pane's background. Nevertheless, these too can passed as a value to any
WealthScript function argument requiring Color.

#RedBkg, #Bl ueBkg, #G eenBkg

Coloring Bars

You can color individual bars using the Set Bar Col or function. Or, specify the colors
used for up versus down bars with the Set Bar Col or s function.

Example

{ Color all bars that reach a 20-day high green }
var Bar: integer;
for Bar := 20 to BarCount - 1 do
if PriceH gh(Bar) = Highest(Bar, #H gh, 20) then
Set Bar Col or (Bar, #Green);

See Also:

SetColorScheme and SetSeriesBarColor in the WealthScript Function Reference.

4.7 Drawing Text in a Pane

Use the Dr awText function to annotate a Chart Pane with text.

DrawText(Value, Pane, X, Y, Color, Size);

The first parameter is a string expression that contains the text to be drawn. The
second parameter is the pane's index. The next two parameters specify the x, y position
of the text, in pixels. A position of 0, 0 represents the top left of the Pane. The next
parameter specifies the color to use. The last parameter indicates the font size. A value
of 8 is standard size for drawing text.

Since you specify an absolute position within the pane, this function is most useful to
create a legend for indicators and other Price Series.

© 2003-2006 FMR Corp. All rights reserved.

75

WealthScript Language Guide, Wealth-Lab Pro™

4.8

Example

Pl ot Seri es(#Hi gh, 0, #Blue, #Thick);
Pl ot Seri es(#Low, 0, #Red, #Thick);

{ Make a legend for the plotted series }
DrawText (' #Hi gh Series', 0, 100, 4, #Blue, 8);
Dr awText (' #Low Series', 0, 100, 16, #Red, 8);

WealthScript contains additional functions with which to annotate your charts with text
using varying degrees of control. For more information, see their descriptions in the
WealthScript Function Reference:

AnnotateBar, AnnotateChart, DrawLabel

Drawing Objects in a Pane

Wealth-Lab Pro provides two toolbars, Drawing and Drawing2, which are filled with
drawing objects to employ in manually annotate charts. The Drawing2 toolbar contains
the Trendline Tool, whose values at any bar can be found by your WealthScript code even
when drawn manually! For more information, see TrendLineValue in the Function
Reference or visit the Chart Drawing Tools discussion in the User Guide.

If drawing chart objects manually doesn't appeal to you, then of course Wealth-Lab Pro
has a programmatic solution with WealthScript. Using functions from the Cosmetic Chart
category, you have the ability to draw circles, diamonds, ellipses, lines, rectangles, and
polygons (diamonds and triangles).

The example below provides a sampling of a few of the drawing objects available to you
in ChartScripts. Run the example on a Daily DataSource by clicking on several different
symbols in the ChartScript window.

Example

var BAR, Barl, Bar2, Radius: integer;
var x1, x2, yl1, y2, 11, 12, Pricel, Price2: float;

{ Circle any 100 day Low }
for Bar := 100 to BarCount - 1 do
begi n

if PriceLow(Bar) = Lowest(Bar, #Low, 100) then
DrawCircle(8, 0, Bar, PriceLow(Bar), #Red, #Thick);
end;

{ Draw a circle around an arbitrary point }
Bar1 : = Bar Count - 40;

Bar2 : = Bar Count - 20;

Set Bar Col or (Bar1, #Blue);

Set Bar Col or (Bar 2, #Blue);

yl := PriceC ose(Barl);
y2 := PriceC ose(Bar2);
DrawCircle2(Barl, yl1, Bar2, y2, 0, #Blue, #Thin);

© 2003-2006 FMR Corp. All rights reserved.

Painting the Chart 76

{ Find the last 13%reversal peak and trough }
Barl := TroughBar(BarCount - 1, #lLow, 13);
Pricel := PriceLow(Barl);

Bar2 := PeakBar(BarCount - 1, #Hi gh, 13);
Price2 := PriceH gh(Bar2);

{ Draw a di agonal
trough }

line and a rectangl e between the previous peak and

DrawLi ne(Barl, Pricel, Bar2, Price2, 0, #Red, #Thick);
Dr awRect angl e(Barl, Pricel, Bar2, Price2, 0, #G een, #Thin, #G eenBkg,

True);

{ Draw ellipses to highlight peaks and troughs }

Drawkl | i pse(Barl

- 4, Pricel * 1.02, Barl + 4, Pricel * 0.98, 0,

#RedBkg, #Thin, #RedBkg, true);

Drawkl | i pse(Bar2

- 4, Price2 * 1.02, Bar2 + 4, Price2 * 0.98, 0,

#Bl ueBkg, #Thin, #BlueBkg, true);

© 2003-2006 FMR Corp. All rights reserved.

77 WealthScript Language Guide, Wealth-Lab Pro™

5 Writing Your Trading System Rules
5.1 Overview

A Trading System has steadfast rules that are carried out independently of what you
think may be the outcome of the trade. Consequently, Trading System rules are the
conditions under which you decide to enter and exit a trade.

Invariably, when deciding to program a new Trading System, you'll start by either
verbalizing rules, drawing pictures, or writing pseudo code to collect your thoughts. (For
this purpose, and also for documenting your scripts, you can make use of the ChartScript
Description view.) Once you become proficient with WealthScript, you may find that it's
just as easy to put down your thoughts in code directly into the ChartScript code editor!

Scripting Trading Rules|7H
If you can imagine it, almost certainly you can test it in Wealth-Lab Pro. First, you'll
have to translate your ideas into code. This chapter introduces the most important
functions necessary to simulate real-life trading orders.

Implementing Trading System Rules/s
You can use whatever logic based on price, technical indicators, date information, or
whatever else you can think of in your entry and exit rules. However, if you discover
a trading system that achieves unimaginable returns, it's quite likely your code
includes a postdictive error.

Managing Multiple Positions|s#!
Wealth-Lab Pro assigns a number to each new Position entered. You can access this
information with the functions presented in this topic, and in doing so, you'll be able
to write trading systems that add Positions by averaging up or down. As always, it's
you're choice!

5.2 Scripting Trading Rules

5.2.1 Overview

The most powerful feature of WealthScript is the ability to embed Trading System rules in
your ChartScripts. Whenever your ChartScript executes, Wealth-Lab Pro displays all of
the trades that your System generated in clear buy and sell arrows on the chart, provided
that they are enabled. The ChartScript Performance Results view also lists the overall
System performance, and the Trades view contains a detailed listing of all trades that
were generated.

If you're just becoming familiar with WealthScript, the following topics provide an
introduction to programming Trading Systems in a cumulative fashion.

The Main Loop/7
Each time a script is executed, generally it should start from the first bar at which all
your indicators are valid and continue to the final bar in the chart.

© 2003-2006 FMR Corp. All rights reserved.

Writing Your Trading System Rules 78

Triggering a Market Buy Order/)
Learn how to simulate entering long positions with Market orders.

Triggering a Limit or Stop Buy Order/#)
Limit orders offer more control over the entry price of a trade. In addition, stop
orders permit you to enter a trade with confirmation that the market for the security
is moving in favor of the trade's intended direction.

Checking for Open Positions /s
Your trading strategy will change once you have entered a position. In single-
Position-only trading systems, you'll be looking for the exits if you're already holding
a position.

Using Automated Stops/s)
Let Wealth-Lab Pro worry about getting you out of a trade. It's a simple as adding 2
statements.

Selling Short/ss)
Theoretically, it's true that selling short carries unlimited risk. However, just as you

may test long strategies in Wealth-Lab Pro without risking real cash, you may do the
same with short or mixed strategies.

5.2.2 The Main Loop

Every Trading System must have a main loop that cycles through the data in your chart.
This is accomplished with a typical "f or loop", as shown below. Although the first bar
number of a ChartScript's DataSource is 0, your for loop should start from at least 1 to
ensure that Market orders can be placed. In order to place a Market order the system
needs a "basis price," which is the closing price of the previous bar.

Example

var BAR i nteger;

{ ChartScript Main Loop }

for Bar := 30 to BarCount - 1 do

begin

{ Trading rules go here, and are executed once for every bar in the chart

}

end;

Here, the f or loop starts at the 30th bar of data. You should set your main loop's
starting point based on the technical indicators that you're using. For example, if you
use a 30 bar EMA and a 14 bar RSI in your rules, choose the longer of the two indicators
and set your starting f or loop value to 30. The main loop typically ends at Bar Count -
1, which the number of the last bar in all Price Series.

Finally, notice that no reference to time exists in controlling the loop, only consecutive
bar numbers. Unless you use WealthScript Time Frame functions to specifically
manipulate a DataSource's native time frame, you the same ChartScript will work equally
well with Daily bars as for Intraday bars, for example.

© 2003-2006 FMR Corp. All rights reserved.

79

WealthScript Language Guide, Wealth-Lab Pro™

5.2.3

5.2.4

Triggering a Market Buy Order

Use the BuyAt Mar ket function to trigger a market buy order.
BuyAtMarket(Bar, SignalName);

The first parameter contains the Bar number to execute the trade. WealthScript Trading
System signals are usually triggered using the bar's closing value, consequently the order
should be placed on the bar following the one that generated the signal (Bar + 1).
When trading on a daily basis, this is analogous to receiving a signal based on the closing
price of one day and buying at the open of the next day.

The second function parameter is a SignalName that you choose to identify the trading
signal that triggered the trade. This data is later found in the Trades view and is useful
in your system analysis if you have a system that uses more than one type of entry. If
you don't need a signal name, just pass a blank string as shown in the Example.

Example

var BAR i nteger;
{ This sinple ChartScript buys when prices cross above a 14 day SMA }
for Bar := 15 to BarCount - 1 do
begi n
if PriceCose(Bar) > SMA(Bar, #Close, 14) then
if PriceClose(Bar - 1) <= SMA(Bar - 1, #C ose, 14) then
BuyAt Market (Bar + 1, '');
end;

Notice above that the main loop begins at 15, even though we're using a 14 day SMA.
This is because we're also looking 1 bar back in the chart (Bar - 1) so we bumped up

our starting index to compensate for this.

Simulating Market-On-Close

The WealthScript function BuyAt Cl ose allows you to simulate a Buy Market-On-Close
order.

BuyAtClose(Bar, SignalName);

In this case, the trade will enter long at the closing value of Bar. In actual trading, a
broker cannot guarantee that a Market-On-Close order will execute at exactly the closing
price. Consequently, you may wish to make use the Slippage feature found under
Tools|Options (F12)|Trading Costs/Control.

Triggering a Limit or Stop Buy Order

You can also use the BuyAt St op and BuyAt Li m t to simulate stop and limit buy orders.

A price must be specified with these order types, therefore an additional argument exists
for that purpose.

© 2003-2006 FMR Corp. All rights reserved.

Writing Your Trading System Rules 80

BuyAtStop(Bar, StopPrice, SignalName);

StopPrice is the price at which a simulated market order is placed. A position is
established at the StopPrice if the opening price of Bar is less than or equal to StopPrice
and the bar's high value is greater than or equal to StopPrice. However, if the opening
price of Bar gaps above StopPrice, a position is established at the opening price of Bar.
If neither of these conditions are true, then no position is established.

BuyAtLimit(Bar, LimitPrice, SignalName);

For BuyAt Li m t a position is established at LimitPrice, if the open of Bar is greater than
LimitPrice and the low of Bar is less than LimitPrice. If the opening price of Bar is less
than or equal to LimitPrice, a long position is established at the opening price of Bar.
Finally, if the prices fail to fall low enough to the limit objective, no position is
established.

There is a chance that these orders might not be fulfilled, so these functions return
boolean values indicating whether or not the trades were placed.

Example

var BAR i nteger;
{ Issue a Limt Oder to buy at current bar's close or |lower only }
for Bar := 15 to BarCount - 1 do
begi n

if PriceCose(Bar) > SMA(Bar, #Close, 14) then

if PriceClose(Bar - 1) <= SMA(Bar - 1, #C ose, 14) then
BuyAtLimt(Bar + 1, PriceC ose(Bar), '');

end;

5.2.5 Checking for Open Positions

It's fine that we can now use our Trading Systems to open long Positions, but how do we
close the Positions? WealthScript offers the capability to construct single-Position-only
trading systems, or systems that can manage multiple Positions. We'll go over single-
Position-only systems for now since it's a simpler concept.

In a single-Position trading system, we need to see if our last Position is active. Use the
Last Posi ti onActi ve function to get this information. If our last Position is active, we

can branch to our sell rules, otherwise we can see if our buy rules present the
opportunity to initiate a new Position.

Example

var BAR integer;
{ A sinmple, single-position Trading System}

for Bar := 15 to BarCount - 1 do
begi n
if LastPositionActive then
begin

if PriceCose(Bar) <= SMA(Bar, #Cl ose, 14) then
Sel | At Market (Bar + 1, LastPosition, '');
end

© 2003-2006 FMR Corp. All rights reserved.

81

WealthScript Language Guide, Wealth-Lab Pro™

5.2.6

el se
begi n
if PriceCose(Bar) > SMA(Bar, #Close, 14) then
if PriceClose(Bar - 1) <= SMA(Bar - 1, #C ose, 14) then
BuyAtLimt(Bar + 1, PriceC ose(Bar), '');
end;
end;

Closing Out a Position

You can see from the example above that the Sel | At Mar ket function is one way to
close out an open long Position. The function takes three parameters.

SellAtMarket(Bar, Position, SignalName);

The first parameter is the Bar in which to close out the Position. The second parameter is
the Position Number that we want to sell. Since WealthScript can support trading
systems that manage multiple positions we need a way to tell the exit rule which position
we want to sell. For systems that manage a single Position at a time we can use the
Last Posi ti on function to return the Position number of the open Position.

Just as Buy At Mar ket has the counterparts BuyAt Cl ose, BuyAt St op and
BuyAt Li m t, so does Sel | At Mar ket have Sel | At Cl ose, Sel | At St op and
Sel | At Li mt. Notice the four arguments in the syntax of the latter functions:

SellAtStop(Bar, StopPrice, Position, SignalName);
SellAtLimit(Bar, LimitPrice, Position, SignalName);
The StopPrice and LimitPrice arguments retain the same significance as in their "Buy"

counterparts. Be aware that if you use the stop or limit sell functions, prices may not
reach your stop or limit price, so the trade may not execute.

Using Automated Stops

WealthScript provides six functions that let you apply automated exits to your trading
systems. You can call one or more of these functions at the start of your script to install
these "automated stops", or simply AutoStops. At the start of your main trading loop,
call the ApplyAutoStops function to execute the stops. WealthScript will cycle through
your open Positions and apply the stops for you automatically. For more information, see
the article Using Automated Exits on the Wealth-Lab.com site.

The function SetAutoStopMode allows you to control how the parameters of AutoStops
are interpreted: as percentage (default), point, or dollar values. This is specified using
one of the following three constants in the function's argument: #AsPer cent , #AsPoi nt,
or #AsDol | ar. See its entry in the Function Reference for more information.

The syntax of the applicable AutoStop functions and their abridged descriptions are found
below. Note that [percentage] is the default interpretation if the SetAutoStopMode is
not employed in the ChartScript.

© 2003-2006 FMR Corp. All rights reserved.

Writing Your Trading System Rules 82

InstallStopLoss(Stoplevel);

StopLevel expresses the maximum [percentage] of loss for an open Position. A gap in
prices may result in a loss greater than percentage of StopLevel.

InstallTrailingStop(Trigger, StopLevel);

Trigger is the Position's profit [percentage] that must be reached on a closing basis to
activate the stop, and, StopLevel is the percentage of the total profit that must be lost
(pull back) to trigger the stop. StopLevel is always expressed as a percentage and is
not affected by SetAutoStopMode.

InstallBreakEvenStop(Trigger);

Trigger is the Position profit [percentage] that must be reached to activate the
breakeven stop.

InstallReverseBreakEvenStop(LossLevel);

LossLevel is the [percentage] loss that must be reached to activate a breakeven stop
limit.

InstallProfitTarget(TargetLevel);

TargetLevel, the profit target level, expresses the [percentage] profit desired to trigger
an automatic exit of an open Position.

InstallTimeBasedExit(Bars);

Bars represents the number of bars after which a position is automatically closed.

Example

var BAR i nteger;
{ Use automated Stops to close out the position }
I nstal | StopLoss(20);
Install ProfitTarget(40);
Install TrailingStop(20, 50);
I nstal | BreakEvenSt op(10);
I nstal | Rever seBreakEvenSt op(20);
Pl ot St ops;
for Bar := 15 to BarCount - 1 do
begin
i f LastPositionActive then
Appl yAut oSt ops(Bar)
el se
begin
if PriceClose(Bar) > SMA(Bar, #Close, 14) then
if PriceClose(Bar - 1) <= SMA(Bar - 1, #C ose, 14) then
BuyAtLimt(Bar + 1, PriceCl ose(Bar), '');
end;
end;

© 2003-2006 FMR Corp. All rights reserved.

83 WealthScript Language Guide, Wealth-Lab Pro™

5.2.7 Selling Short
Each buy and sell function has a corresponding function for going short and covering a
short Position. Replace the "Buy" with "Short" in the function name to initiate a short
Position. Replace "Sell" with "Cover" to close a short Position. The Automated Stops can
be used for short Positions as well as long.
For more information on these functions, see their entries in the Trading System Control
chapter in the WealthScript Function Reference.
Entering Long Entering Short
BuyAtClose ShortAtClose
BuyAtLimit ShortAtLimit
BuyAtMarket ShortAtMarket
BuyAtStop ShortAtStop
Exiting Long Positions Exiting Short Positions
SellAtClose CoverAtClose
SellAtLimit CoverAtLimit
SellAtMarket CoverAtMarket
SellAtStop CoverAtStop

5.3 Implementing Trading System Rules

You can use whatever logic based on price, technical indicators, date information, or
whatever else you can think of in your entry and exit rules. Get as complicated and
creative as you like, but be careful; often times the simpler the trading system, the more
robust it will be. Consult the WealthScript Function Referencels! for a complete list of
functions that you can use in your system rules, or with the main icon toolbar visible,
View|Icon Bar, type Ctrl+K to open the QuickRef.

Example
var BAR i nteger;

{ Buy if Price is higher than the Price of 3 days ago, and 100 day EMA is

moving up. Sell if Price is lower than the price of 3 days ago, or 100
day EMA is noving down. }
for Bar := 101 to BarCount - 1 do
begin
i f LastPositionActive then
begin

if (PriceClose(Bar) < PriceCose(Bar - 3)) or
(EMA(Bar, #Close, 100) < EMA(Bar - 1, #C ose, 100)) then
Sel | At Market (Bar + 1, LastPosition, '');
end
el se
begin
if (PriceCose(Bar) > PriceCose(Bar - 3)) and
(EMA(Bar, #C ose, 100) > EMA(Bar - 1, #C ose, 100)) then
BuyAt Market (Bar + 1, '');
end;

© 2003-2006 FMR Corp. All rights reserved.

Writing Your Trading System Rules 84

5.4

end;

Never Look Ahead!

Be sure that your trading system doesn't take advantage of information that it would
have no way of accessing in the real world! For example, don't look ahead at Price Series
or indicator values. Also, be sure to execute your entry and exit orders at the following
bar (typically Bar + 1) to avoid using information from the current bar that you'd have no
way of knowing at market open. In system testing these types of errors are termed
postdictive errors.

Example

{ This Systemtakes advantage of future information! It buys and sells
at the market open on the same bar that it exam nes closing price! }
var BAR i nteger;

for Bar := 1 to BarCount - 1 do
begin
if LastPositionActive then
begin

if PriceClose(Bar) < PriceC ose(Bar - 1) then
Sel | At Mar ket (Bar, LastPosition, '');

end
el se
begin
if PriceClose(Bar) > PriceC ose(Bar - 1) then
BuyAt Mar ket (Bar, '');
end;
end;

The Trading System above would give you an idea of how well you could do in the market
if you had access to supernatural abilities. Although the violation is subtle, you'd be
surprised at how much it can impact the bottom line of trading system evaluation!

Managing Multiple Positions

WealthScript provides the capability to create trading systems that can manage muiltiple
open Positions. You can use this feature to write systems that average down, for
example.

Several functions, which found in the Position Management chapter of the WealthScript
Function Referencel s, are available to help you work with information about System
Positions. Some of the most important functions are described here.

PositionCount;
returns the total number of Positions that have been created.

LastPosition;
returns the Position number of the last-entered Position. Position numbers range
from 0 to Posi ti onCount - 1. Note that Last Positi on = PositionCount - 1.

LastLongPositionActive;

© 2003-2006 FMR Corp. All rights reserved.

85 WealthScript Language Guide, Wealth-Lab Pro™

returns the Position number of the last long Position.

LastShortPositionActive;
returns the Position number of the last short Position.

Other WealthScript Position functions return information about a specific Position. You
pass a Position number to these functions:

PositionActive(Position);
returns True if the Position is currently open.

PositionEntryPrice(Position);
returns the entry price of the Position. See also PositionExitPrice.

PositionEntryBar(Position);
returns the integer Bar number on which the Position was established. See also

PositionExitBar.

PositionLong(Position);
returns True if the Position is long and False if it is short. See also PositionShort.

When working with multiple Positions, you typically have a secondary loop within your
main loop that goes through each Position and determines whether it should be closed
out.

Place your Position closing loop above any system entry trading rules. This will prevent
the sell logic from being applied to Positions that are opened on the very same bar.

Example

{ This Trading System buys whenever RSI crosses above 30, and cl oses all
open positions when it crosses below 70. }
var BAR, P: integer;
for Bar := 15 to BarCount - 1 do
begin
if RSI(Bar, #Close, 14) < 70 then
if RSI(Bar - 1, #Cl ose, 14) >= 70 then
begin
for p:=0 to PositionCount - 1 do
if PositionActive(p) then
Sel | At Market(Bar + 1, p, '');
end;
if RSI(Bar, #Close, 14) > 30 then
if RSI(Bar - 1, #C ose, 14) <= 30 then
BuyAt Market (Bar + 1, '');
end;

Splitting Positions

If your strategy includes the purchase (or short sale) of a single position and then closing
off parts of it in multiple separate trades, you can split the original position using the
SplitPosition function. See the SplitPosition tutorial in the Wealth-Lab Knowledge Base.

Note: Currently, separate positions cannot be merged or combined.

© 2003-2006 FMR Corp. All rights reserved.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=48
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=KnowledgeBase.htm

Writing Your Trading System Rules 86

Shortcut to Closing all Open Positions

Instead of looping through the individual Positions in a multiple-Position strategy, you
can use the special #Al | constant in place of a parameter that requires a Position
number to close all open long or short Positions at once.

Example
var BAR integer;
for Bar := 20 to BarCount - 1 do
begin

if CrossOverVal ue(Bar, CMOSeries(#Cl ose, 20), -40) then
BuyAt Market (Bar + 1, 'CMO)
el se if CrossUnderVal ue(Bar, CMOSeries(#C ose, 20), 40) then
Sel | At Market (Bar + 1, #All, 'CMO);
end;

Optimizing Processing of Active Positions

For sure, the #All shortcut is quick to deal with one or more Positions that will be exited
at the same time. Some trading systems, however, have different stops, profit targets,
or other exit logic for each individual Position. In these cases, it is necessary to process
each active Position, one at a time, to execute the intended logic. To find the active
positions, however, it is not necessary to loop over all the Positions as shown in the RSI
trading system above. Doing so can significantly slow down ChartScripts that create

many Positions.

Two design patterns are frequently used that optimize processing speed in these cases.

Design Pattern 1

Here, interim variables are declared to hold the ActivePositionCount and the number of
active Positions that have been processed. Since Positions that are opened earlier are
usually closed out first, the PositionCount loop counts backwards, starting with the
most-recent Position. As each active Position is found, the Processed variable is
incremented and compared to APCount, and, when equal the loop is terminated since
all known active Positions have been processed.

var p, APCount, Processed: integer;

Processed : = 0;
APCount := ActivePositionCount;
for p := PositionCount - 1 downto O do
begi n
if PositionActive(p) then
begin

{ do sonmething with the active position p here }

I nc(Processed);
if Processed = APCount then
br eak;
end;
end;

© 2003-2006 FMR Corp. All rights reserved.

87

WealthScript Language Guide, Wealth-Lab Pro™

For an example of pattern 1 in action, see
Interacting Dynamically with Portfolio Level Equity at the Wealth-Lab.com
Knowledge Base.

Design Pattern 2

In this ingenious pattern, the variable p is initialized to the number of the most-recent
active Position + 1. The repeat/until(s5] nested loop then finds the very next active
position by decrementing p by one. The process is repeated by the outer loop only for
the number of active positions.

var a, p: integer; // (in variable declarations)

p := LastActivePosition + 1;
for a := 1 to ActivePositionCount do
begi n
r epeat
Dec(p);

until PositionActive(p);
{ do sonething with the active position p here }

end;

© 2003-2006 FMR Corp. All rights reserved.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=6
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=KnowledgeBase.htm

Working with Technical Indicator Functions 88

6 Working with Technical Indicator Functions
6.1 Overview

WealthScript provides native functions for dozens of technical indicators. Each of these
technical indicator functions has two different syntax forms. The first form returns the
value of an indicator at a specific bar in the chart. The second form returns the Price
Series handle of the indicator, which you can then pass to functions such as Pl ot Seri es
or AddSeri es.

Accessing Indicator Values|sd)
You could use the Get Ser i esVal ue function to access values of a technical indicator

series, but there's a much more intuitive way using the first form of indicator syntax.

Accessing Indicator Price Series Handles!ss)
As outlined in the chapter Working with Price Series/st1, handles are used to refer to a

complete Price Series. The value that the second form of indicator syntax returns is,
in fact, a handle.

For further reference:

The Technical Indicator Functions section of the WealthScript Function Reference! s
contains a complete listing of the technical indicator functions available. Also, the
Wealth-Lab Pro Function QuickRef contains a complete example of each native indicator
in use.

6.2 Accessing Indicator Values

Use the first form of the indicator function to return the indicator's value at a specific bar
in the chart. This form of syntax is commonly an abbreviation, or possibly an acronym,
which describes the indicator.

Syntax (Indicator first form, general syntax):

indicatorabbr(Bar[, Series[, ParameterList]]);
Although Bar is always required when using the first form, the brackets [] indicate
optional arguments that depend on the parameters particular to the indicator. For a
typical example, let's turn our attention to the Simple Moving Average value function. Its

syntax abbreviation (indicatorabbr) is SMA and the function takes 3 parameters:

SMA(Bar, Series, Period);

Bar The Bar number at which we're interested in obtaining the Simple
Moving Average.

Series The handle of the Price Series (or WealthScript function that
returns a Price Series handle) of which we want to obtain the
moving average.

© 2003-2006 FMR Corp. All rights reserved.

89 WealthScript Language Guide, Wealth-Lab Pro™

Period The Period of the moving average.
The example below prints the Simple Moving Average value for each bar to the Debug
Window. If you run this script and examine the output in the Debug Window you'll notice
that the first 29 lines are zero. This is because we're requesting the value of the 30 day
moving average, so the first indicator value isn't available until the 30th bar.
Example

var Bar: integer;

var SMA Val ue: float;

for Bar := 0 to BarCount - 1 do

begin

SMA Val ue := SMA(Bar, #C ose, 30);
Print(FloatToStr(SMA Value));

end;
Indicator Calculation
The first time you call one of the native technical indicator functions or a properly-formed
custom indicator, Wealth-Lab calculates the indicator across the complete Price
Series. Subsequent calls to the indicator function return pre-calculated values. Because
of this, you can be sure that repeated calls to access indicator values will be as quick as
possible and that unnecessary recalculation is not performed.

6.3 Accessing Indicator Price Series Handles

The second form of the indicator function returns the handle to the complete indicator
Price Series (see the Working with Price Series/si] topic). These functions are always
named the same as their first-form counterparts, but with the word "Series" appended.
So, for example, the Simple Moving Average function is named SMASer i es. Since these
functions return the handle that refers to the complete Price Series, they do not include
the Bar parameter.

Syntax (Indicator second form, general):
indicatorabbrSeries([Series[, ParameterList]]);
Now, we complete our explanation with the syntax of the most well-known indicator.

SMASeries(Series, Period);

Series The handle of the Price Series (or WealthScript function that
returns a Price Series handle) of which we want to obtain the
moving average.

Period The Period of the moving average.

You can pass an indicator Price Series handle to any WealthScript function that is looking

© 2003-2006 FMR Corp. All rights reserved.

Working with Technical Indicator Functions 90

for a Price Series parameter. For example, Pl ot Seri es. The example below obtains the
handle to the Simple Moving Average and plots it on the chart.

Example

var nHandl e: integer;
nHandl e : = SMASeri es(#C ose, 30);
Pl ot Seri es(nHandl e, 0, #Red, #Thick);

© 2003-2006 FMR Corp. All rights reserved.

91 WealthScript Language Guide, Wealth-Lab Pro™

7 Accessing Data from Files

7.1 Overview

You can access data from external text files from within your WealthScript code by using
the File Access Functions. The File Access Functions provide a way to create, read from,
and write to external files.

Creating and Opening Files/of)
Just as Price Series use handles to refer to the data entire series, you'll need a file
handle to point to a file on your computer. The two functions that create and open
files return an value that you assign to an integer variable, which is then used as the
file handle.

Reading and Writing/e2)
Once you have a file handle saved in an integer variable, you use it as a reference to
read and write from the file.

Closing Files/es!
Wealth-Lab automatically closes files that you open from within a script, but you may
do it yourself if you like. Read this topic to discover some subtleties in file-access
operations during WatchList Scans and $imulations.

7.2 Creating and Opening Files

Each of the functions described below return an integer "File Handle" that is used in
subsequent File Access function calls.

Syntax:
FileCreate(FileName);

FileOpen(FileName);

FileName is a string expression that describes the full path of the file to be created and/or
opened. If FileName does not include a path, then the file will be created/opened from
the Wealth-Lab Pro's main directory. If a directory path is specified, it must exist
otherwise an error will result.

Use the Fi | eCr eat e function to create and open a new, empty file. If FileName already

exists, it will be deleted and a new file created in its place. See important aspects of
Fi | eCr eat e when used in WatchList Scans or $imulations under the topic

Closing Files/es1.

The Fi | eOQpen function is used to open an existing file. Nevertheless, if FileName does
not exist, Fi | eQpen will create it.

Example
var NewFile, O dFile: integer;

© 2003-2006 FMR Corp. All rights reserved.

Accessing Data from Files 92

NewFi | e :
AdFile :

FileCreate('c:\wi ndows\tenp\w tenp.txt');
FileOpen('c:\wi ndows\win.ini");

To create a file that includes the symbol name in use by the ChartScript, you can use the
CGet Synbol function as shown in the next example.

Example

var NewFil e: integer;
NewFile := FileCreate('c:\wi ndows\tenp\' + GetSynbol + '.txt');

7.3 Reading and Writing

Use the Fi | eRead function to read a line from a file, and the Fi | eW i t e function to
write a line to a file.

Syntax:
FileWrite(File, Line);

FileRead(File);

File is the File Handle that was returned from either Fi | eCreat e or Fi | eQpen. Line is a
string expression of the data to be "written" or output to File.

Fil eWit e always appends the data string specified in the Line parameter to the end of

the file. Additionally, the write operation automatically appends carriage return and line
feed characters, Chr(13) + Chr(10), to Line.

Each time Fi | eRead is encountered in your script, it reads the next line from File and
returns the data as a string. Consequently, you normally find a Fi | eRead statement
within a loop that continues until the end of file is encountered.

Read and write file operations maintain separate file pointers, so you can even read from
a file created with Fi | eQpen and write to the same File Handle without disrupting the

read.

Use the Fi | eEOF (end of file) function to determine if there are any more lines of data to

be read from a file. The function returns a boolean True if the file pointer has
encountered the end of file.

Syntax:
FileEOF(File);

Example

{ Create a copy of the Wn.ini file in the Tenp directory }
var NewFile, A dFile: integer;

var s: string;

NewFile := FileCreate('c:\windows\temp\wl tenp.txt');
AQdFile := FileQpen('c:\windows\win.ini');

© 2003-2006 FMR Corp. All rights reserved.

93

WealthScript Language Guide, Wealth-Lab Pro™

7.4

while not FileEOF(OdFile) do
begi n

s := FileRead(OdFile);
Filewite(NewFile, s);

end;

Closing Files

Files are automatically closed after the script completes processing. During WatchList
Scans or $imulations, files are automatically closed after the complete Scan or
$imulation. Consequently, when opening a file using Fi | eCr eat e, each individual

ChartScript run during a Scan or $imulation can append lines of data to a single output
file without deleting the file that was created at the beginning of the Scan or $imulation.

You have the option, nevertheless, to close the file explicitly via the Fi | eCl ose function.

Syntax:
FileClose(File);

File is the integer File Handle that was returned from either Fi | eCr eat e or Fi | eQpen.

Since files are closed automatically after the script completes, this function has limited
use. During Scans or $imulations if you truly want Fi | eCr eat e to delete the previously

created file of the same name, include the Fi | eCl ose function in the script.

© 2003-2006 FMR Corp. All rights reserved.

Understanding Time Frames 94

8.1

Understanding Time Frames

Overview

WealthScript provides a set of special functions for accessing data from higher time
frames. You can easily create weekly or monthly data from a daily chart. Likewise, you
can access daily data from an intraday chart. You can also access higher-time-frame
intraday data from an intraday chart, provided that the higher-time-frame data can be
created from the lower level bars. For example, a chart of 10-minute bars can be created
using 1 or 5-minute bars, but not with 4-minute bars.

It may not be immediately obvious why you would want to use higher-time-frame data
when data of greater granularity (lower time frame) is available. Imagine though, that
you'd like your trade setup to be based on a strong underlying trend turning positive,
such as a moving average of weekly bars. When this condition is true, you might trigger
the trade Wealth-Lab Pro based on some pre-determined Daily price movement. In
Wealth-Lab Pro you can do this task with the same single set of Daily price bars!

As the following topics are very closely linked, it's best to review them in order.
Accessing a Higher Time Frame/es)

Depending on the time frame of your underlying data, different functions are utilized
to scale your data in other time frames.

Expanding the Series/o#
Once you have the Price Series in a higher time frame, it will be necessary to
synchronize it with the original time scale to be useful in ChartScript plotting
functions, for example. After you've done this conversion, you can use the new
series just like any other Price Series in the original time frame.

Accessing Higher Time Frame Data by Bar/e
You may forego the rather simplistic operation of expanding the entire series and use
another set of functions to find the corresponding bar number of the higher-time-
frame series in the original Price Series.

Scaling and Tradinghob
The technique of compressing data is used to create indicators that you later project
back to the original base time frame in which your trades are executed. Do not
confuse the purposes of WealthScript Time Frame functions with Wealth-Lab's scaling
tools.

See Also: Synchronization Options in the Wealth-Lab Pro User Guide.

© 2003-2006 FMR Corp. All rights reserved.

95

WealthScript Language Guide, Wealth-Lab Pro™

8.2

Accessing a Higher Time Frame

The first step in accessing data from a higher time frame is to use one of the special
"SetScale" functions to change to the desired time scale. WealthScript provides
Set Scal eWeekl y and Set Scal eMont hl y that can be called from a daily chart, and

Set Scal eDai | y and Set Scal eConpr essed that can be called from an intraday chart.

You'll receive a compilation error if you try to use one of these functions with data of an
incompatible time frame.

Summary of Time Frame Compression Options

Base Time Frame Conpression Function Resulting Tinme Frane

I nt raday Set Scal eConpr essed I ntraday (higher tinme frane)
I nt raday Set Scal eDai | y Daily

Dai |y Set Scal eWekl y Weekl y

Dai |y Set Scal eMont hl 'y Mont hl y

Example

{ Qpbtain the weekly closing prices froma daily chart }
var Weekl yCl ose: integer;

Set Scal eWeekl y;

Weekl yC ose : = #C ose;

Rest orePri marySeri es;

Note the call to Rest or ePri mar ySeri es at the end of the script. You should always
call Rest orePri mar ySeri es after you're finished operating in the higher time frame.

To get an idea of what's going on behind the scenes, let's inspect the #Close and
WeeklyClose series of a typical, albeit very small, data sample.

Maon Tue i ed Thur Fri Man Tue Thur Fri
Date| 12716 1277 1258 12419 12/20 12723 12724 12426 12727
#Close (Dailv)| 37.32 J6.66 36,37 e l1 3IF¥.06 3683 3681 3711 36.54

WeeklyZlose| 37.06 36.54

The WeeklyClose series contains roughly 1/5 the number of values as the primary Daily
series, and, the data values are taken from the last calendar day of the week - the
weekly close - which in this case is Friday. If you looped through the bars before the call
to RestorePrimarySeries you would find that the bars retain the calendar day of the first
calendar day of the week (Monday). This is really immaterial, and you'll see why when
you Expand the Series/e] to use its data in your ChartScript.

© 2003-2006 FMR Corp. All rights reserved.

Understanding Time Frames 96

Expanding the Weekly Series

The example above returned the weekly closing Price Series for our daily data. If our
daily chart had 1000 bars, the "WeeklyClose" Price Series would roughly contain only 200
bars (5 trading days per week). If you tried to use this Price Series in a function such as
PlotSeries, you'd receive an error (or no result), because the weekly Price Series has
fewer bars than the daily Price Series. There are two ways to "expand" the higher-time-
frame data and make it available for use from within the lower level chart:

Expanding the [entire] Series/# and Accessing Higher Time Frame Data by Bar/e3).

8.3 Expanding the Series

The first method of accessing the higher time frame data is arguably simpler.
WealthScript provides special functions to automatically expand the higher-time-frame
data. You can use the Dai | yFr om\\ekl y and Dai | yFr om\vbnt hl y functions in daily
charts, and the I nt r aDayFr onDai | y or | nt r adayFr onConpr essed functions in

intraday charts. After calling the appropriate function to expand the higher-time-frame
Price Series, use Get Seri esVal ue to obtain the value of the converted series at a

particular Bar Number.

Summary of Timeframe Expansion Options

Base Tine Frame Expansion Function Use After Conpression Wth
I nt raday I nt radayFr onConpr essed Set Scal eConpr essed

I nt raday I nt radayFronDai | y Set Scal eDai | y

Dai |y Dai | yFr omAéekl y Set Scal eWekl y

Dai |y Dai | yFr oniVont hl'y Set Scal eMont hl 'y

These functions return a new Price Series that is synchronized to the lower time frame
data. The expanded Series contains a number of repeated values. For example, a
weekly series converted to a daily series generally will have 5 repeated values in a row,
one for each day of the week.

Note: Upon expansion, alignment of compressed data is greatly affected by the
Compressed Price Series Alignment Option|es).

The example below shows how to convert the weekly data to a daily series for plotting.
This effectively overlays the weekly close over the daily chart.

Example

var \Weekl yCl ose, Weekl ySynched: i nteger;

Set Scal eWeekl y;

Weekl yC ose : = #C ose;

Rest orePri marySeri es;

Weekl ySynched : = Dail yFromieekl y(Weekl yd ose);
Pl ot Seri es(Wekl ySynched, 0, #Red, #Dotted);

At this point you can use the WeeklySynched series the same as any other Price Series in
the Daily time frame.

© 2003-2006 FMR Corp. All rights reserved.

97

WealthScript Language Guide, Wealth-Lab Pro™

Apply indicators, such as a Weighted Moving Average, to the compressed (higher-time-
frame) Price Series prior to using an expansion function. This may be done before or
after the call to Rest or ePri marySeri es. Adding to our previous example, we

demonstrate how to do this.

Example

{ Create a 5-period Wighted Mywving Avg of the weekly price series
derived
fromdaily data and then use it in the Daily time frane. }
var Weekl yd ose, WeeklySynched, AvgWekly, AvgWeklySynched: integer;
Set Scal eWekl y;
Weekl yC ose : = #Cl ose;
AvgWeekly := WMASeri es(Weekl yCl ose, 5);
Rest orePri marySeri es;
Weekl ySynched : = Dail yFromieekl y(Weekl yd ose);
AvgWeekl ySynched : = Dail yFromieekl y(AvgWeekly);
Pl ot Seri es(Wekl ySynched, 0, #Red, #Dotted);
Pl ot Seri es(AvgWekl ySynched, 0, #Blue, #Dotted);

Compressed Price Series Alignment Option

It's important not to "look ahead" while back testing trading systems as this will cause
postdictive errors in your scripting that usually leads to overly-inflated profits. If you're
not careful, this can be easy to do when synchronizing an expanded Price Series.

You have control of how to align and display data from a compressed Price Series. This
option is provided by selecting Tools | Options (or by striking the F12 function key) and
then the Synchronization tab.

options x|
System Sefings | Colwa/Stve | PrefemedVahws | Sounds | EbalAlets |
Trading Costs/Conteel Spnchronization |Amdem.ﬁm | Ecita

Secandany Symbol Snchicnization
[Enable futomatic Dste/Time Synchionization of Exteinal Senss

[Compeazeed Prica Senes Alignment

Exaenple: Daba for the Weakly Bai will ba Avalable on the LAST Ba of
the SAME Wesk: [noemally Fridag] on the Dady Chart.

" Compressed Bar Avalabls on the Fist Bar of Penod
Exaenple: Daba for the weekly Bal vl be Avalable on the FIRST Ba of
thie SAME “Wesk [noernally b onday) on the Dy Chart

" PREVIOUS Compressed Bar Avadable on the First Bar of Pesiod
Escaerple: Daba for the Weskly Bai vl ba Avalable on the FIRST Ba of
the HEXT “e/e=k fnomally Monday] on the Daly Chait

~—Intraday Bas Compresscey
F# Use the Stesl bme of the first Biar of the day bo base Comprassion

o OF I;XEmde

© 2003-2006 FMR Corp. All rights reserved.

Understanding Time Frames 98

Considering again the previous examples of overlaying compressed Weekly data on top of
its corresponding Daily Price Series, let's inspect the same sample data set to see how
these options affect the outcome. Here, we observe the result of the repeated data
values after the DailyFromWeekly function call based on the selection indicated. We'll
refer to these as Options #1, #2, and #3 from top to bottom.

& Compressed Bar Available on Last Bar of Period

{Option #1) hdan Tue Wied Thur Fri hdon Tue Thur Fri
Date 12ME 12M7 1218 12189 12020 12123 12124 12126 12027
#Close (Daily) 3732 36.66 36.37 36.11 3706 36.83 36.81 371 36.54
-

- ~
WeeklySynched| 3652 3652 3652 3652 3706 370R 3706 3706 36.54

' Compressed Bar Available an the First Bar of Period

(Option #2) hdon Tue Wier] Thur Fri han Tue Thur Fri
Date 12M6 1217 1218 1219 12520 12023 12024 12026 12027
#Cloze (Daily) I7.az 3666 3637 3611 a7 .06 3683 3681 a1 3654

Ty A

-
Weekly Synched 37.06 37.06 3706 37.06 37.06 36.54 36.54 36.54 3624

" PREVIOUS Compressed Bar Available on First Bar of Period

{Option #3) hdan Tue Wied Thur Fri hlon Tue Thur Fri hdon
Date 12MEB 1217 12M8 12189 12120 12123 12124 12126 12027 12430
#Close (Daily) 3732 3666 36.37 36.11 3706 36.83 363 3T 36.54 36.99

"x\
WeeklySynched 36.52 3652 36.52 36.52 36.52 3706 37.06 37.06 37.06 36324

When testing a trading system using compressed data in a more granular time frame
(i.e., expanded), it's clear from these illustrations that either Option #1 or #3 must be
selected. The difference in the first (default) and third options is one of a self-imposed
delay. In other words, if you were to run an end-of-day Scan with Option #1 on Friday
(after the close), you could generate trading signals for Monday's open based on the
current week's data. In contrast, with Option #3, this data would not be available until
Monday night's Scan. Either method is acceptable and which one you choose depends on
your methodologies.

If Option #2 were selected, you would incorrectly be using data only available at a later
time in actual trading, as you can verify in the illustration above. Nevertheless, you may
wish to see the data using the second convention for charting purposes, or to create
some sort of idealized trading system. For these reasons it is available for your
discretional use.

For a graphical interpretation of this discussion using Daily/Intraday time frames, see the
following Knowledge Base article: http://www.wealth-lab.com/cgi-
bin/WealthLab.DLL/kbase?id=77

© 2003-2006 FMR Corp. All rights reserved.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=77

99

WealthScript Language Guide, Wealth-Lab Pro™

8.4

Accessing Higher Time Frame Data by Bar

The second method of accessing the higher-time-frame data is to determine the bar
number in the higher-time-frame Price Series that corresponds to the bar nhumber in the
lower level Price Series. WealthScript provides special functions to do this:

Get Weekl yBar and Get Mont hl yBar for daily charts and Get Dai | yBar and

CGet Conpr essedBar for intraday charts. Once you have determined the corresponding
bar number, you can use Get Seri esVal ue to obtain the value of the converted series at
that bar.

Summary of Get Bar Options

Base Tine Frane "Get Bar" Function Use After Conpression Wth
I nt raday Get Conpr essedBar Set Scal eConpr essed

I nt raday Get Dai | yBar Set Scal eDai | y

Dai |y Get Weekl yBar Set Scal eWekl y

Dai |y Get Mont hl yBar Set Scal eMont hl 'y

The example below first grabs the weekly closing price series. It then goes through each
bar of the daily chart and finds the corresponding weekly closing prices for the previous 2
weeks. If the previous week's close was higher than the close 2 weeks ago, the script
colors the daily bar green. After running the example, a look at the Debug Window
resulting from the Pri nt statement will provide additional insight.

Example

var Weekl yC ose, Bar, BarWekly: integer;
Set Scal eWeekl y;

Weekl yCl ose : = #CO ose;

Rest orePri marySeri es;

for Bar := 12 to BarCount - 1 do
begin
Bar Weekly := Get Wekl yBar(Bar);
Print(IntToStr(BarWekly) + ', ' + IntToStr(Bar));

i f GetSeriesValue(BarWekly - 1, Weklyd ose)
> Get Seri esVal ue(BarWeekly - 2, WeklyC ose) then
Set Bar Col or (Bar, #Geen);
end;

Let's recap.

The difference between the two methods of accessing higher-time-frame data is subtle.
After Rest or ePri marySeri es, in the "expansion" method, we simply create another
new Price Series that contains repeated values synchronized with the original Price
Series. Expanding the higher-time-frame series in this way is necessary if you want to
plot its values using the Pl ot Seri es function.

In the less-intuitive method above, the higher-time-frame series is never expanded. Its
values are obtained by finding bar numbers that correspond between the two time
frames. Since the repeated values associated with the series-expansion method do not
exist, we have an advantage in memory savings.

© 2003-2006 FMR Corp. All rights reserved.

Understanding Time Frames 100

8.5 Scaling and Trading

The Time Frame functions discussed in the preceding topics are probably the most
difficult to understand of the WealthScript functions, yet once you have mastered them,
you will see how easy it is to create complex trading systems based on data and
indicators in other time frames.

Two concepts relating to time frames are necessary to understand. The first is that you
can Scale the data in the primary series using the using the Scale toolbar for
ChartScripts (D W M, 5, [2) and the Scale tab controls in the $imulator, Rankings, and
Scans tools. Scaling in this manner re-creates the data into a new base time frame,
which allows you to generate trades in the new scale. Note that the ChangeScal e
function serves this same purpose, but it is useful only in the ChartScript window.

Unlike the aforementioned scaling features of Wealth-Lab, the Time Frame functions do
not change the base time frame and therefore do not allow you to make trades on
resultant Price Series. This group of functions allow you to create indicators in more
compressed time frames that must be restored or projected back to the original base
time frame.

Scaling and Time Frame Notes:

1. Transforming intraday data to multiples of its underlying interval using the Scale
toolbar is currently available only for ChartScript windows. A similar intraday
scaling feature does not exist for the $imulator, Scans, and Rankings.

2. It is not possible to place trades on a Primary Series that has been time-compressed
from within a script using Set Scal eConpr essed or Set Scal eDai | y, for example.
These WealthScript Time Frame functions allow you only to generate indicators and
other Price Series in a more compressed time frame that must be referenced back
to the base time frame.

© 2003-2006 FMR Corp. All rights reserved.

101

WealthScript Language Guide, Wealth-Lab Pro™

9.1

Creating a Custom Indicator

Overview

You can create custom technical indicators in Wealth-Lab Pro that are treated just like
native indicators. Custom indicators are scripts composed of two functions (as are native
indicators). One function returns the value of the indicator at a specific bar. The second
function returns a handle to the complete Price Series for the indicator.

A custom indicator is nothing more than a specially formed ChartScript that is stored in
the "Indicators" folder. Custom indicators appear in the Indicator list within the main
icon tool bar panel, which is docked on the left side of the screen. You can distinguish
custom indicators from native WealthScript indicators because they have a red cross next

to the function symbol.

F¥| Fidelity Wealth-Lab Pro - [ChartSeript - (Unj

File Edit Datasources Chart Tools Wiew Community Faw

byoe@en|s B8

Tools Symbaol |,.f_-.x|:' -
Fawvartes _!
QuickRel (Al Dt 4
Indicatars |$5E|I:|E| Dallar #
Flofrar w528 o5t]
f Aroonlp Py E AR r
£ ASEMA Y i

f ATR 2 B

f ATRP 4
f+BBandEandWidth[% Hc]
f BB andLower E CAT ’

Using the New Indicator Wizard|02
Even for experienced users, the New Indicator Wizard is a great place to start to
generate the boilerplate code for your indicator. After defining a few parameters,
you'll only have to program how the indicator is calculated. It's a snap!

The Guts of a Custom Indicator/b
If you're a code hound, you'll probably be interested in the details of how Wealth-Lab
can calculate so quickly the value of your indicator each time you reference it in a
ChartScript. (The secret is that it calculates the entire indicator series once only!)

Other Possibilities o7
There's always more than one way to code an idea. Coding an indicator is not an
exception to this rule.

© 2003-2006 FMR Corp. All rights reserved.

Creating a Custom Indicator 102

9.2 Using the New Indicator Wizard

You can use the New Indicator Wizard to help produce a new custom indicator. The
Wizard generates the required boilerplate code for the indicator, and stores the
ChartScript in the "Indicators" folder. Start the New Indicator Wizard from the file menu
by selecting File|New Indicator Wizard, or by simply striking Ctrl+1I.

Note: You must know how to work with Price Series/st] before attempting to create
custom indicators.

Step 1. Indicator Name

The first step of the Wizard is to select the new indicator's name. You cannot
select a name of an existing ChartScript or a native WealthScript function. The
Wizard uses the indicator name to create two user-defined functions in the
resulting ChartScript code. The first function adopts the name of the indicator,
and the second function appends the word "Series" to the indicator name.

Step 2. Indicator Parameters

The next step of the Wizard is to select the parameters that the indicator will
accept. Here you are actually creating the parameter list that appears in the
indicator's function declarations. Select one of the names provided in the
Parameter Name drop down box, or type your own variable name.

Note: Do not use variables named Bar, sName, or Value. The Indicator
Wizard reserves these names for its output.

© 2003-2006 FMR Corp. All rights reserved.

103

WealthScript Language Guide, Wealth-Lab Pro™

Step 3.

Before clicking "Add Parameter", select the data type of your variable from the
other drop down box. Continue this process for as many parameters as are
necessary.

If any of the parameters is destined to be a Price Series handle, you should
include the word "Series" in the parameter name and select "integer" as the
data type. Wealth-Lab Pro looks for the word "Series", and if found will provide
the list of Price Series constants (#Open, #Hi gh, #Low, #Cl ose, #Vol une,

#Aver age) whenever the indicator's Properties Dialog is displayed, after
dragging and dropping an indicator on a chart pane for instance.

When finished adding parameters, select the "OK" button to create the indicator
script.

New Indicator Wizard Output

The New Indicator Wizard uses the information you provided to create a new
ChartScript and places it in the "Indicators" folder. This ChartScript contains the
skeleton code that the custom indicator requires. You have to now fill in the
portion of the code that actually calculates the indicator's value. The following
code snippet is part of the resulting ChartScript:

Result := CreateNanedSeries(sName);
for Bar := Period to BarCount - 1 do
begi n
{ Cal cul ate your indicator value here }
Val ue : = 0;
Set Seri esVal ue(Bar, Result, Value);
end;

Your job is to replace the statement, Value := 0; with code that calculates the
value of the indicator. Depending on the complexity of your indicator, this may
be a few or many statements. Note that this code is already within a for loop
that cycles through each bar of the chart. Your code should ultimately assign a
numeric expression (other than zero) to the variable Value, the value of your
indicator at Bar, which is conclusively stored in the indicator's series using

Set Seri esVal ue. In other words, you're filling the blank series created by

Cr eat eNanedSeri es bar by bar.

Note that the special variable Result is used as the handle to the indicator's Price
Series. It's important that when setting the series value at each bar that you
use the Result handle. When finished, don't forget to save your work!

Note: Do not create another series using Cr eat eSeri es and then assign its
handle to Result. This will have the effect of assigning an unnamed
series to Result, and therefore subsequent calls to the indicator series or
attempting to obtain a specific value at a single bar will return zero
value.

Custom Indicators Derived from Other Indicators

As we've just seen, the Indicator Wizard provides a code template for creating indicators
that are built bar by bar. However, many custom indicators can be derived more

© 2003-2006 FMR Corp. All rights reserved.

Creating a Custom Indicator 104

efficiently by combining existing indicators with series mathle3) using

Price Series operator functions/s4l like AddSeries, MultiplySeries, MultiplySeriesValue,
etc. In these cases, since the indicator is not built bar by bar in WealthScript, we need to
make modifications to the wizard code's *Series function. The Indicator Wizard is still
valuable because it generates the proper function declarations and parameter lists.

As an example, let's recreate the BBandLower indicator in custom indicator form. As the
following image shows, we've invoked the Wizard by striking Ctrl+I (or from the File
menu), named our indicator MyBBandLower, and added the required parameters and
Data Types.

Indicator Paramelers rzl

Diefine & Paiamatar

Parsmeter Mame: (35 =
[t Type: Flast -

+ Add Pavamete: ;‘lt

Drefmed Paiarmeleis
Mams | Data Type |
S Inkeger
) Pemod Inbeger
New Indicator | 50 Float
Neww Indicaton Mame:

|MFBHQMLW=4 P Diebele Parameter
5] e X e

Creating a WealthScript version of the BBandLower indicator.

Upon clicking OK to the Parameters dialog, MyBBandLower is saved to the Indicators
folder and is immediately registered in the main Indicators toolbar. Since we know that
the lower Bollinger Band is calculated by subtracting the StdDevSeries multiplied by the
specified standard devations from the simple moving average of the same Period, we can
express it as follows:

functi on MyBBandLower Seri es(Series: Integer; Period: Integer; SD. Float
): integer;
begin

var Diff: integer;

var sName: string;

sNanme : = ' MyBBandLower (' + GetDescription(Series) + ',' + IntToStr(
Period) +'," + FloatToStr(SD) + ')';
Result := Fi ndNanedSeri es(sNane);
if Result >= 0 then
Exit;

Diff := MultiplySeriesValue(StdDevSeries(Series, Period), SD);
Result := SubtractSeries(SMASeries(Series, Period), Dff);
Set Description(Result, sName);

end;

Take note of the major changes to the MyBBandLowerSeries code generated by the
Indicator Wizard:

e CreateNamedSeries is not necessary because our indicator is created as the result of

© 2003-2006 FMR Corp. All rights reserved.

105 WealthScript Language Guide, Wealth-Lab Pro™
another indicator function.

e The for/do loop is eliminated. It's not necessary to calculate the indicator's value on
a bar by bar basis.

e SetDescription assigns a string name, sName, to the description of our final Result
series. As explained in a subsequent topichd, Wealth-Lab uses descriptions to
access indicators whose values have already been calculated.

Wealth-Lab, however, automatically creates unique internal descriptions for native
indicators, and consequently it is actually not required to form the sName description and
assign it to the result using SetDescription. Therefore, we can simplify the custom
indicator code even further as follows:

functi on MyBBandLower Series(Series: Integer; Period: Integer; SD: Float

): integer;

begin
var Diff: integer;

Diff := MultiplySeriesValue(StdDevSeries(Series, Period), SD);
Result := SubtractSeries(SMASeries(Series, Period), Dff);
end;
Or simply,

functi on MyBBandLower Series(Series: Integer; Period: Integer; SD: Float

): integer;

begi n
Result := Subtract Series(

SMASeries(Series, Period),
Mul tiplySeriesVal ue(StdDevSeries(Series, Period), SD)
)
end;
9.3 Deleting a Custom Indicator
Unless you're clairvoyant, not all the custom indicators that you create will be useful, and
therefore you'll need a means to remove them. Since Custom Indicators (and Studies)
are simply special ChartScripts saved in the "Indicators" folder, to delete a custom
indicator you simply have to remove its ChartScript using normal Explorer procedures:

1. Open the ChartScript Explorer (Ctrl+0)

2. Navigate to the "Indicators" folder. (To remove a Study, go to the "Studies" folder.)

3. Locate the Custom Indicator or Study.

4. Click the item to highlight it, and strike the Delete key on the keyboard.

After confirming the deletion, the Custom Indicator will no longer appear in the main Icon
Bar under the "Indicators" section.
9.4 The Guts of a Custom Indicator

The New Indicator Wizard does the work of setting up the custom indicator for you, but it
may be helpful to understand how custom indicators work internally. The following
information is not required to create a custom indicator, so read on only if you are
interested in the details.

© 2003-2006 FMR Corp. All rights reserved.

Creating a Custom Indicator 106

Like all native WealthScript indicator functions, a custom indicator is composed of two
functions. The first function returns the value of the indicator at a specific bar. The
second function (with the word "Series" appended to it) returns the handle to the
complete Price Series.

For example, if we created a custom indicator called "Test", we wind up with two
functions, one called Test and another called TestSeries.

function Test(Bar: integer; Series: Integer; Period: Integer): float;
begin

Result := GetSeriesValue(Bar, TestSeries(Series, Period));
end;

The implementation of Test just grabs the value at the desired bar by calling

Cet Seri esVal ue. The second parameter of Get Seri esVal ue is a Price Series handle.
In this case, we pass the second custom indicator function. So, in essence, the Test
function always passes control to the TestSeries function to actually obtain its value.

This means that all of the work to calculate the indicator values is accomplished in the
TestSeries function. Here, we use some special WealthScript functions to make sure
that we only construct the indicator Price Series once, the first time Test or TestSeries
is referenced, which leads to increased performance of the script.

We'll assume that the Test indicator had 2 integer parameters, Series and Period. The
first thing the TestSeries function does is create a string that uniquely identifies the
requested indicator series.
sNa ;= '"Test(' + GetDescription(Series) + '," + IntToStr(Period) +
D

Now that the function has a unique string that identifies this Price Series, it can see if the
Price Series was previously created.

Result := Fi ndNanedSeries(sName);

if Result >= 0 then
Exit;

The Fi ndNamedSer i es function looks for a Price Series with a certain internal name. If
a Price Series with the specified name was found, the series was already calculated, so
we just assign it to the Result variable and exit the function. If the Price Series wasn't
created, then we need to create it and populate it with indicator values.

Result := CreateNanedSeries(sName);
for Bar := Period to BarCount - 1 do
begi n
{ Cal culate your indicator value here }
Val ue : = 0;
Set Seri esVal ue(Bar, Result, Value);
end;

The Cr eat eNanedSer i es function is similar to the frequently used Cr eat eSeri es. It
too creates an empty Price Series. The difference is that Cr eat eNanedSeri es
associates an internal name to the Price Series. We can then use Fi ndNanmedSeri es to
retrieve the Price Series by that name.

Related Topic: SetDescription

© 2003-2006 FMR Corp. All rights reserved.

107

WealthScript Language Guide, Wealth-Lab Pro™

9.5

Other Possibilities and FAQs

The method that the New Indicator Wizard uses to build a custom indicator is only one
possibility. Another way to proceed would be to calculate and return the indicator value
within the Test function itself. Then, in the TestSeries function, loop through each bar
and call the Test function to assign the value. This method would be more optimal for
ChartScripts that access indicator values sporadically and do not access the complete
Price Series for the indicator.

If desired, submit your correctly-formed custom indicators to the
WealthScript Code Library. This will then be available as a custom indicator on the web
site and in Wealth-Lab Pro when users perform a "Download ChartScripts" action.

I saved a custom indicator to the 'Indicators’ folder but it doesn't appear in the
Indicators icon bar?

A new custom indicator will be added to the icon bar if:

e you used the New Indicator Wizard[02 to create the custom indicator, and,
e the indicator was added automatically following a Community Download.

Otherwise, if you added the indicator by saving a ChartScript to the Indicators folder,
the indicator will appear in the icon bar the next time you start Wealth-Lab Pro.

How do I use Custom Indicators?

Answer: just like any other native technical indicator!es.

The main difference is that you must make your script aware of the custom indicator's
code by placing a special "include" comment at the top of your ChartScript that
identifies the name of the custom indicator script. The Include Manager can help in
locating custom indicators and placing these special $Include comment(s).

For example, assume that you wanted to use the custom indicator VK_WH which has
been saved as VK WH Band in the Indicators folder. A typical process would be as
follows:

1. Open a ChartScript (Ctrl+0) to which you wish to add the indicator or start with a
new one (Ctrl+N).

2. Click the Editor view and strike F6 to launch the Include Manager.

Locate the VK WH Band script, place a check mark next to it and click OK. This
action automatically places the required {$I 'VK WH Band'} comment at the top of
the ChartScript.

4. At this point, unless you're very familiar with the parameter list of this indicator,
you'll need to refer to the indicator's code and Description to use it properly. The
following code show is an example that simply plots the indicator. Note that the
VK_WHSeries function is defined in the 'VK WH Band' indicator script.

© 2003-2006 FMR Corp. All rights reserved.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=LibrarySubmit.htm
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=Library.htm

Creating a Custom Indicator

Example

{$l ' VK WH Band'}
var VK WHSer: integer;

VK WHSer := VK WHSeries(#Cl ose, 5, 20);
Pl ot Seri esLabel (VK_WHSer, 0, 009, #Thin, 'VK WH(#C ose, 5, 20)"'

108

Where can I use Custom Indicators?

You can use custom indicators in any ChartScript or IndexScript (Index-Lab). Custom

Indicators are not valid in CommissionScripts, PerfScripts, or SimuScripts.

© 2003-2006 FMR Corp. All rights reserved.

109

WealthScript Language Guide, Wealth-Lab Pro™

10

10.1

10.2

CommissionScripts

Overview

You should always include real-world trading costs to add fidelity to your backtesting.
The Options Dialog, Tools|Options (F12), includes a Trading Costs/Control tab that
provides selections for commissions and slippage that you will experience in real-world
trading.

If your broker uses a flat-fee commission for each trade, then you may select the "per
Trade" One Way Commission option, which simply deducts a fixed amount from each
trade in a simulation. Likewise, the "per Share" option reduces a trade's gross profit or
loss by the number of shares multiplied by the value entered. Still, these simple
commission options do not include other small adjustments that your broker can make on
a per trade basis, such as the SEC fee for sale transactions in the U.S., which at the time
of this writing is $0.0468 per $1,000.

Some brokers use graduated commission schedules or base their fees on a percentage of
trade volume. CommissionScripts give you complete control over calculating simple to
the most complex commission schedules used by brokers worldwide.

CommissionScript Variables /o8

Wealth-Lab makes specific trade data available to your script through the use of special
'CM' variables. You'll need these in order to calculate commissions. You'll assign the
final commission value to the CMResult variable, for example.

Creating and Testing CommissionScripts/18
CommissionScripts are a special type of ChartScript that contain logic only for

calculating commissions. After completing the code, save the script to the special L3
CommissionScripts ChartScript folder. You'll then be able to select it for use as the
CommissionScript in the Options Dialog.

CommissionScript Variables

CommissionScripts work by having access to the following special variables, which
Wealth-Lab loads with values that apply to the trade being processed. Each item's return
type is provided below and is further defined in the WealthScript Function Reference! s
as well as in the QuickRef:

CMBhar es : integer;
CVPri ce : float;
CMENtry . bool ean;
CvBynbol : string;
CVDat aSource : string;
CMOxr der Type : integer;
CMResul t : float;

Using these special 'CM' variables, you can emulate the your broker's calculation and
assign the result to the CMResult variable. Once complete, save the script to the L3

© 2003-2006 FMR Corp. All rights reserved.

CommissionScripts 110

CommissionScripts ChartScript folder. At this point, the script will be available as a
selection in the CommissionScript dropdown control in the Options Dialog.

When using CommissionScripts, Wealth-Lab executes the selected CommissionScript for
each trade processed during a simulation - once for each entry and and once for each exit
signal. The value calculated and assigned to the CMResult variable will then be used as
the trade's commission cost.

Wealth-Lab reduces the account equity by the commission amount on the bar on which
the trade takes place. Net profit reported for each trade in the Trades view includes all
entry and exit (if closed) commissions.

WealthScript Functions Compatible with CommissionScripts

You can declare any of the standard variable data types/il for use in a CommissionScript
as well as object types. However, not all WealthScript functions are available for use in
CommissionScripts. Generally speaking, in addition to the special 'CM' variables and

Cet A obal /Set A obal system functions, you may use only the Math and String
categories of WealthScript functions in CommissionScripts. Though most commission
calculations are expected to require only the most basic math functions, it should be clear
that some Math functions cannot be utilized, including:

Correl ati on, Li near RegLi ne, Li neExt endX, Li neExt endY, and
Tr endLi neVal ue

Finally, user-defined functions and procedures may be declared at the top of a
CommissionScript, however, {$Includes} cannot be used.

10.3 Creating and Testing CommissionScripts

Creating a CommissionScript

The procedure to make a CommissionScript is quite simple:

Step 1: Open a New ChartScript (Ctrl + N) and select the Editor Tab.

Step 2: The template (or skeleton) code will not be useful, so clear it to create a fresh
workspace.

Step 3: Using the aforementioned 'CM' variables program your broker's logic and
assign the final result to CMResult.

Step 4: Save the script (Ctrl + S) to the L CommissionScripts ChartScript folder.

The following sample CommissionScript is based on a commission structure with the
following characteristics:

e 1¢ per share up to 500 shares
e ¢ for shares over 500 shares
e $1 minimum

© 2003-2006 FMR Corp. All rights reserved.

111

WealthScript Language Guide, Wealth-Lab Pro™

Example
i f CMBhares <= 500 then

CMResult := CMBhares * 0.01

el se

if CMResult <
CMResult = 1;

CMResul t

(500 * 0.01) + ((CMBhares - 500) * 0.005);

1 then

Testing a CommissionScript

Most CommissionScripts will be straightforward in nature and will certainly be simplistic
to all but the most novice programmer. Nevertheless, typos and other errors can slip into
our code so it's necessary to exercise a CommissionScript prior to committing it to a large
$imulation process. The following guidelines may help in building confidence that your
CommissionScript is functioning properly:

1. After saving the script to the L3 CommissionScripts folder, be sure to select the
CommissionScript for use in the Options Dialog|Trading Costs/Control tab.

2. To more easily isolate trading costs due to commissions, disable Slippage.

Begin by executing the CommissionScript by itself in a ChartScript window. Though
you will not be able to determine that your commission algorithm is functioning
correctly, running the script gives you a chance to correct syntax errors. If you
corrected errors, save and close the CommissionScript.

4. Open a ChartScript of your choice that contains trading system rules and execute it.
Determine the gross profit of a trade based on the number of shares/contracts and
entry/exit prices. Subtract the Net Profit provided in the Trades view from the
calculated gross profit. The result will be the value(s) calculated by the
CommissionScript.

5. Re-activate Slippage, if desired.

Remarks:

If you find that no commissions are ever deducted when using your commission
script, check the script for errors.

Commissions are shared equally between split positions in the ChartScript window.
However, due to the way the $imulator operates internally, all commissions are
retained by the initial position in a split.

© 2003-2006 FMR Corp. All rights reserved.

PerfScripts 112

11

111

11.2

PerfScripts

Overview

PerfScripts, or Performance Scripts, are Scriptable Performance Reports. You can
customize Wealth-Lab Performance Reports to display whatever performance metrics that
you can imagine using the PerfScript feature. Performance Scripts must be saved to the

special PerfScripts folder, where a sample named "Standard PerfScript" is included
with your Wealth-Lab Pro installation that duplicates the standard Wealth-Lab
Performance Report.

When enabled on the Performance View tab of the ChartScript Window or $imulator
tools, Wealth-Lab will execute a PerfScript four times to process All Trades (Long+Short),
Long Only, Short Only, and Buy & Hold positions. Since Wealth-Lab automatically makes
the appropriate group of positions available to the PerfScript during each of the four runs,
it's not necessary to write special code to test position types (long, short, etc.).

PerfScript Functions/2

Creating PerfScripts/3)

Using PerfScripts /i

PerfScript Functions

PerfScripts have a repertoire of dedicated functions that the QuickRef and WealthScript
Function Reference describe in detail. The first five functions enable you to control the
format of the metrics that you add to Wealth-Lab's ChartScript and $imulator
Performance Views. Wealth-Lab calculates account exposure and facilitates its access
through the Account Exposur e function.

PerfAddCurrency

PerfAddPct

PerfAddString

PerfAddNumber

PerfAddBreak

AccountExposure

StartingCapital

CashiInterest

MarginLoan

TotalCommission

In addition to these PerfScript-specific functions, you can also use WealthScript functions
from the Data Access, Date/Time, File Access, Technical Indicators, Math, Position

© 2003-2006 FMR Corp. All rights reserved.

113

WealthScript Language Guide, Wealth-Lab Pro™

11.3

Management, Price Series, and String categories. It should be clear that not all functions
in these categories lend themselves to PerfScript analysis, such as the "Set" Position
Management functions.

Concept Note

A performance script processes equity curve data and the individual trading details
from all symbols following a $imulation or ChartScript Window execution. References
to Standard Price Series like #Close, #Volume, etc. cannot be permitted in PerfScripts
because the idea of a Primary Series does not exist. Consequently, Price Series
functions like ATR, MFI, etc. that require Standard Price Series cannot be used in
PerfScripts. Generally, only a custom series created during the execution of the
PerfScript, e.g., the result of the CreateSeries function, can be used as an argument for
Price Series functions that accept an integer Series argument, such as SMA,
Momentum, BBandLower, etc.

PerfScript Constants

#WinLoss

#Bold, #Italic

#Equity

Each of the Per f Add functions contains a Color parameter that controls
the metric's text color in the report. #W nLoss paints positive values

green and negative values red. In addition, you can use any of the
standard color constants/71 or a 3-digit number.

Each of the Per f Add functions contains a Style parameter that controls
the appearance of the metric's Label in the report. You can pass #Bol d,
#l talic, or 0 for regular style.

Standard handle to the Equity curve series (PerfScript only) in Portfolio
Simulation Mode. In Raw Profit Mode, this handle returns the Profit
curve.

Creating PerfScripts

Of the PerfScript functions, four are used to add data to a performance record, which is
simply a single row of text in the Performance Report. Each row must have a unique
Label. Depending on the type of data to be displayed, you'll reference this Label in one of
the PerfAdd functions: Per f AddCur r ency, Per f AddNunber, Per f AddPct, or
Per f AddSt ri ng. Consequently, the same performance record can display different
types of data as required for All Trades, Long Only, etc.

For example, for any performance metric that involves a division, you should include logic
to detect if the divisor is zero prior to the division operation. If it is, then you can use
Per f AddSt ri ng to show 'INF'. Otherwise, use one the other functions to display a

number with the appropriate format. Likewise, you can catch and handle the error/4).

Start with the Standard
A sample PerfScript called "Standard PerfScript" that duplicates the standard Wealth-Lab

© 2003-2006 FMR Corp. All rights reserved.

PerfScripts 114

Performance Report will be included in the PerfScripts ChartScript folder, where all
PerfScripts must be maintained. A second sample, "Standard PerfScript with Interest"
includes the use of the Cashl nt er est , Mar gi nLoan, and Tot al Conm ssi on functions.
The standard scripts are the best place to start when creating your customized PerfScript.
Save one of the "standards" with a different name and start deleting or adding the
calculations for metrics that you would like to see displayed. With the standard as a
model, it's not likely that you'll need any help to create custom formulas for new
performance metrics.

PerfScript Errors

After writing a new PerfScript or editing an existing one, run the script in the ChartScript
window by clicking any symbol. Doing this will allow you to correct syntax errors and
most run-time errors in the script prior to actually using itl14 to generate a report. Other
PerfScript errors may not be caught in the "ChartScript Mode". For example, since
Trading System functions are not compatible with PerfScripts, yours should not actually
create trades. If it does, this mistake will not be detected until Wealth-Lab executes the
script during a ChartScript's post processing to generate the actual performance report.

During a ChartScript's post processing, any irregularity in a PerfScript will generate an
error dialog like the one below. It will identify in which of the four PerfScript runs the
error occurred (All Trades, Long Only, Short Only, or Buy & Hold), the line number and
error text, and finally the actual line of code. As a consequence of an error, a
performance report will not be generated.

¥ ealth-Lab Develope: x|

Perfacript Error in All Trades Processing;
Line: 31 Zal; 18: Unknown name “C"
hhh = FileDpent C:ikest_tmp' 3;

A dialog notifies you of run-time errors during the execution of a PerfScript.

Tip: Add metrics specific to Raw Profit and Portfolio Simulation Mode by testing if
StartingCapital = 0. Like in the PerfScript sample, a boolean variable bRawProfit
is set early on to control the output for the two modes.

Note that PerfScripts (like the sample) may contain several "BarCount" loops that cycle
through all the bars in the chart to calculate various ratios or indices. Since a PerfScript
is executed 4 times, it can take several minutes to complete processing if the DataSource
has tens of thousands of bars. This is not an error!

11.4 Using PerfScripts

The controls for using PerfScripts are located at the top of the Performance View in the
$imulator and ChartScript Windows. The selections are independent between tools, and
the last configuration in both is maintained for the next use.

© 2003-2006 FMR Corp. All rights reserved.

115

WealthScript Language Guide, Wealth-Lab Pro™

Use a PerfScript

Check this option if you want to enable the use of the PerfScript selected in the drop
down control immediately to the right. When selected, Wealth-Lab's usual performance

reporting is disabled.

AutoRun PerfScript Applies to: ChartScript Window

With "Use a PerfScript" selected, you can choose whether or not it is executed
automatically (ChartScript Window only). When this option is not checked, the

Performance report will remain blank until you click the PerfScript icon to run it on
demand.

4 Chartscript - SMA Xover, Always in [AMAT Daily’ -0l x|

Chat Performance | Trades | Proft | MAE/MFE | Editor | Description | Analysis |
¥ Use a PerfScript; IMy PerfScript j [T AutaFun PerfScript
| Long + Short | Long Only | Short Orly | By & Hold
M Kad Ao $247.00 -£73.00 $326.00 $2.0539.00
kv Prafit per Bar $0.14 40,08 $0.44 $1.02
Mumber of Trades B2 33 29 1
Avweq Praofit/Loss $3.93 -$2.39 $11.24 $2.059.00

Bl wwwﬁwm E-Ez

ChartScript Window PerfScript Control.
Click the icon to execute a PerfScript manually.

Tip: If you do not regularly look at the Performance Report, deselect "AutoRun
PerfScripts" to optimize resources - especially when trading using Real-Time
ChartScript Windows.

Usage Notes

Unless you need to calculate a metric that is not already included in the standard Wealth-
Lab Performance Reports, there is no reason to even use PerfScripts. Due to the scripting
"speed penalty"”, a sample PerfScript will take one to two orders longer to generate the
same result as with the equivalent compiled code. Largely for this reason, you can
uncheck AutoRun PerfScript so that you are not unnecessarily utilizing computer
resources at times during system development and debugging when you're not likely to
even look at the Performance View.

The "Script Timeout value" in Options | System Settings | General Settings does not
pertain to PerfScripts. Consequently, you should give ample time for a PerfScript to
complete its processing.

Warning! PerfScripts might take a long time (possibly several minutes) to compute
on very large data sets.

© 2003-2006 FMR Corp. All rights reserved.

SimuScripts 116

12 SimuScripts

12.1 Overview

When you think "SimuScript", think "Position Sizing". Although Wealth-Lab Pro provides
four of the most popular position sizing methods for Portfolio $imulations (Fixed
Dollar/Margin, Fixed Share/Contract, Percent of Equity, and Maximum Risk Percent) you
may have other ideas of how you would like to size your positions.

SimuScripts are an advanced feature of Wealth-Lab Pro that let you experiment with your
very own position-sizing rules in the $imulator as well as in the ChartScript, Rankings,
and Scans tools when Portfolio Simulation mode is selected. A SimuScript is a special

type of ChartScript that must be stored in the 5 SimuScripts ChartScript folder.

SimuScript Function Notesu#
Only a subset of WealthScript functions are eligible for use in SimuScripts. However,
SimuScripts have a special constant and dedicated functions that make it easy to
write simple or complex algorithms to determine sizing for new positions.

How do SimuScripts Work? 118
The final result of a SimuScript will set the position size using one of three special
SimuScript functions, which can size a position by percent of equity, fixed cash value,
or by a specific number of shares.

Creating a SimuScript 119
In reality, a SimuScript is used like a procedure that is called each time your trading
rules take a new position. If writing trading rules for ChartScripts is easy, then
SimuScripts are almost child's play. A SimuScript can be as simple as one line of
code!

Testing a SimuScript/20
Coding a SimuScript is arguably more simple than writing a ChartScript. Knowing a
few more details about testing SimuScripts can make testing and debugging them
simpler too.

Learn more about SimuScripts

A great way to learn more about SimuScripts is to review the SimuScript entries in the
Function QuickRef. Each entry has a complete SimuScript example that will give you
plenty of ideas. For a list of functions that are available see the SimuScript Functions
topic in the WealthScript Function Referencels .

12.2 SimuScript Function Notes

SimuScripts support a subset of WealthScript functions, and include a collection of
functions specific to position sizing. These include functions that return Portfolio Equity,

© 2003-2006 FMR Corp. All rights reserved.

117

WealthScript Language Guide, Wealth-Lab Pro™

Cash, DrawDown and many other values that may be useful in determining a position
size. Availability of WealthScript functions for use in SimuScripts to include the following
categories of functions:

Math Functions

String Functions
SimuScript-Specific Functions
Data Access

Date/Time

File Access

Indicators

Position Management

Price Series

Consequently, the following categories of functions cannot be used for SimuScripts:

Alerts

Cosmetic Charts

System

Time Frame

Trading System
PerfScripts
CommissionScripts
Fundamental Data Access

SimuScript Use of BarCount

Generally speaking, SimuScript-specific functions that have WealthScript counterparts
retain the same meaning when used in SimuScripts or in ChartScripts (e.g.,
Posi ti onLong, Posi ti onShort, etc.).

An exception worth noting is the slightly different meaning of the Bar Count function
when used in a SimuScript. While in a ChartScript Bar Count returns the total number of
bars in the chart, in a SimuScript the function returns the total nhumber of bars processed

at the time the SimuScript is executed. To return the current Bar Number on which the
Position is being processed, use Bar Count - 1 just as you do in ChartScripts.

The #Current Constant

In more complex SimuScripts you may want to retrieve data that are specific to the
Position being processed. For example, you may have stored the value of an RSI
indicator at the bar on which you entered the Position in your ChartScript using the

Set Posi ti onDat a function. In your SimuScript, you can access this data using the
Cet Posi ti onDat a SimuScript function. You may then decide to take additional shares

for more oversold values of RSI, for instance.

To recall the Position data that was stored for the Position currently being processed by
the SimuScript, you pass the constant #Current to the Get Posi ti onDat a function. In
a similar way, you can use this constant for any variety of SimuScript functions that
require a Position number as an argument.

© 2003-2006 FMR Corp. All rights reserved.

SimuScripts 118

Example

{ Risk half as many shares for short positions.
Note: this is a conplete SinmuScript! }

i f PositionShort(#Current) then
Set Posi ti onSi zeShares(100)

el se
Set Posi ti onSi zeShares(200);

12.3 How do SimuScripts Work?

Position sizing, no matter how simple, is an integral part of any trading system. If you
do not wish to use one of the four position-sizing options offered by the Portfolio
$imulator, you have the option to create a SimuScript to size your positions.

Select a specific SimuScript to use in the Portfolio $imulation control, which is a common
control in both the $imulator and ChartScript windows. The selected SimuScript will be
executed once for each trade generated during a $imulation. You do not have to make
a specific reference to a SimuScript in your ChartScript code. Wealth-Lab Pro
automatically executes the SimuScript whenever a "BuyAt" or "ShortAt" WealthScript
function results in processing a new Position.

The goal of the SimuScript is to assign a position size to the current Position. The
SimuScript does this by calling one of three functions during its execution:

SetPositionSizeFixed(CashValue);
Instructs the Portfolio $imulator to assign a fixed CashValue to a position. To
eliminate a Position entirely, use this function by passing a zero value for CashValue.

SetPositionSizePct(PercentOfEquity);
Instructs the Portfolio $imulator to assign a percentage of total portfolio Equity to a
position. To eliminate a Position entirely, use this function by passing a zero value
for PercentOfEquity.

SetPositionSizeShares(NumberOfShares);
Instructs the Portfolio $imulator to assign a fixed number of shares to a position. To
eliminate a Position entirely, use this function by passing a zero value for
NumberOfShares.

Note: If your portfolio does not contain sufficient funds to acquire the full size of the
position, the trade will not be placed. Your SimuScript can test for existing
cash using the Cash function and reduce the position size, if desired, prior to

calling one of the SetPositionSize functions.

The main thing to keep in mind when writing a SimuScript is that the script is processing
only a single Position. The Portfolio $imulator calls the script one time for each Position
that it needs to process.

© 2003-2006 FMR Corp. All rights reserved.

119

WealthScript Language Guide, Wealth-Lab Pro™

12.4

Creating a SimuScript

You begin writing a SimuScript just as you would a normal ChartScript - starting with a
New ChartScript Window. It's likely that you'll want to start fresh, so delete the template
code in the ChartScript Editor if necessary. Only your position-sizing requirements and
imagination can tell you how to proceed from this point. Your final SimuScript may be as
simple as a single statement or even more complex than the ChartScript that will
eventually use it!

Here we provide an example of a typical SimuScript with medium complexity. It provides
the same function as the Portfolio $imulator's Maximum Risk Percent position-sizing
model with an extra twist. It dynamically adjusts the percentage of risk based on the
changing equity of a portfolio during a $imulation. As equity grows, the SimuScript
increases the percent of the equity risked on each trade, and vice versa. You can adjust
the settings to your tastes by modifying the constant values and saving the script.
Remember, all SimuScripts must be saved in the SimuScripts folder.

Example

{ SimuScript for increasing Percent Risk with growing Equity }
var fPctRi sk, fEquity, CashSize: float;

var fStop, fBasis: float;

var Factor, Final Size: integer;

{ These settings will increase the Risk by 0.2%for every $10, 000 of
equity growth }

const IncreaseRi sk = 10000;

const Risklncrement = 0.002;

const M nRi skCash = 75000;

const M nRi sk = 0.005; /'l Risk at l|east 0.5%on each trade

const MaxRi sk = 0. 06; /1 Don't risk nore than 6% on a single trade

{ Store values in variables for easy reference }
fEquity := Equity(BarCount - 1);

fStop := GetPositionRi skStop(#Current);

fBasis := PositionBasisPrice(#Current);

if fEQuity < M nRi skCash then
fPctRi sk := M nRi sk

el se
begin
Factor := (fEquity - M nRi skCash) Div IncreaseRi sk;
chtRisk 1= M Ri sk + (R sklncrenent * Factor);
if fPctRi sk > Ma Ri sk then
fPct Ri sk : = MaxRi sk;
end;

{ Calculate the size in shares, and then in cash }
Final Size := Trunc((fEquity * fPctRisk) / Abs(fBasis - fStop));
CashSi ze : = Final Size * fBasis;

{ If the position size is greater than the account equity,
allow the trade to take place if fully in cash }

if CashSize > fEquity then
Final Size := Trunc(fEquity / fBasis);

Set Posi ti onSi zeShares(Final Si ze);

© 2003-2006 FMR Corp. All rights reserved.

SimuScripts 120

Note the use of the function Get Posi ti onRi skSt op to retrieve the value of your stop
level. To properly employ this SimuScript, you must use Set Posi ti onSt opLevel in
your ChartScript code. Pass the price level of the initial stop immediately before entering
a trade to this function. Only then can the SimuScript determine risk percentage with
respect to your portfolio's equity level. See its QuickRef description for an example.

Note: Set PositionStoplLevel supersedes Set Positi onRi skStop.
Using this SimuScript on a winning system with Starting Capital of say, $500,000, will
yield the same results as the Portfolio $imulator's Maximum Risk Percent with a 6%
setting. With a losing system, this SimuScript could save you money!

See Also: Only One Trade per Symbol from the Wealth-Lab on-line articles archives.

12.5 Testing a SimuScript

Since SimuScripts only size positions and do not contain trading rules, it's not possible to
know that they will function correctly by running the script by itself. They must be used
in a Portfolio Simulation environment.

Guidelines to test and troubleshoot SimuScripts

1. Start by executing the SimuScript by itself. Although it's not likely that you can
determine if the SimuScript sizing method functions in the manner in which you had
intended, running the script gives you an opportunity to correct syntax errors.

Note: If using the #Current constant to refer to the current position being
processed, you can expect the error, List Index Out of Bounds (-1). At this
point, the general syntax of the SimuScript is correct and you may proceed
with system testing.

2. When your SimuScript's general syntax is correct, you're ready to test the SimuScript
in the $imulator or from another ChartScript using the common Position Sizing
control in Portfolio Simulation mode as shown below.

Note: All functions are not equally available for SimuScripting in the ChartScript
window as in the $imulator. Refer to the WealthScript Function
Reference!ls1 or QuickRef for information on specific functions if in doubt.

© 2003-2006 FMR Corp. All rights reserved.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=11

121 WealthScript Language Guide, Wealth-Lab Pro™

|Moat Facard & *Vaars =l m:. E;:I?I il |
Isumu'icmt Shieaks ﬂ <_-:s.= e |
[Raw ProfitOnly Portfoko Simulaticn |
Sharting Capital 100000 & I
Posbon Saing #] '
" Fued Dellarn/Margn [5000 = I I
 PecertclEqily 10 = i
™ Maamum Risk Pet] -
" Fwed Share/Conlract [500 =
& SimuScipt
™ Ve defined in ChantS ciipt r I
—
I W 0K | xcmf
gy Y IMTC

.

Choosing a SimuScript for Portfolio Simulation mode in the ChartScript window.

3. Use the $imulator or a ChartScript to build confidence that your SimuScript is
functioning properly by initially testing one symbol only. After running the
$imulation, you can easily check to see if the first several trades are correctly sized
by inspecting the Trades view.

4. If errors occur during a $imulation, the Errors view will be shown automatically.
Also, you'll likely see the message, "No Trades were generated by this $imulation
run". Check the Errors view for detailed information.

12.6 SimuScript FAQs

Can I use SimuScripts in the ChartScript Window?

Yes, however you cannot use a SimuScript that accesses Position data using
GetPositionData from the ChartScript Window. See the description for SetPositionData
for more information. If you need to pass Position data to a SimuScript in any tool
other than the $imulator, use SetGlobal/GetGlobal, or alternatively make use of the
SignalName parameter of the BuyAt or ShortAt entry signals. In the latter case,
retrieve the data with PositionSignalName.

Is it possible to use #OptVars in SimuScripts?

Not directly. Instead, you could write the current value of an #OptVar into global
memory via SetGlobal at the start of ChartScript processing and retrieve the value in
your SimuScript with GetGlobal.

I want to size differently according to the symbol. How?

Use PositionSymbol to test the #Current symbol. A Case statement/stl is ideal here so

© 2003-2006 FMR Corp. All rights reserved.

SimuScripts 122

that you can easily add different symbols to test.

Example
{* SimuScript *}
var sizeEqPct: float;

{ Assign sizing according to synbol }
case PositionSynbol (#Current) of

GOOG :
si zeEgPct : = 8.0;
"AAPL', 'MFST', 'INTC :
si zeEgPct : = 6.5;
el se

sizeEgqPct :=5.0; // 5% for any other synbol
end;
Set Posi ti onSi zePct (si zeEqPct) ;

How can I limit one Position per symbol?

Generally, ChartScripts are written to manage single Positions. But you may be dealing
with a multi-Position script and want to analyze its return using a one-position-per-
symbol strategy. A SimuScript would first need to determine if any active Position has
the same symbol as the Positions currently being sized, and the solution is presented in
the Knowledge Base: Allowing only one Trade per Symbol in the $imulator.

I only want to allow 3 new entries per day. How?

Please see the Max Entries per Day SimuScript in the Wealth-Lab Code Library.

© 2003-2006 FMR Corp. All rights reserved.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=11
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/libraryview?item=239
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=Library.htm

123

WealthScript Language Guide, Wealth-Lab Pro™

13

13.1

13.2

Using Fundamental Data

Overview

Sure you've used company fundamentals to whittle down a list of trading candidates, but
how about using time-series fundamental and economic data in a trading strategy
combined with technical analysis? This is now much easier to accomplish in Wealth-Lab
Pro with a new set of WealthScript Functions in combination with a seamless integration
of fundamental data collections for your existing Fidelity DataSources.

Fundamental Data Access Functions/i23

Fundamental Data in Trading Systems%

Fundamental FAQs /b

Fundamental Data Access Functions

The first set of Fundamental Data Access functions allow you to access Global Industry
Classification Standard (GICS) database information from a ChartScript. The GICS
database provides an 8-digit code that classifies every security traded, and the code is
divided into four sections (2 digits each):

e Sector

e Industry Group
e Industry

e Sub-Industry

This structure provides a hierarchy that can be used as a basis for analyzing securities in
various industries. Wealth-Lab Pro accesses GICS data via <ATP> and creates local
tables for quick look up. See the User Guide, Data Access chapter for details on
accessing and updating local GICS data. For a complete map of the GICS structure, refer
to the Standard & Poor's website. The WealthScript GICS functions include:

GetGicsSector

GetGicsIndustryGroup

GetGicsIndustry

GetGicsSubIndustry

GetGicsDesc
The next group of functions provide the ability to access time series fundamental data of
a specific set of corporate fundamental elements. Note that fundamental data are
downloaded automatically during the normal Fidelity Data Update process.

FundamentalPriceSeries

FundamentalPriceSeriesAggregrate

© 2003-2006 FMR Corp. All rights reserved.

http://www2.standardandpoors.com/servlet/Satellite?pagename=sp/Page/HomePg

Using Fundamental Data 124

“FundamentalPriceSeriesAnnual
“FundamentalPriceSeriesAnnualOffset
FundamentalPriceSeriesAverage
FundamentalPriceSeriesOffset
GetFundamentalBar
GetFundamentalDetail
GetFundamentalNextBar

GetFundamentalValue

< Not valid for use with economic data items.

Using the following three functions you can enumerate through fundamental data items,
i.e., access the fundamental data as if it were in a list. In this way, you can access
"known future data" such as option-expiry and triple-witching dates (see 'option_expiry'

in the table below).

FundamentallitemCount
FundamentalltemData

GetFundamentalIlndex

Note: The QuickRef and WealthScript Function Reference contain detailed descriptions

of each function with examples.

Each of the Fundamental* and GetFundamental* functions contain an Item parameter to
which one of the string values in the table below must be passed. Item strings are case-

sensitive, i.e., you must use all lowercase letters.

Item (string)

'accounts_payabl e’
"adj ustnent _factor’

'assets'
' cash’

' cash_di vi dends'
' common_shar es_out st andi ng'

' common_shares_used_to_cal cul ate_eps_di | ut ed'

"di vi dend'

Short Description

Accounts Payabl e

Adj ust Factor, cumul ative by ex-
date

Assets - Total

Cash and Cash Equival ents -

i ncrease (decrease)

Cash Di vi dends

Comon Shares Qutstanding -
Company

Conmmon Shares Used to Cal cul ate
Earni ng per Share Diluted

¢ Per share cash dividend val ue

© 2003-2006 FMR Corp. All rights reserved.

125

WealthScript Language Guide, Wealth-Lab Pro™

"ebit'

" enpl oyee'

"fiscal _quarter’
'fiscal _year'

' goodwi | |
"interest_expense'
"liabilities'

"l ong_t erm debt"’

'net _i ncon®g’
'operating_activities'

' operating_i nconme_before_depreciation'

' pretax_i ncone’

"property_pl ant _and_equi prent’
'research_and_devel opnment _expense’
' sal es_turnover'

"split’

' st ock_conpensati on_expense'
' st ockhol der _equi ty'

"total _inventories'

total receivabl es'

'option_expiry'

"triple_wtching'

Ear ni ngs before Interest and Taxes
(EBIT) annual

Enpl oyees

Fi scal Quarter

Fi scal Year

Goodwi | |

I nterest Expense

Liabilities - Total

Debt (Long-Tern) - Total

Net | ncome (Loss)

Qperating Activities - Net Cash
FI ow

Qperating I ncome Before

Depreci ati on (EBI TDA)

Pretax | nconme

Property Plant and Equi pnent
Research and Devel opnent Expense
Sal es (Net)

¢ Split value (ratio)

St ock Conpensati on Expense

St ockhol ders' Equity - Tot al
Total Inventories

Total Receivabl es

Final trading day before option
expiry

Final trading day before triple
wi t chi ng

¢ These itenms are reported by ex-date and do not nornmally coincide with a

Notes:

quarterly report.

1. Fundamental data includes approximately 6 years of annual data and 24 quarters of

quarterly data.

2. The Item parameter is a case sensitive string and must be specified exactly as
described in the Fundamental Data Definitions and Ratio Calculations Guide.

3. 'option_expiry' and 'triple_witching' are items associated with the options calendar,
which provides the ability to lookup the date of the final trading day prior to option

expiry from 1980 to 2020, inclusive.

Each function returns values as reported in the company's quarterly or annual report and
are updated on the Report Date of Quarterly Earnings. Fundamental values are not back-
adjusted for revisions. The functions GetFundamentalBar and GetFundamentalNextBar
allow you to determine the report dates as explained in their definitions. For more
information of each item, please refer to the Fundamental Data Definitions and Ratio
Calculations Guide.

Economic Data

The following economic data items are also available. Any of the items can be accessed
regardless of the current primary data series:

© 2003-2006 FMR Corp. All rights reserved.

Using Fundamental Data 126

Item (string) Short Description (units)

'capacity utilization' Capacity Utilization (% of Capacity)
' consuner confidence' Consuner Confidence (Val ue, Hundreds)
'core cpi' Core CPI (Percent)

'core ppi' Core PPl (Percent)

'cpi’ CPl (Percent)

"exi sting hone sales' Exi sting Hone Sales (MI1lions)

' gdp’ GDP- Fi nal (% Change)

' gdp-forecast' GDP- For ecast (% Change)

"housing starts' Housing Starts (% Change or MI1lions)
"initial jobless clains' Initial Jobless O ains (Thousands)
"ismindex’ I SM I ndex (Percent)

"m chigan sentinent-final' M chi gan Sentinent-Final (Value, Hundreds)
'new hone sal es’ New Horme Sales (M I1ions)

"non-farm payrol |’ Non- Farm Payr ol | (Thousands)

' personal spendi ng' Per sonal Spendi ng (% Change)

" ppi’ PPl (Percent)

"retail sales (excl autos)' Retail Sal es (% Change)

"retail sales' Retail Sales (Excl Autos) (% Change)
"trade bal ance’ Trade Bal ance (Billions)

"unenpl oynent rate' Unenpl oynent Rate (Percent)

Fundamental Data Definitions and Ratio Calculations Guide

The Fundamental Data Definitions and Ratio Calculations Guide is a separate document
for updates, changes, and more detail of fundamental Items and their descriptions.
Additionally, the New ChartScript Wizard and Fundamental Data Definitions and Ratio
Calculations Guide contain the information necessary to access these items as well as
fundamental ratios such as P/E, ROA, and "per Share" data using standard WealthScript
series operations.

13.3 Fundamental Data in Trading Systems

You can access the basic fundamental data in a [now-familiar] Price Series using the
FundamentalPriceSeries group of functions. Recall that the elements of a Price Series
always contain a value for each bar in the chart. Consequently, when you create a
Fundamental Price Series, it is automatically synchronized with the underlying price data.
Your ChartScript, then, has access to timely fundamental data as of the company's
quarterly report date. As you can see in the chart that follows, quarterly data is repeated
in the series (due to synchronization) until the following quarterly report. The repetitive
values show that you can access fundamental data for the current reporting period on
any bar during the period.

© 2003-2006 FMR Corp. All rights reserved.

127

WealthScript Language Guide, Wealth-Lab Pro™

AsEats
Lizbilities

U "JHNW H\H "J |““ T
Al |

BA (BOEING CO) Weekly

'

55 of 10/31/2005 . *.ll'*'ii“!"*i

v fidelit o 'l TI]
*lﬂ £0.00

u, Iy
5,00
iy, 1y,
l'll!*lli'i 4 ' B0
i’ 45,00
ALY “Th"

| I 000

i

Apr-04 Jul-04 Cict-04 Jan-05 Apr-05 Jul-05
It's easy to identify The basic time-series fundamental data quarterly reporting periods.

We used the following simple example to create the previous chart. It demonstrates the
use of the FundamentalPriceSeries function to access and plot 'assets' and 'liabilities', as
well as the GetFundamentalValue and GetFundamentalBar functions to return
fundamental data: the 'fiscal_quarter' at a specified bar.

Example

var Bar, FA, FL, FPane: integer;
var FQ float;

{ Access and plot the tine series }

FA := Fundanental PriceSeries('assets');
FL := Fundamental PriceSeries('liabilities');
FPane := CreatePane(100, true, true);

Pl ot Seri esLabel (FA, FPane, #G een, #ThickHi st, 'Assets');
Pl ot Seri esLabel (FL, FPane, #Red, #ThickH st, 'Liabilities');

{ Indicate the fiscal quarter }

Bar := CGet Fundanental Bar(BarCount - 1, 'fiscal_quarter');
r epeat
FQ : = Get Fundanent al Val ue(Bar, 'fiscal _quarter');

AnnotateChart('Q + FormatFloat('0', FQ), FPane, Bar, @Al Bar] *
0.90, #Black, 9);

Bar := CetFundanmental Bar(Bar - 1, 'fiscal_quarter');
until Bar = -1;

Alternatively, you could replace the "Indicate the fiscal quarter" code by enumerating the
'fiscal_quarter' data as follows:

Example (Method 2)

var Bar, FA, FL, FPane: integer;
var FQ float;

{ Access and plot the tine series }
FA := Fundanental PriceSeries('assets');

© 2003-2006 FMR Corp. All rights reserved.

Using Fundamental Data 128

FL := Fundanmental PriceSeries('liabilities');

FPane : = CreatePane(100, true, true);

Pl ot Seri esLabel (FA, FPane, #G een, #ThickH st, 'Assets');

Pl ot Seri esLabel (FL, FPane, #Red, #ThickH st, 'Liabilities");

{ Indicate the Fiscal quarter }
var dt, i: integer;

var f: float;

var s: string;

for i := 0 to Fundanental ItemCount('fiscal _quarter’') - 1 do
begi n
Fundanental ItemData('fiscal _quarter', i, dt, f, Bar, s);

if Bar >= 0 then
Annot ateChart('Q + FormatFloat('0', f), FPane, Bar, @A[Bar] *
0.90, #Black, 9);
end;

Fundamental Ratios

Fundamental ratios are nothing more than fundamental indicators like Price-to-Earnings
(P/E), Return on Assets (ROA), etc., that combine the fundamentals Items that are
available with other Items as well as with other data like Price and Volume. The
FundamentalPriceSeries functions are specifically designed to help you with the task of
combining and manipulating quarterly and annual data to create ratios and comparisons,
i.e., fundamental indicators.

Like technical indicators, ratios are calculated in your script "on the fly". In this way, you
can take advantage of updated price and volume data to create an updated ratio, like
Price-to-Earnings.

Example

The formula for the P/E ratio is:

P/E = Current Stock price / (Annual Net Income / Common Shares
Qut st andi ng)

Clearly we can access the stock price from the #Close Price Series, and, the number of
shares are available by passing the 'common_shares_outstanding' string to the
FundamentalPriceSeries function. Since the Fundamental Data Definitions and Ratio
Calculations Guide defines 'net_income' as the net income per quarter, we need to
annualize it by aggregating the net income from the most-recent 4 fiscal quarters:

{ Calculate and plot the P/E ratio }
var | ncone, Shares, PE, PEPane: integer;

I ncome : = Fundanental PriceSeriesAggregate('net_inconme', 4);
Shares := Fundanental PriceSeries('comon_shares_out standi ng');
PE : = DivideSeries(#C ose, DivideSeries(Inconme, Shares));

I

PE := MultiplySeries(PE, Fundanental PriceSeries('adjustnent_factor')
)

PEPane : = CreatePane(50, true, true);

Pl ot Seri esLabel (PE, PEPane, #Navy, #Thick, 'P/E Ratio');

Note, however, that price is adjusted immediately on the ex-date of a split, but quarterly

© 2003-2006 FMR Corp. All rights reserved.

129

WealthScript Language Guide, Wealth-Lab Pro™

data cannot change until the next quarterly report. For this reason, fundamental ratios
that include price require an additional correction to account for a split that follows the
most-recent quarterly report. The study, 'Unadjust Splits', contains a library of functions
to assist with necessary corrections:

{ Calculate and plot the P/E ratio }
{$l 'Unadjust Splits'}
var | ncone, Shares, PE, PEPane: integer;

I ncome : = Fundanental PriceSeriesAggregate('net_inconme', 4);
Shares := Fundanental PriceSeries('comon_shares_out standi ng');
PE : = DivideSeries(#C ose, DivideSeries(Inconme, Shares));

I

PE := MultiplySeries(PE, Fundanental PriceSeries('adjustnent_factor')
);

PE : = Recent SplitAdjustSeries(false, false, PE);

PEPane : = CreatePane(50, true, true);

Pl ot Seri esLabel (PE, PEPane, #Navy, #Thick, 'P/E Ratio');

More definitions for standard ratios for can be found in the Fundamental Data Definitions
and Ratio Calculations Guide, and many calculated ratios are readily programmed in the
New ChartScript Wizard.

The 'split' Item

Most fundamental items are reported and updated when a company releases their
quarterly earnings report. An exception is the 'split' item, whose data is taken from a
separate set of corporate actions that usually don't coincide with an earnings report.
Typically splits are announced 3, 4, or more weeks in advance of their ex-date,
consequently, you can use this "future" information when backtesting a trading system.

For example, it's a safe bet to assume that a company will announce a split at least 2
weeks in advance of the ex-date. You could then backtest a trading system that accesses
the date of a future split, and if it's within 10 days of the current bar, trigger a trading
action. Note, however, that new 'split' items are available only as of the ex-date.
Therefore, although you can backtest an idea like the one described, it's not currently
possible to generate Alerts to trade this end-of-day strategy.

Example

{ Mark the bars leading to a split }
var Bar, |astProcessed: integer;
var noMoreSplits: bool ean;

Set Bar Col ors(#Silver, #Silver);

| ast Processed : = 0;
for Bar := 20 to BarCount - 1 do
begi n
if lastProcessed > 0 then /'l Have we detected a future split?
begin /1 Yes, is it within 2 weeks?
i f DaysBetween(Bar, |astProcessed) < 14 then
begi n
Set Bar Col or (Bar, #Red);
if Bar = | astProcessed then
| ast Processed : = O;
end;
end

else if not noMoreSplits then // Look for the next split

© 2003-2006 FMR Corp. All rights reserved.

Using Fundamental Data 130

begi n
| ast Processed : = Get Fundanent al Next Bar(Bar, 'split');
if lastProcessed = -1 then
noMoreSplits := true;
end;
end;

Example (Method 2)

{ Mark the bars leading to a split, but this time enunerate using the
"split' data }

var Bar, date, n, i: integer;

var f: float;

var s: string;

Set Bar Col ors(#Silver, #Silver);
Print('Index' + #9 + 'Date' + #9#9 + 'Value' + #9 + '"Bar');

for i := 0 to Fundanental ItemCount('split') - 1 do
begin
Fundanental ItenData('split', i, date, f, Bar, s);

Print(IntToStr(i) + #9 + IntToStr(date) + #9 + FloatToStr(f) +
#9 + IntToStr(Bar));

for n := Round(Max(O, Bar - 9)) to Bar do

Set Bar Col or (n, #Red);
end;

Summary of differences between 'split' and 'adjustment_factor':

'split’ 'adjustment_factor’
e reports the actual split ratio e reports a cumulative factor
e 'split' data is valid on the actual ex-date e 'adjustment_factor' data is

updated quarterly, so it will
usually appear "delayed" with
respect to the actual ex-date
of a split.

13.4 Fundamental FAQs

Why does my script take longer to execute when I use the GetFundamental
group of functions?

The functions GetFundamentalBar/NextBar/Value are slower to execute than
accessing the same data via the FundamentalPriceSeries* functions. If speed is an
issue, try optimizating your code using the FundamentalPriceSeries* function group.

Can I access fundamental data in real-time charts?

Yes.

© 2003-2006 FMR Corp. All rights reserved.

131

WealthScript Language Guide, Wealth-Lab Pro™

How do I calculate fundamental ratios like P/E?

Fundamental ratios are calculated in your script "on the fly" using the fundamentals
Items that are available. Use the ChartScript Wizard for examples on calculating ratios
or see the QuickRef example for FundamentalPriceSeriesAggregrate. More details can
be found in the Fundamental Data Definitions and Ratio Calculations Guide.

© 2003-2006 FMR Corp. All rights reserved.

Objects 132

14 Objects

14.1 Overview

WealthScript is a fully object-oriented scripting language, and support creation of
classes, inheritance, and polymorphism. An Object is a type of variable that contains
both data items and the functions and procedures (referred to collectively as methods)
required to operate on the data.

To be sure, object-oriented programming (OOP) is not a trivial topic to grasp for novice
programmers. Although the re-useable quality of objects make some tasks simple to
accomplish, these techniques are not necessary to get a lot of mileage out of Wealth-Lab
Pro. For those just becoming familiar with WealthScript and who are unfamiliar with
OOP, mastering the use of the programming techniques described in the previous
sections will provide you with plenty of capability in designing robust trading systems.

If you're already familiar with OOP, the topics in this chapter will introduce you to the
proper WealthScript syntax to design, create, and destroy your objects. Visual Basic
programmers familiar with OOP will discover the explicit object-declaration section that is
hidden from them when creating their class objects, but otherwise the transition to using
WealthScript objects should be quick. Please note that it is not our intention to teach
OOP as many other in-depth resources are available on the subject.

Object Type Declarations|is)
Generally speaking, objects, types, and classes are synonyms in programming
terminology. A good part of the work in creating an object is declaring its parts.

Providing Access via Properties i3
Properties are those parts of which an object consists. Just as a car may be painted
red, have a moon roof, and travel at 200 kph, an object has properties that define it.
Depending on the manner in which you declare an object's properties, you can access
or even change their values - just like you can change the color of a red car to blue.

Creating and Using Instances of a Typels#
Unlike red cars with moon roofs, it doesn't cost so much to create new objects.
However, objects use memory and computer resources, consequently when they have
served their purpose it's best to destroy them.

Putting it all Togethers#
The complete script for the TProfitTracker is presented here with test code to put the
object through its paces. Later, you can save the TProfitTracker object in the
"Studies" folder and use it in any ChartScript that you wish by including it with the
Include Manager.

Inheritancelis)
You can create an object that descends from another one. The new object will inherit
all of the variables, functions, procedures, and properties defined in the ancestor.

Polymorphism |4
You can create functions and procedures in a type that can change their behavior in

descendant types. In object-oriented programming this type of feature is known as

© 2003-2006 FMR Corp. All rights reserved.

133

WealthScript Language Guide, Wealth-Lab Pro™

14.2

polymorphism.

The TList Objecth4?
Arrays are indispensable in programming, however, they may not always be the best
choice for storing values of related items. The TList object is great when you don't
know how many items you will be needing beforehand, therefore you may add to it,
and remove from it, as you please. It's convenient since it takes care of all the
"dimensioning" for you. Additionally, the TList has other properties and methods that
would be very tedious to manage with plain vanilla arrays, and for this reason the
TList is a good introduction to using objects - appropriate for even beginners!

Object Type Declarations

The Type Statement

You use the t ype statement to define a new type of Object. You can then create one or
more instances of the object later in your code. The t ype statement contains three
sections in which you can declare variables and functions/procedures.

private
Items declared in this section are available only to the Object's own functions or
procedures.

protected
Items declared here are also available to Objects that are inherited from this Object.

public
Items declared in the public section are available anywhere.

Example

{ This is the skeleton for creating a new type of object
When creating a new class, replace TM/Qbject with your class name }
type TMyObj ect = cl ass
private
protected
public
end;

Variables in a Type

You can declare variables in any of the three sections in your type. Going forward our
example will revolve around a new Object type that will know how to calculate and
deliver information on the average profit generated per trade from your trading system.

Example
type TProfitTracker = class
private
AvgProfit: integer;
pr ot ected

© 2003-2006 FMR Corp. All rights reserved.

Objects 134

public
end;

Our new Object type, TProfitTracker, now contains one integer variable, AvgProfit. Notice
that when you declare variables in any of the three sections of the t ype you don't use
the var statement.

Methods in a Type

Each of the three sections in a type can also contain functions or procedures, referred
collectively as object methods. You declare the functions or procedures normally, then
provide the implementation after the type declaration itself. Below we add a single new
procedure to our type.

Note that the function is declared in the public section, and it is implemented after the
end of the t ype statement. The syntax TProfitTracker.Execute lets WealthScript know

that you're implementing the Execute procedure of the TProfitTracker type.

Also notice that the Execute procedure creates a new Price Series using Cr eat eSeri es
(see Creating Your Own Price Series/s1) and assigns it to the private variable "AvgProfit".

Example

type TProfitTracker = class
private

AvgProfit: integer;
protected
public

procedure Execute;
end;

procedure TProfitTracker. Execute;
var

Bar, count, p: integer;

profit: float;

begin
AvgProfit := CreateSeries;
for Bar := 0 to BarCount - 1 do
begin
count := 0;
profit := 0;
for p:=0 to PositionCount - 1 do
begin
if PositionExitBar(p) <= Bar then
begin
Inc(count);
profit := profit + PositionProfit(p);
end;
end;

if count > 0 then
Set Seri esVal ue(Bar, AvgProfit, profit / count);
end;
end;

© 2003-2006 FMR Corp. All rights reserved.

135

WealthScript Language Guide, Wealth-Lab Pro™

14.3

Providing Access via Properties

What are Properties?

Properties are a special feature of objects. A property can provide read-only or read-
write access to data within its Object. You declare a property in any of the three type
sections (although it usually makes the most sense to declare them in the public section).

A property can be given a read accessor that specifies a function or variable to use to
obtain the property's value. It can also be given a write accessor to specify a procedure
to use for storing the property's value.

If a read accessor function is declared for a property, then whenever the property is
referenced in code, the value is obtained by executing the read accessor function (or
grabbing the value from the variable). Similarly, if a write accessor procedure is declared
for a property, whenever the property is assigned a value, the value is passed through
the write accessor procedure.

Our TProfitTracker creates a new Price Series, but stores it in a private variable. We can
provide read-only access to this variable by creating a property that returns the value
from the variable. Then, anyone using this object will be able to access the AvgProfit
Price Series but will not be able to modify it.

Example

type TProfitTracker = class
private
AvgProfit: integer;
pr ot ected
public
procedure Execute;
property AvgProfitSeries: integer read AvgProfit;
end;

Declaring Accessor Methods

The following sample creates a new type called TSample. TSample contains a single
integer property, "Sample", with a read and write accessor methods. It also contains a
private integer variable called "FSample" that stores that property value internally. This
variable is often called the "Field variable" and is conventionally named the same as the
property but preceded by an "F". The read accessor method simply returns the value
from the FSample variable. Note that we could have eliminated the read accessor
method in this case and replaced it with the variable itself as follows:

property Sanple: integer read FSanple wite Set Sanpl e;

The write accessor, however, performs some special processing on the incoming value. It
restricts the value to be within the range of 0 to 100 before assigning it to the underlying
FSample variable.

type TSanple = cl ass
private
FSanpl e: integer;
function Get Sanpl e: integer;

© 2003-2006 FMR Corp. All rights reserved.

Objects 136

procedure Set Sanple(n: integer);
pr ot ected
public

property Sanple: integer read GetSanple wite SetSanple;
end;

function TSanpl e. Get Sanpl e: i nteger;
begin

Result := FSanpl e;
end;

procedure TSanpl e. Set Sanpl e(n: integer);

begi n
FSampl e : = n;
if FSanple > 100 then
FSanpl e : = 100;
if FSanple < 0 then
FSanple : = 0;
end;

14.4 Creating and Using Instances of a Type

Creating an Object Instance

Now that we know how to declare types of Objects, we need to learn how to create
instances of these types. You can create one or more instances of a type in your
WealthScript code. Each instance maintains its own internal copy of any data elements
declared within the type.

To create an instance of an Object you must first declare a variable to store the instance
using a standard var statement. You can then create the instance of the Object using a
new type of statement called the constructor. The constructor is simply the name of the
type followed by a ".Create".

Example
var AProfitTracker: TProfitTracker;
AProfitTracker := TProfitTracker. Create;

Note that we first declared a variable of the type "TProfitTracker". We then assigned a
value to the variable using the new constructor style statement.

If required, you can take advantage of the Create constructor method to initialize your
object. The way to do it is to create your own Create constructor. The code you put in
the constructor's method will be called whenever an instance of the class is created. The
TProfitTracker class does not require a special initialization method, but we include the
following example for completeness.

Example

type Myd ass = cl ass
constructor Create;
end;

© 2003-2006 FMR Corp. All rights reserved.

137

WealthScript Language Guide, Wealth-Lab Pro™

constructor MyC ass. Create;
begi n

ShowMessage('Instance Created');
end;

var | nstance: M/C ass;
I nstance : = Myd ass. Create;

Freeing Instances

In Wealth-Lab Pro, WealthScript employs the programming concept of a garbage
collection to clean up objects that are no longer being accessed. Destructors need not be
used and objects are freed automatically when they are no longer referenced, or at the
end of a script. Consequently, there is no need to explicitly free, or destroy, object
instances that you create.

Note: In previous versions of Wealth-Lab you were responsible for destroying object
instances by calling their Free method. The Free method is no longer required,
and you should remove calls to the Free method in your scripts.

Accessing Properties of Objects

Once you have one or more instances of your Object created, you can access their
properties. Use the "Variable.Property" dot-style notation to access an objects's
properties.

Example

{ Access the Average Profit Series }
var n: integer;
n := AProfitTracker. AvgProfit Series;

{ This will trigger an error, since we didn't define a wite accessor for
the property }
AProfitSeries := 0;

Executing Methods of an Object

Use the same dot-style notation to execute any functions or procedures defined within an
Objects's type.

Example

{ Tell the object to do its thing }
AProfitTracker. Execut e;

© 2003-2006 FMR Corp. All rights reserved.

Objects 138

14.5 Putting it all Together

Below is the complete script for the TProfitTracker, and some test code to put the Object
through its paces. Note that we've made the TProfitTracker more intelligent. The Object
now tracks whether or not the average profit per trade Price Series was constructed using
a private boolean variable "bExecuted". It then uses the read accessor method to
construct the Price Series by calling the Execute method if required.

Example

type TProfitTracker = class
private
FAvgProfitSeries: integer;
bExecut ed: bool ean;
protected
function Get AvgProfit: integer;
public
procedure Execute;
property AvgProfitSeries: integer read GetAvgProfit;
end;

function TProfitTracker. Get AvgProfit: integer;
begin
i f not bExecuted then
Execut e;
Result := FAvgProfitSeries;
end;

procedure TProfitTracker. Execute;
var

Bar, count, p: integer;

profit: float;

begin
bExecuted : = true;
FAvgProfitSeries := CreateSeries;
for Bar := 0 to BarCount - 1 do
begin
count := 0;
profit := 0;
for p:=0 to PositionCount - 1 do
begin
if PositionExitBar(p) <= Bar then
begin
Inc(count);
profit := profit + PositionProfit(p);
end;
end;

if count > 0 then
Set Seri esVal ue(Bar, FAvgProfitSeries, profit / count);
end;
end;

{ A sinple channel breakout systemto test the object }
var Bar: integer;

for Bar := 4 to BarCount - 1 do

begin

© 2003-2006 FMR Corp. All rights reserved.

139

WealthScript Language Guide, Wealth-Lab Pro™

14.6

i f LastPositionActive then
Sel | At Stop(Bar + 1, Lowest(Bar, #Low, 3), LastPosition, '')
el se
BuyAt St op(Bar + 1, Highest(Bar, #H gh, 3), "');
end;

{ Use the TProfitTracker object now }

var AProfitTracker: TProfitTracker;

var AvgProfitPane: integer;

AProfitTracker := TProfitTracker. Create;

AvgProfitPane := CreatePane(100, true, true);

Set PaneM nMax(AvgProfitPane, 0, 0);

Pl ot Series(AProfitTracker. AvgProfitSeries, AvgProfitPane, #G een,
#Thi ckHi st) ;

Inheritance

Deriving One Type from Another

You can create an object that descends from another one. The new object will inherit all
of the variables, functions, procedures, and properties defined in the ancestor. The new
object will be able to access all of the items declared in the protected or public section of
the ancestor, but not from the private section.

To specify that a type is derived from a parent, place the type of the ancestor in
parenthesis after the type name in the type statement:

Example

type Ancestor = class
private

protected

public

end;

type TDescendant = class(TAncestor)
private

protected

public

end;

TObject Type

Actually, all types ultimately descend from a base type called TObject. TObject provides
the default constructor and destructor. The system assumes that new types are derived
from TObject even when no ancestor type is provided.

Example

{ The following 2 type statenents are identical }
type TMyType = cl ass

© 2003-2006 FMR Corp. All rights reserved.

Objects 140

private
pr ot ected
public
end;

type TMyType = class(TObject)
private

pr ot ected

public

end;

Descendant Types Can Access Protected Items

You can access variables, functions and procedures that were declared in the protected
section of an ancestor type from within the functions and procedures of the derived type.

Example
type TMyType = cl ass
private
varl: integer;
pr ot ected
var?2: integer;
public
var 3: integer;
end;

type TMyType2 = class(TWMyType)
private
pr ot ect ed
public

function GetResult: integer;
end;

function TMyType2. Get Result: integer;

begi n
Result := var3; {Public ... this is legal}
Result := var?2; {Protected ... this is legal}
Result := varl,; {Private ... NOT ACCESSABLE}
end;

14.7 Polymorphism

Polymorphic Methods

You can create functions and procedures in a type that can change their behavior in
descendant types. In object-oriented programming this type of feature is known as
polymorphism. To flag a function or procedure as being polymorphic, add the keyword
vi rtual after the declaration. Then, in your derived class, re-declare the function or
procedure with the overri de keyword.

© 2003-2006 FMR Corp. All rights reserved.

141 WealthScript Language Guide, Wealth-Lab Pro™

In this example we create a type that returns the average price at any given bar by
adding the high and low and dividing by two. We then created an inherited type that
changes the implementation of the function by factoring closing price into the calculation.
The code at the bottom of the script illustrates the polymorphic behavior. We declare a
variable of the type of the ancestor type (often called the base class), but use the
constructor of the descendant type when creating the instance of the object. So, even
though the object is stored in a variable type of the ancestor, it uses the descendant's
function implementation when calculating the average price.

Example

type TAveragerl = cl ass
private
protected
public
function GetAvg(Bar: integer): float; virtual;
end;

type TAverager2 = class(TAveragerl)
private
protected
public
function GetAvg(Bar: integer): float; override;
end;

function TAveragerl. Get Avg(Bar: integer): float;
begin

Result := (PriceH gh(Bar) + PriceLow(Bar)) [/ 2;
end;

function TAverager?2. Get Avg(Bar: integer): float;

begin

Result := (PriceHi gh(Bar) + PriceLow(Bar) + PriceCose(Bar)) /
3;
end;

var Avg: TAverager1l,
Avg : = TAverager?2. Create;

Print(FloatToStr(Avg.GetAvg(0)));

Accessing the Inherited Behavior

Your polymorphic procedures and functions can access the behavior of the ancestor by
using the i nherit ed keyword. Here we change the implementation of the GetAvg
function of the descendant class to access and then modify the result from the ancestor's
function.

Example

function TAverager?2. Get Avg(Bar: integer): float;
begin
Resul t
Resul t
end;

i nherited Get Avg(Bar);
(Result + PriceCose(Bar)) [/ 2;

© 2003-2006 FMR Corp. All rights reserved.

Objects 142

14.8 The TList Object
14.8.1 Overview

The TList class provides a list object. You can add and remove items to the list, as well
as sort the items. You can access the items in the list by index number. The first item in
the list is index zero, and the last item is index Count - 1.

A TlList is great when you don't know how many items you will be needing beforehand,
therefore you may add to it and remove from it as you please. It's convenient since it
takes care of all the "dimensioning" for you. However, with these advantages, you will
pay a small performance penalty in speed when compared to accessing an array|471.

TList stores data items as Variants/it], which is a special data type that can be used to
store any other basic type, such as string or fl oat. Consequently, items retrieved
using the Item and Data methods from the TList are of type variant. You can also use
the TList to store a collection of object types using the AddObject method. To retrieve
the instance of an object, use the Object method.

The TList object is not available for use in SimuScripts.

The following example, which stores all of the closing values in the chart into a TList
object, demonstrates the use of many of the TList methods. In the example, the TList
object sorts its members, and finally, the sorted closing values are written to the Debug
Window by iterating through the list.

Example

{ Declare Variables }
var Bar: integer;

var |st: TList;

var f: float;

{ Create an instance of a TList }

I st := TList.Create;
{ Fill the TList with Cosing Values of the Chart }
for Bar := 0 to BarCount - 1 do
begi n
f := PriceC ose(Bar);
[st.Add(f);
end;

{ Sort the values }
| st. Sort Nuneri c;

{ Print the sorted values to the Debug W ndow
Note: here, Ist.Count is equal to BarCount }

for Bar := 0 to Ist.Count - 1 do
begi n

f :=1Ist.ltem Bar);

Print(FormatFl oat ("#, ###.00", f));
end;

© 2003-2006 FMR Corp. All rights reserved.

143 WealthScript Language Guide, Wealth-Lab Pro™

You can also pass a TList to a procedure. When doing this, the TList object is passed by
reference to the procedure. This means that any changes (Add, Delete, Clear, etc.) made
to the the TList in the procedure will also effect the TList object in the calling procedure
as demonstrated in the next example.

Example

function MySun(aTL: TList): integer;
var n: integer;

begin
Result := 0;
for n := 0 to aTL. Count - 1 do
Result := Result + aTL.ltem(n);

{ Delete the last itemin the TList }
aTL. Del ete(aTL.Count - 1);
end;

var |st: TList;
var isum integer;

{ Program execution begins here }
Ist := TList.Create;

I st. Add(3);

I st. Add(5);

I st. Add(8);

I st. Add(13);

isum:= MySunm(Ist);
ShowMessage(' The sum of the TList is ' + IntToStr(isum));
ShowMessage('The list now has ' + IntToStr(Ist.Count) + ' itens');

14.8.2 TList Functions
14.8.2.1 Add

The Add method returns an integer index of the added Value.

Syntax
object.Add(Value);
Item Description
object An object expression of type TList.
Value Variant. A variable or expression of any of the primitive
data types/ii.
Remarks

e Adds the specified item, Value, to the list.

e Returns the index number of the added Value. The Add method returns the index 0 for
the first item added to a TList.

e Use the Item[47 method with the integer index returned by the Add method to retrieve

© 2003-2006 FMR Corp. All rights reserved.

Objects 144

14.8.2.2

a Value in a TList.
o If the Deletehs?, SortNumerichs3, or SortStringhss methods are used after adding an
item to a TList, it's likely that the index of the item returned by the Add will change.

Note:

You may implement this method as shown in the The TList Object examplel42), or
alternatively by assigning the function to an integer variable.

FAQ: How can I add a record typel:? to a TList?

You cannot add a record to a list, but you can add an object, which can contain
different data elements just like a record type. For more information, see the
AddObjectf45 method of a TList.

AddData

The AddData method returns an integer index of the added Value and associated Data.

Syntax
object.AddData(Value, Data);

Item Description

object An object expression of type TList

Value Variant. A variable or expression of any of the primitive
data types/if.

Data Variant. A variable or expression of any of the primitive
data types/ii.

Remarks

e Returns the index number of the added Value.

e Adds the specified item, Value, to the list along with additional Data.

e Use the Item[47 method with the integer index returned by the AddData method to
retrieve a Value in the TList.

e Access the Data at a later time using the Datalu4 method with the integer index
returned by the AddData method.

o If the Deletels?, SortNumericls8, or SortStringhsd methods are used after adding an
item to a TList, it's likely that the index of the item returned by the AddData will
change.

Tip:

You can easily store more than one value in either the Value or Data fields by using a
delimited string variable or expression as shown in the example below. Later, you
must parse the string to retrieve the individual values.

This example demonstrates how to stores a TList of 8% peaks containing the peak value

© 2003-2006 FMR Corp. All rights reserved.

145 WealthScript Language Guide, Wealth-Lab Pro™

as well as its date and bar number, which are stored as Data in the form of a comma
delimited string.

Example:

var |st: TList;
var Bar, PkSe, i, dte: integer;
var f, fP: float;

I st := TList.Create;

{ Qbtain a series of 8% Peaks and plot themon the chart }
PkSe := PeakSeries(#H gh, 8);
Pl ot Seri es(PkSe, 0, #Red, #Dots);

f :=0.0;
for Bar := 1 to BarCount - 1 do
begin
{ if anewpeak is detected, add it to the list with its date value }
dte := GetDate(Bar);
fP := @kSe[Bar];
if f <> fP then begin
| st. AddData(fP, IntToStr(dte) +'," + IntToStr(Bar));
f :=1fP
end;
end;

{ Print the peak nunber, peak val ue, date, and bar
to the debug w ndow }
for i :=0to Ist.Count - 1 do
Print('Peak #' + IntToStr(i + 1) + ': +
Chr(9) + FormatFloat('#.00", Ist.lten(i)) +
Chr(9) + Ist.Data(i));

See Also:
Item Method 4%, Data Methodfu6, Peak Indictor, Plot Series

14.8.2.3 AddObiject

The AddObject method returns an integer index of the added Value and associated
instance of Object.

Syntax
obj.AddObject(Value, Object);
Item Description
obj An object expression of type TList
Value Variant. A variable or expression of any data type or an instance
of an object.
Object TObject. An instance of an Object typels3 to store in the TList.

© 2003-2006 FMR Corp. All rights reserved.

Objects 146

Remarks

e Returns the index number of the added Value.

¢ Adds the specified item, Value, to the list along with the specified instance of Object.

e Use the Item[4? method to retrieve the Values of the TList.

o Access the Object at a later time using the Objecthsd method with the integer index
returned by the AddObject method.

Typical usage

See Object methodhsh example

14.8.2.4 Count

The Count method returns an integer of the number of items held in the list.

Syntax
object.Count();
Item Description
object An object expression of type TList
Remarks

e Returns the the total number items that a currently held in the TList specified by
object.

Typical usage
See The TList Object examplei4

14.8.2.5 Create

The Create method returns an instance of a TList object

Syntax
TList.Create;

Remarks

e Creates an instance of a TList object.
e See this TList Object Examplel4 for typical usage.

14.8.2.6 Data

The Data method returns a variant data value that was stored in the list via
AddData 44,

© 2003-2006 FMR Corp. All rights reserved.

147 WealthScript Language Guide, Wealth-Lab Pro™

Syntax
object.Data(Index);

Item Description

object An object expression of type TList.

Index Integer variable or expression identifying the index of the data

item in the TList.

Remarks

 Returns the data value that was stored in the list via AddDatal44,

e The item is returned as a variant data type, but you can assign this to a variable of the
appropriate data type. For example, if the data were stored as 'AMGN', you cannot
assign this to an integer or float type. Rather, it should be assigned to a string or
another variant. On the other hand, if the data were stored as '34.22', you may
assign this to a variable of type float, string, or variant. In the last case, you could
also assign the variant type to an integer type (the variant number would be rounded
when assigned), but you must be careful when making such assignments due to the
possibility of an overflow.

Typical usage
See AddDatahd example

14.8.2.7 Item

The Item method returns a variant value that was stored in the list as Value via Add)43
or AddData 144,

Syntax
object.Item(Index);
Item Description
object An object expression of type TList.
Index Integer variable or expression identifying the index of the TList
value.
Remarks

e Returns the value that was stored in the list via Add 43 or AddDatal4.

e The item is returned as a variant data type, but you can assign this to a variable of the
appropriate data type. For example, if the data were stored as 'AMGN', you cannot
assign this to an integer or float type. Rather, it should be assigned to a string or
another variant. On the other hand, if the data were stored as '34.22', you may
assign this to a variable of type float, string, or variant. In the last case, you could
also assign the variant type to an integer type (the variant number would be rounded
when assigned), but you must be careful when making such assignments due to the
possibility of an overflow.

© 2003-2006 FMR Corp. All rights reserved.

Objects 148

14.8.2.8

Typical usage
See The TList Objecths? or AddData 44 examples

IndexOf

The IndexOf method returns an integer value that is the index in the list for the item
specified in the Value parameter.

Syntax
object.IndexOf(Value);
Item Description
object An object expression of type TList.
Value Variant variable or expression identifying the value to be found in
the TList.
Remarks

e Returns the index value for the specified Value. Values are added to the TList via the
Addf43, AddDatal4#, or AddObjecthss functions.

e The first item in the list has an index value of zero, and the last item has an index
value of object.Count - 1.

o If the specified Value could not be found in the list, the function returns -1.

Example
var |st: TList;
var n: integer;

{ Create TList }

Ist := TList.Create;

{ Fill list with text strings }
| st. Add(' Zero');

| st. Add(' One');

| st. Add(' Two');

| st. Add(' Three');

| st. Add(' Four');

| st. Add('Five');

{ Sort the list }

| st.SortString;

{ Find the index of the specified string, will be last in the list after
al pha sort }
n:=Ist.IndexCf('Zero');

ShowMessage(IntToStr(n));

© 2003-2006 FMR Corp. All rights reserved.

149 WealthScript Language Guide, Wealth-Lab Pro™

14.8.2.9 IndexOfData

The IndexOfData method returns an integer value that is the index in the list for the
secondary data item specified in the Value parameter.

Syntax
object.IndexOfData(Value);
Item Description
object An object expression of type TList.
Value Variant variable or expression identifying the secondary data value

to be found in the TList.

Remarks

e Returns the index value for the specified secondary data Value. Secondary data Values
are added to the TList via the AddData 44 function.

e The first item in the list has an index value of zero, and the last item has an index
value of object.Count - 1.

¢ If the specified secondary data Value could not be found in the list, the function returns
-1,

Example

var |st: TList;
var n: integer;

{ Create TList }
I st := TList.Create;

{ Fill with synbols and PE ratios }
| st. AddData(12.5, 'MSFT');

| st. AddData(17.6, 'GE)
| st. AddData(6.7, 'MCD)

| st. AddData(2.1, 'CSCO);
| st. AddData(8.4, 'SUNW);
| st. AddData(-12.7, 'AQL");

{ Find the PE for MSFT }
n :=Ilst.IndexCfData(' MSFT');
It

ShowMessage(FloatToStr(Ist.ltem n)));

14.8.2.10 IndexOfObject

The IndexOfObject method returns an integer value that is the index in the list for the
object instance specified in the Value parameter.

Syntax
obj.IndexOfObject(Value);

© 2003-2006 FMR Corp. All rights reserved.

Objects 150

Item Description

obj An object expression of type TList.

Value An instance of an object tyge@ to be found in the TList.
Remarks

e Returns the index value for the specified object instance. Objects are added to the
TList via the AddObject/45 function.

e The first item in the list has an index value of zero, and the last item has an index
value of obj.Count - 1.

o If the specified object instance could not be found in the list, the function returns -1.

Typical usage
See IndexOfData 48 example

14.8.2.11 Object

The Object method returns the object instance that was previously added to a TList by
the AddObijecths# method.

Syntax
obj.Object(Index);
Item Description
obj An object expression of type TList
Index Integer variable or expression identifying the index of the TObject
in the list.
Remarks

e When retrieving the TObject of Index from the TList, use the as operator to convert the
return value to its original class.

Example

type TMyObj ect = class(TOoject)
private
pr ot ect ed
public
procedur e Shout;
end;

procedure TMy(Qbj ect. Shout;
begi n

ShowMessage(' Arrrggghhh!');
end;

var |st: TList;
var nmo: TMyQbj ect ;
Ist := TList.Create;

© 2003-2006 FMR Corp. All rights reserved.

151

WealthScript Language Guide, Wealth-Lab Pro™

m = TMyQbj ect . Creat e;

| st. AddQbj ect (123.45, no);

m :=Ist.Object(0) as TMWObj ect;
no. Shout ;

14.8.3 TList Procedures
14.8.3.1 Changeltem

Syntax
object.Changeltem(Index, Value);
Item Description
object An object expression of type TList.
Index Integer variable or expression identifying the index of the item to
change in the TList.
Value Variant variable or expression of the new Value to be stored in the
TList at Index.
Remarks
 Changes the initial value that was stored in the list via Addf43 or AddDatal4i to a new
Value.
Note

The example demonstrates that Changeltem operates on equally well on items added
through Addh43 or AddDatal44. You normally create TLists that are collections of
closely-related items, and therefore you should use either Addl48 or AddData 4
throughout the TList. Otherwise, attempting to access non-existent data could lead to

unpredictable results.

Example

var |st: TList;
var i1, i2: integer;

I st := TList.Create;

il :=Ist.Add(' SUNW);

i2 :=Ist.AddData(' AMGN , 9. 15);

Print(Ist.ltem(il));

Print(Ist.ltemi2) +', ' + FloatToStr(lst.Data(i2)));

{ Whoops, | nmeant CSCO }

| st. Changelten{ i1, 'CSCO);

| st. Changelten{ i2, 'CSCO);

Print(Ist.ltem(il));

Print(Ist.ltem(i2) + "', ' + FloatToStr(lst.Data(i2)));

| st. Free;

© 2003-2006 FMR Corp. All rights reserved.

Objects 152

14.8.3.2 Clear

Syntax
object.Clear();

Item Description

object An object expression of type TList

Remarks

e Clears the contents of the list

Note

If you attempt to access a non-existent TList item or data, immediately following the
Clear method for example, an out of bounds error will occur.

14.8.3.3 Delete

Syntax
object.Delete(Index);
Item Description
object An object expression of type TList.
Index Integer variable or expression identifying the index of the item to

delete in the TList.

Remarks

¢ Deletes the item in the list specified by Index.
e Following the Delete method, the indices of all TList items that appear after the
deleted item are decremented by one.

Example
var |st: TList;
var i: integer;

var synbol: string;
Ist := TList.Create;

I st. Add(" SUNW) ;
I'st.Add(' T');
I st. Add(' BA');
| st. Add(' NSFT') ;
I'st.Add(' GV);

{ Find "BA in the list and Delete it }
for i :=0tolst.Count - 1 do
begin

© 2003-2006 FMR Corp. All rights reserved.

153 WealthScript Language Guide, Wealth-Lab Pro™
if Ist.ltem(i) = "'BA then begin
Ist.Delete(i);
br eak; /'l break out of | oop
end;
end;
{ Print the list in the debug w ndow }
for i := 0 to Ist.Count - 1 do
print(Ist.ltem(i));
| st. Free;
14.8.3.4 Free
Syntax
object.Free;
Item Description
object An object expression of type TList.
Remarks
e Destroys the TList object to free resources previously allocated to the TList object.
« Due to the introduction of the garbage collectionf8 in Wealth-Lab Pro, it is no longer
necessary to explicity destroy objects, such as TLists, through the use of the Free
method.
14.8.3.5 SortNumeric

Syntax
object.SortNumeric();
Item Description
object An object expression of type TList
Remarks

e Sorts the values in the list as numbers from least to greatest.
¢ You should ensure that integers or floats were added to the list, otherwise the results
could be unpredictable.

Example

{ create a list of ascending closing prices of the last 10 chart bars }
var |st: TList;
var Bar, n: integer;

Ist := TList.Create;

© 2003-2006 FMR Corp. All rights reserved.

Objects 154

for Bar := 0 to BarCount - 1 do
| st. Add(PriceC ose(Bar));

| st. Sort Nuneri c;
Print('Ascending);

for n :=0to Ist.Count - 1 do
Print(FormatFloat('#.00', Ist.ltem(n)));

Print(');
Print('Descending');
for n :=1st.Count - 1 downto O do

Print(FormatFloat('#.00', Ist.ltem(n)));

14.8.3.6 SortString

Syntax
object.SortString();
Item Description
object An object expression of type TList
Remarks

e Sorts the values in the list as strings.
e The sort order is determined by a case-sensitive string comparison (binary compare) of
all items in the list, from least to greatest.

In the example, the string 'ba' will be sorted to the end of the list since lowercase
characters have greater ASCII codes than uppercase characters.

Example
var |st: TList;
var i: integer;

var synbol: string;
Ist := TList.Create;
I st. Add(' SUNW) ;

| st. Add(' ba');

| st. Add(' BA");

| st. Add(' MSFT');

| st. Add(' GM);

| st.SortString;

{ Print the list in the debug w ndow }

for i :=0to lst.Count - 1 do
print(Ist.ltem(i));
| st. Free;

© 2003-2006 FMR Corp. All rights reserved.

155 WealthScript Language Guide, Wealth-Lab Pro™

synchronized 47

I n d eX AutoRun PerfScript 114
-B -
- H -

BarCount 57

#All constant 84 Use in SimuScript 116
#AsDollar 81 boolean 11
#AsPercent 81 break 36
#AsPoint 81 BuyAtClose 79
#Average 53 BuyAtLimit 79
#AverageC 53 BuyAtMarket 79
#Bold 112 BuyAtStop 79
#Close 53 by reference 42
#Color 73 by value 42
#ColorBkg 73

#Current constant 116 _ C _

#Dots (dotted line style) 71

#Dotted (dotted line style) 71 casting 13
#Equity 112 chart 68

#High 53 painting 68
#Histogram (histogram plot style) 71 panes 69
#ltalic 112 plotting 68
#low 53 ChartScript Editor 5
#Open 53 closing positions 84
#Thick (thick line style) 71 CMDataSource 109
#ThickHist (thick histogram plot style) 71 CMEntry 109
#Thin (thin line style) 71 CMOrderType 109
#Volume 53 CMPrice 109
#WinLoss 112 CMResult 109

CMShares 109

- @ _ CMSymbol 109
73

colors
@ syntax 61 specifying 73
GetSeriesValue 61 COM Support 5
SetSeriesValue 61 combining positions 84
comments 8
_ A _ CommissionScript 109
CMDataSource 109

CMEntry 109
CMOrderType 109
CMPrice 109
CMResult 109

AnnotateBar 74
AnnotateChart 74
ApplyAutoStops 81

afra;/scesi?n 47 CMShares 109
X CMSymbol 109
o ! compatibilit 109
declaring 47 P y

. . iabl 109
multi-dimensional 47 vanables

© 2003-2006 FMR Corp. All rights reserved.

Index 156

CommissionScript 109 ratios 126

creating 110 use in trading systems 126

testing 110 Fundamental Data Access Functions 123
CommissionScripts Overview 109
constants 16

16 - G B

declaring 16

garbage collection 136
GetFundamentalBar 123
GetSeriesValue 59
GICS 123

pre-defined 16
constructor 136
CreatePane 70

-D - _H -

Data Dictionary 123

) handle 54
datet@e 11 HidePaneLines 70
declaring 15
delimiters 8
drawing 75 - I -

objects (programatically) 75
DrawLabel 74 indicator 102
DrawText 74 custom 102

fundamental 126
inheritance 139
- E - InstallBreakEvenStop 81

InstallProfitTarget 81

enumerated types 13 InstallReverseBreakEvenStop 81

efror 4.6 InstallStopLoss 81
har_ldllng 46 InstallTimeBasedExit 81

exFeptmns 46 InstallTrailingStop 81

exit 45 instances of objects 136
F integer 11

FAQs 121 - K =
SimuScripts - 121 Knowledge Base 84

float 11

for (looping statement) 34

Free 136 - L -

functions 37
arguments 42 LastLongPositionActive 84
caling 41 LastPosition 84
declaring 39 LastShortPositionActive 84
executing 41 looping statements (summary) 33

parameters 42

syntax 39 - M -

fundamental 123
data access functions 123 Max Entries per Day 121

indicators 126 merging positions 84

© 2003-2006 FMR Corp. All rights reserved.

157 WealthScript Language Guide, Wealth-Lab Pro™

_N - P -

New Indicator Wizard 102 painting the chart 68
panes 69
_ O _ creating 70
hide lines 70

hide volume 69

PerfScript 112
constants 112

object oriented programming 132
objects 132
accessing properties 136

constructor 136 creating 113
creating 136 errors 113
declaring 133 functions 112
freeing 136 Overview 112
functions and procedures 133 US'”_Q 114
inheritance 139 PlotSeries 71
instances 136 PlotSymbol 73
methods 133 PlotSyntheticSymbol 73
overview 132 plotting 68
polymorphism 140 external symbols 73
properties 135 lno!lcators 71 |
read accessor 135 objects (programatically) 75
style 71

variables 133

write accessor 135 synthetic symbols 73

OOP 132 polymorphism 140
operations 18 position sizing 116
boolean 20 PositionActive 84
logical 21 PositionCount 84
mathematical 19 PositionEntryBar 84
string 26 PositionEntryPrice 84
operator 19 PositionLong 84
and 22 positions 80
div 19 closing 80, 84
modulo 19 combining 84
not 26 merging 84
or 23 multiple 84
standard 19 open 80
xor 24 split 84
assignment 15 _ Sp|lttlr_19 84
orders 79 Price Series 51
limit 79 accessing values 66
market 79 accessing values from 59
market-on-close 79 allgnment. 96
selling short 83 characteristics 51
stop 79 constant handles 53
creating 57

Overview 109

CommissionScripts 109 expanding 96

external 66

© 2003-2006 FMR Corp. All rights reserved.

Index

Price Series 51
functions that accept
handle 54
overview 51,52
standard 53
synchronization 96

procedures 37
arguments 42
caling 41
declaring 38
executing 41
parameters 42
syntax 38

‘R -

record types 12
recursion 39
recursive functions 39
reentrant functions 39
repeat (looping statement)
return values (functions)

_S -

Scale 69
scripting 77
main loop 78
overview 77
trading rules 77
SellAtClose 80
SellAtLimit 80
SellAtMarket 80
SellAtStop 80
semicolon 8
Series Math 63
answers 63
practice 62
SetAutoStopMode 81
SetDescription 102
SetSeriesBarColor 71
SetSeriesValue 59
SimuScript 116
#Current 116
BarCount 116
coding 119
creating 119

errors 120
Functions 116
how they work 118

testing 120
SimuScripts 116
FAQs 121

Overview 116
Portfolio $imulator 116
position sizing 116
slash 8
double 8
split 126
fundamental item 126
splitting positions 84
state machines 13
statements 8, 27
break 36
case 31
conditional 27
forloop 34
iffthen 27
iffthen/else 27
repeatloop 35
while loop 35
stops 81
automated 81
string 11, 26
shorthand 26
Chr 26
comparison 26
style 71
syntax 7
@ symbol 61

- T -

TList 142

TList methods 142
Add 143
AddData 144
AddObject 145
Changeltem 151

Clear 152
Count 146
Create 146
Data 146
Delete 152
Free 153

158

© 2003-2006 FMR Corp. All rights reserved.

159 WealthScript Language Guide, Wealth-Lab Pro™

TList methods 142
IndexOf 148
IndexOfData 149
IndexOfObject 149
ltem 147
Object 150
SortNumeric 153
SortString 154

TProfitTracker 138

trading rules 77
implementation 83
looking ahead 83

- U -

Use a PerfScript 114

_V -

variables 9
assigning 15
datatypes 11
declaring 10
enumerated types 13
initializing 15
naming rules 10
record types 12
scope 44

variant 11

Volume 69
hide pane 69

W -

WealthScript 5
definition 5
AnnotateBar 74
AnnotateChart 74
ApplyAutoStops 81
BarCount 57
BuyAtClose 79
BuyAtLimit 79
BuyAtMarket 79
BuyAtStop 79
CreatePane 70
CreateSeries 57
DrawCircle 75

DrawCircle2 75
DrawEllipse 75
DrawLabel 74
DrawLine 75
DrawText 74
GetSeriesValue 59
HidePaneLines 70
InstallBreakEvenStop 81
InstallProfitTarget 81
InstallReverseBreakEvenStop 81
InstallStopLoss 81
InstallTimeBasedExit 81
InstallTrailingStop 81
LastLongPositionActive 84
LastPosition 84
LastShortPositionActive 84
PeakBar 75
PlotSeries 71
PlotSymbol 73
PlotSyntheticSymbol 73
PositionActive 84
PositionCount 84
PositionEntryBar 84
PositionEntryPrice 84
PositionLong 84
SellAtClose 80
SellAtLimit 80
SellAtMarket 80
SellAtStop 80
SetAutoStopMode 81
SetSeriesBarColor 71
SetSeriesValue 59
TroughBar 75

while (looping statement) 35

© 2003-2006 FMR Corp. All rights reserved.

	Introduction
	WealthScript Language Syntax
	Overview
	Comments
	Statements and Delimiters
	Variables and Data Types
	Overview
	Declaring Variables
	Variable Naming Rules
	Data Types
	Record Types
	Enumerated Types

	Assignment Statements
	Constants
	Operations
	Overview
	Mathematical Operations
	Boolean Operations
	Logical Operations
	Summary
	And Operator
	Or Operator
	Xor Operator
	Not Operator

	String Operations

	Conditional Statements
	Case Statement
	Looping Statements
	Summary
	For Loop
	While Loop
	Repeat Loop
	Breaking Out of a Loop

	Functions and Procedures
	Overview
	Declaring Procedures
	Declaring Functions
	Calling Functions and Procedures
	Passing Parameters
	Scope of Variables
	Exiting a Procedure
	Native and Re-usable Functions

	Error Handling
	Arrays

	Working with Price Series
	Introduction to Price Series
	What is a Price Series?
	Handles to Price Series
	Overview
	Standard Price Series and Their Constants
	Functions that Return a Price Series Handle
	Functions that Accept a Price Series Handle

	Creating Your Own Price Series
	Accessing a Single Value of a Price Series
	Using @ Syntax to Access Values from a Price Series
	Series Math
	Practice
	Answers

	Price Series FAQs

	Painting the Chart
	Overview
	Chart Panes
	Creating New Panes
	Plotting an Indicator in a Pane
	Plotting Multiple Symbols
	Specifying Colors
	Drawing Text in a Pane
	Drawing Objects in a Pane

	Writing Your Trading System Rules
	Overview
	Scripting Trading Rules
	Overview
	The Main Loop
	Triggering a Market Buy Order
	Triggering a Limit or Stop Buy Order
	Checking for Open Positions
	Using Automated Stops
	Selling Short

	Implementing Trading System Rules
	Managing Multiple Positions

	Working with Technical Indicator Functions
	Overview
	Accessing Indicator Values
	Accessing Indicator Price Series Handles

	Accessing Data from Files
	Overview
	Creating and Opening Files
	Reading and Writing
	Closing Files

	Understanding Time Frames
	Overview
	Accessing a Higher Time Frame
	Expanding the Series
	Accessing Higher Time Frame Data by Bar
	Scaling and Trading

	Creating a Custom Indicator
	Overview
	Using the New Indicator Wizard
	Deleting a Custom Indicator
	The Guts of a Custom Indicator
	Other Possibilities and FAQs

	CommissionScripts
	Overview
	CommissionScript Variables
	Creating and Testing CommissionScripts

	PerfScripts
	Overview
	PerfScript Functions
	Creating PerfScripts
	Using PerfScripts

	SimuScripts
	Overview
	SimuScript Function Notes
	How do SimuScripts Work?
	Creating a SimuScript
	Testing a SimuScript
	SimuScript FAQs

	Using Fundamental Data
	Overview
	Fundamental Data Access Functions
	Fundamental Data in Trading Systems
	Fundamental FAQs

	Objects
	Overview
	Object Type Declarations
	Providing Access via Properties
	Creating and Using Instances of a Type
	Putting it all Together
	Inheritance
	Polymorphism
	The TList Object
	Overview
	TList Functions
	Add
	AddData
	AddObject
	Count
	Create
	Data
	Item
	IndexOf
	IndexOfData
	IndexOfObject
	Object

	TList Procedures
	ChangeItem
	Clear
	Delete
	Free
	SortNumeric
	SortString

