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Abstract

A semantic web is a web of data designed to be processed by ma-
chines. It enables processing based on the meaning of the data. To
be useful, semantic data will be combined from several sources. This
paper focuses on the relation of the combined data to its sources.
Using the method of interpretations between theories in a logic with
undefined terms, it establishes criteria for combining information in
a fashion that preserves the inferences available in the original infor-
mation. The formalism can be used to evaluate existing languages
for semantic data on the web, such as the Simple html Ontology
Extensions (shoe).

1 Logic and the Web

In the traditional web, information is structured and shared in forms that fa-
cilitate its display for human consumption. For example, an html document
is divided into sections, paragraphs, and lists. The document’s structure
guides a browser’s rendering of the document on a computer screen.
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The structure offers little assistance to programs extracting information
from the web. This is because the structure of a document usually has little
to do with the meaning of its contents. As a result, general purpose methods
for extracting information rely on other metrics to associate meaning with a
document.

For example, search engines categorize web pages by looking at word
occurrences. A document that contains the word “genealogy” is assumed to
be about genealogy. I might search the web for documents that contain the
words “Ramsdell” and “genealogy” to find my ancestors with my surname.
Such a search would return this document, a document about logic and the
web, not genealogy. Still, the search is likely to point me to a site that
contains information about ancestors with my surname.

Suppose instead that I would like find the names of all of my ancestors
that were ministers. Since this search involves following both my maternal
as well as paternal blood lines, one must expect to visit many different sites
during the search. Each site will have its own unique structure, a structure
guided by its author’s opinion on how to break each web page into sections,
paragraphs, and lists, not by its genealogy content. In the traditional web,
writing a program to extract this kind of information is nearly impossible.

In [1], Tim Berners-Lee promotes the creation of what he calls a Semantic
Web—a web of data designed to be processed by machines. The vision is that
each participating site would augment its material with a machine-oriented
version of its data. Continuing the genealogy example, site A might publish
machine-oriented data using the following schema:

parent of(x, y) means person x is the parent of person y,

employed as(x, y) means person x was employed as a y,

is male(x) means person x is a male,

is female(x) means person x is a female.

The gender predicates are used later in the section on interpretations between
theories.

Figure 1 gives a machine-oriented semantics for data in the above schema.
In particular, it defines the concept of an ancestor.

If every genealogy site used the same schema and agreed on the terms
used to identify people and jobs, finding ancestors that are ministers would
be easy. One would simply use the obvious inference rule to derive ancestors
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parent of(x, y) implies is person(x)

parent of(x, y) implies is person(y)

employed as(x, y) implies is person(x)

employed as(x, y) implies is job(y)

is male(x) implies is person(x)

is female(x) implies is person(x)

parent of(x, y) implies ancestor(x, y)

parent of(x, y) and ancestor(y, z) implies ancestor(x, z)

Figure 1: Schema Semantics

from the parent of relation in combination with the data from the genealogy
sites to answer the question.

It is unrealistic to assume the existence of a common schema on the web.
The web is constantly changing. Sites are developed independently, and one
must be able to combine the information from sites in new ways without
modifying existing sites. Furthermore, the information must be combined in
a fashion that preserves the inferences available in the original information.

This paper proposes the use of well established methods in Mathemati-
cal Logic to precisely define the essential properties of information combined
from a semantic web. A variation of First-Order Logic called Partial First-
Order Logic (pfol) will form the foundation of the definition. Interpretations
between theories contributes the essential properties of information combi-
nation.

The formalism can be used to evaluate existing languages used to pro-
vide machine-oriented data on the web, and suggest improvements to the
language. The Simple html Ontology Extensions (shoe) [4] is an ontology-
based knowledge representation language that is embedded in web pages.
The authors provide a mapping of shoe into First-Order Logic [5], so it is
trivial to evaluate it within the formalism. Interpretations between theories
may suggest more expressive ways of combining shoe specifications.

The formalism could also be used as the basis of a language for providing
machine-oriented data, however, this possibility will not be pursued in this
paper.
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2 Partial First-Order Logic

pfol is very similar to First-Order Logic; the difference is that terms in
pfol may be undefined, and atomic formulas that contain undefined terms
are false.

The availability of undefined terms provides several advantages. Many
specifications are more naturally described in the presence of undefined terms,
however, the relevant reason this formalism is built on pfol is it allows in-
terpretations between theories in which each term is translated into another
term. In First-Order Logic, an atomic formula that contains the application
of an operator symbol to a sequence of terms is translated into a complex
formula because the translation of the application may be undefined in some
domains.

The variant of Partial First-Order Logic used here is taken from [3] where
it forms the basis of a set theory with support for partial functions. The paper
also describes a sort system used to classify terms. pfol, the set theory,
and the sort system are intended to serve as a foundation for mechanized
mathematical systems. The set theory, and the sort system may find use in
a semantic web.

2.1 Syntax

A variable of pfol is a member of a fixed infinite set V of symbols. A lan-
guage of pfol is a tuple (C,O,P) such that:

1. C is a set of individual constants.

2. O is a set of operator symbols, each with an assigned arity ≥ 1.

3. P is a set of predicate symbols, each with an assigned arity ≥ 1. P con-
tains the binary predicate symbol =.

4. V , C, O, and P are pointwise disjoint.

A language in which O is empty is called operator-free. In the remainder of
this section, let L = (C,O,P) be a language of pfol.

A term and a formula of L are defined inductively by:

1. Each x ∈ V and a ∈ C is a term.

2. If x ∈ V and ψ is a formula, then (Ix. ψ) is a term.
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3. If o ∈ O is n-ary and t1, . . . , tn are terms, then o(t1, . . . , tn) is a term.

4. If p ∈ P is n-ary and t1, . . . , tn are terms, then p(t1, . . . , tn) is a formula.

5. If ϕ and ψ are formulas and x ∈ V , then ¬ϕ, (ϕ→ ψ), and (∀x. ϕ) are
formulas.

The symbols ¬, → ∀, and I are the logical constants of pfol. The symbols
are operators for negation, implication, universal quantification, and definite
description. No logical constant is a member of any of the sets V , C, O, or P .
A term or formula is regular if it does not contain any occurrences of the
definite description operator. Regular terms and formulas are the same as
the terms and formulas of ordinary first-order logic.

Parentheses in terms and formulas may be suppressed when meaning is
not lost. For convenience, we also employ the following abbreviations:

(t1 = t2) for = (t1, t2),

(ϕ ∧ ψ) for ¬(ϕ→ ¬ψ),

(ϕ ∨ ψ) for ¬ϕ→ ψ,

(∃x. ϕ) for ¬∀x.¬ψ.

Let an expression of L be either a term or a formula of L. “Free variable”,
“closed”, and similar notions are defined in the obvious way. A sentence is a
closed formula. Given an a formula ϕ, ϕ[x 7→ t] is the result of simultaneously
replacing each free occurrence of the variable x in ϕ with term t. A set of
formulas Γ is said to be over L iff each ϕ ∈ Γ is a formula of L.

Returning to the genealogy example, site B might publish machine-
oriented data using the following schema:

x = dad(y) means person x is the father of person y,

x = mom(y) means person x is the mother of person y,

job(x, y) means person x was employed as a y.

The term dad(y) is defined when y is a person. The use of the dad operator
symbol embeds the assumptions that one has exactly one father. In this
schema, the gender of a person can only be determined if that person is a
parent.
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2.2 Semantics

Let L = (C, ∅,P) be an operator-free language. pfol and First-Order Logic
share the same notion of truth and models for any set of regular pfol for-
mulas over L. A structure U associates a nonempty set U∀ with the universal
quantifier, an element Ua ∈ U∀ with each constant symbol a ∈ C, and an n-
ary relation Unp ⊆ Un∀ with each n-ary predicate symbol p ∈ P . U= is always
the identity relation

U= = {(u, u) : u ∈ U∀}.

A variable assignment into U is a function which maps each x ∈ V into
an element of U∀. Given a variable assignment A into U , x ∈ V , and u ∈ U∀,
let A[x 7→ u] be the variable assignment A′ into U such that A′(x) = u and
A′(y) = A(y) when y 6= x.

An extended variable assignment into U is a function which maps each
z ∈ V ∪ C into an element of U∀. Given a variable assignment A into U , the
extended variable assignment variable assignment A is given by

A(z) =

{
A(z) z ∈ V
Uz z ∈ C

Given a regular formula ϕ over an operator-free language, U satisfies ϕ
with A, when ϕ meets the conditions given by the matching formula:

1. U satisfies p(t1, . . . tn) with A, iff (A(t1), . . . , A(tn)) ∈ Up.

2. U satisfies ¬ϕ with A, iff U does not satisfy ϕ with A.

3. U satisfies ϕ→ ψ with A, iff U does not satisfy ϕ with A, or U satisfies
ψ with A.

4. U satisfies ∀x. ϕ with A, iff U satisfies ϕ with A[x 7→ u] for all u ∈ U∀.

A set of formulas Γ logically implies a formula ϕ, written Γ |= ϕ, if for
every structure U of the language and every variable assignment A such that
U satisfies every member of Γ with A, then U satisfies ϕ with A.

Structure U is a model of ϕ iff U satisfies ϕ with A for all variable as-
signments A. Structure U is a model of a set of formulas Γ iff it is a model
of every member of Γ.
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2.2.1 Semantics of Full PFOL

Structures for First-Order Logic associate a total function with each operator
symbol, while structures for pfol associate a partial function with each
operator symbol. The definition of a model for pfol is given in [3]; this
paper will give the semantics of pfol by translating arbitrary formulas into
regular formulas over an operator-free language.

Assume L = (C,O,P) and define P = P∪{po : o ∈ O} and L = (C, ∅,P),
where po /∈ P and po is (n+ 1)-ary if o is n-ary for all o ∈ O. For each n-ary
o ∈ O, define ϕo to be the formula

∀x1 . . . ∀xn+2. po(x1, . . . , xn+1)→ po(x1, . . . , xn+2)→ xn+1 = xn+2. (1)

ϕo says that po is the graph of a partial n-ary function.
Equations 2-7 translate a pfol formula of L into a regular formula of L.

The untranslated formula is underlined, and rewritten until no part of it is
underlined.

Equations 2-4 apply to atomic formulas.

p(t1, . . . , tn) = p(t1, . . . , tn), (2)

where each term in {t1, . . . , tn} is a variable or a constant.
Operator symbols are eliminated by the following equation.

p(s1, . . . , o(t1, . . . , tn), . . . , sm)

= ∃y. po(t1, . . . , tn, y) ∧ p(s1, . . . , y, . . . , sm),
(3)

where p ∈ P , o ∈ O, and y does not occur in p(s1, . . . , o(t1, . . . , tn), . . . , sm).
Notice that when the application of an operator symbol is undefined, the
atomic formula in which it occurs is false. In general, any atomic formula
that contains an undefined term is false.

Definite description symbols are eliminated by the following equation.

p(t1, . . . , Ix. ψ, . . . , tn)

= ∃y. ψ[x 7→ y] ∧ (∀z. ψ[x 7→ z]→ y = z) ∧ p(t1, . . . , y, . . . , tn),
(4)

where p ∈ P , and y does not occur in p(t1, . . . , Ix. ψ, . . . , tn). The definite
description term Ix. ψ denotes the unique x that satisfies ψ. If there is no
single x that satisfies ψ, the term Ix. ψ is undefined, and the atomic formula
containing the term is false.

7



The remaining equations apply to non-atomic formulas.

¬ψ = ¬ψ, (5)

ψ → ϕ = ψ → ϕ, (6)

∀x. ψ = ∀x. ψ. (7)

Let Γ be a set of formulas over L = (C,O,P). The regular operator-free
translation of the set is given by

Γ = {ϕ : ϕ ∈ Γ} ∪ {ϕo : o ∈ O}.

The structures for full pfol given in [3] associate a partial function
with each operator symbol. Equation 1 ensures that a model for a regu-
lar operator-free translation of a set of formulas is a structure for the original
set of formulas in the sense defined in [3].

In what follows, the presentation will be simplified by only considering
structures that are a model of {ϕo : o ∈ O}. As a result, for each predicate
symbol p introduced while eliminating an operator symbol, the relation as-
sociated with p by every structure U must be the graph of a partial function.

Definitions for regular formulas over operator-free languages extend to
full pfol as follows. A set of formulas Γ over any language logically implies
a formula ϕ iff Γ |= ϕ. U satisfies ϕ with A iff U satisfies ϕ with A, and U is
a model of ϕ iff U is a model of ϕ.

3 Interpretations Between Theories

A theory is a set of sentences closed under logical implication. That is, T is a
theory iff T is a set of sentences such that for any sentence σ of the language,

T |= σ implies σ ∈ T.

Logicians have developed a technique for comparing some theories. When
theories T0 and T1 are in the same language, T1 is considered to be as powerful
as T0 if T0 ⊆ T1. This kind of comparison is possible even when T0 and T1

are over different languages, because there may be a way to translate each
sentence in T0 into a sentence in T1.
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Translations that allow the comparison of theories can also be used to
combine information from a semantic web. Each source of information sup-
plies a set of sentences Σ. The theory associated with Σ is called the conse-
quences of Σ, written Cn Σ, where

Cn Σ = {σ : Σ |= σ}.

The guiding principle is that the consequences of the combined informa-
tion should be as powerful as the consequences of each of its sources. In other
words, the combined information should possess all the inferences available
in each of its sources.

Suppose Σ1 is a set of sentences constructed by combining information
from a semantic web, and let Σ0 be one of the sources of the information.
The principle is achieved by finding a translation of each sentence in the
consequences of Σ0 into the language of Σ1 such that the translated sentence
is a member of the consequences of Σ1.

The presentation of translations between theories is based on [2, §2.7],
but modified to handle undefined terms.

The translation of a formula is parameterized by an interpretation. An
interpretation π of a source language L0 = (C,O,P) into the destination
theory T1 is a function on the symbols of the language such that

1. π assigns to ∀ a formula π∀ of L1 in which at most one variable occurs
free, such that

T1 |= ∃x. π∀[x], (8)

where ϕ[x] abbreviates ϕ[y 7→ x] when only y occurs free in ϕ.

2. π assigns to each constant symbol a ∈ C a closed term πa of L1, such
that

T1 |= π∀[πa]. (9)

3. π assigns to each n-ary operator symbol o ∈ O a term πo of L1 in which
at most n variables occur free, such that

T1 |= ∀x1 · · · ∀xn+1. π∀[x1]→ · · · → π∀[xn]
→ xn+1 = πo[x1, . . . , xn]→ π∀[xn+1].

(10)

4. π assigns to each n-ary predicate symbol p ∈ P a formula πp of L1 in
which at most n variables occur free.

9



Equations 8–10 are called the obligations of the interpretation.
Revisiting the genealogy example, and assuming site A and B agree on

the constant terms used to identify people and jobs, an interpretation π of
the language of site B into the theory of site A is:

π∀[x] = (x = x),

πdad[y] = Ix. parent of(x, y) ∧ is male(x),

πmom[y] = Ix. parent of(x, y) ∧ is female(x),

πjob[x, y] = employed as(x, y).

Given the interpretation π of the source language L0 into the destination
theory T1, expressions of L0 can be translated into expressions of L1 as
follows:

Π(x) = x

Π(a) = πa

Π(Ix. ϕ) = Ix. π∀[x] ∧ Π(ϕ)

Π(o(t1, . . . , tn)) = πo[Π(t1), . . . ,Π(tn)]

Π(p(t1, . . . , tn)) = πp[Π(t1), . . . ,Π(tn)]

Π(¬ϕ) = ¬Π(ϕ)

Π(ϕ→ ψ) = Π(ϕ)→ Π(ψ)

Π(∀x. ϕ) = ∀x. π∀[x]→ Π(ϕ)

The correctness of the translation is addressed next. Let U be a model
of theory T1. There is a natural way to extract from U a structure πU for L0

as follows:

πU∀ = the set defined in U by π∀,
πUa = the element in U defined by πa,
πUp = the relation defined in U by πp restricted to πU∀,
πUpo = the relation defined in U by πo[x1, . . . , xn] = xx+1

restricted to πU∀.

Equation 8 ensures πU∀ is not empty, and Equation 9 ensures πUa is a
member of πU∀.
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Lemma 1 Let π be an interpretation of L0 into T1, and let U be a model
of T1. For any formula ϕ of L0 and any variable assignment A into πU∀,
πU satisfies ϕ with A iff U satisfies Π(ϕ) with A.

Proof. The proof is by structural induction on ϕ, but only the case of an
atomic formula is nontrivial.

Let ϕ = p(t1, . . . , tn), so the translation of ϕ is

Π(p(t1, . . . , tn)) = πp[Π(t1), . . . ,Π(tn)].

The case in which each term in {t1, . . . , tn} is a variable or a constant
is easy. The range of the variable assignment A assures U associates an
element of πU with each variable. For each constant, Equation 9 makes the
same assurance.

Assume ϕ has the form p(s1, . . . , o(t1, . . . , tn), . . . , sm). By induction, as-
sume

πU satisfies ∃y. po(t1, . . . , tn, y) ∧ p(s1, . . . , y, . . . , sm) with A

iff U satisfies ψ with A, where

ψ = Π(∃y. po(t1, . . . , tn, y) ∧ p(s1, . . . , y, . . . , sm))

= ∃y. π∀[y] ∧ y = πo[Π(t1), . . . ,Π(tn)] ∧ πp[Π(s1), . . . , y, . . . ,Π(sm)],

and U associates an element of πU with each term. Consider ψ′, where

ψ′ = Π(p(s1, . . . , o(t1, . . . , tn), . . . , sm))

= πp[Π(s1), . . . , πo[Π(t1), . . . ,Π(tn)], . . . ,Π(sm)]

= ∃y. y = πo[Π(t1), . . . ,Π(tn)] ∧ πp[Π(s1), . . . , y, . . . ,Π(sm)].

U satisfies ψ with A iff U satisfies ψ′ with A by Equation 10.
The case of ϕ having the form p(t1, . . . , Ix. ψ, . . . , tn) is similar to the

previous case.

Theorem 1 For a set of sentences Σ of L0, {Π(σ) : σ ∈ Σ} ⊆ T1 iff for
every model U of T1, πU is a model of Σ.

Proof. By Lemma 1, for every model U of T1, πU is a model of Σ iff U is a
model of {Π(σ) : σ ∈ Σ} iff {Π(σ) : σ ∈ Σ} ⊆ T1.
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An interpretation π of a theory T0 into a theory T1 is an interpretation π
of the language of T0 into T1 such that

σ ∈ T0 implies Π(σ) ∈ T1.

An embedding π of a set of sentences Σ0 into a set of sentences Σ1 is an
interpretation π of the theory Cn Σ0 into the theory Cn Σ1, such that

σ ∈ Σ0 implies Π(σ) ∈ Σ1.

Obviously, the obligations of interpretation π are given by

Σ1 |= ∃x. π∀[x],

for each constant a of the language of Σ0,

Σ1 |= π∀[πa],

and for each operator symbol o of the language of Σ0,

Σ1 |= ∀x1 · · · ∀xn+1. π∀[x1]→ · · · → π∀[xn]
→ xn+1 = πo[x1, . . . , xn]→ π∀[xn+1].

An embedding π of a set of sentences Σ0 into a set of sentences Σ1 has the
desired properties. By Theorem 1, a model of Σ0 can be extracted from each
model of Σ1, and therefore, every inference in Cn Σ0 is available in Cn Σ1.

4 SHOE in PFOL

The Simple html Ontology Extensions (shoe) is an ontology-based knowl-
edge representation language that is embedded in web pages. From [5, Sec-
tion 2]:

. . . shoe extends html with a set of knowledge oriented tags
that, unlike html tags, provide structure for knowledge acqui-
sition as opposed to information presentation. shoe associates
meaning with content by making each web page commit to one or
more ontologies. These ontologies permit the discovery of implicit
knowledge through the use of taxonomies and inference rules, al-
lowing information providers to encode only the necessary infor-
mation on their web pages, and to use the level of detail that is
appropriate to the context. Interoperability is promoted through
the sharing and reuse of ontologies.
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Consider the task of combining two shoe semantic data sources that share
no ontologies into a single shoe specification. That task may be evaluated
using pfol as a foundation.

The mapping of a shoe specification into First-Order Logic given in [5]
creates a set of formulas over an operator-free language. Since each formula is
regular, every model of the set is a model of the set in pfol, and vice versa.
Furthermore, every shoe formula is either an atomic formula or a Horn
clause. As a result, implementations of shoe can use inference algorithms
developed for Datalog [6].

The data combination task is evaluated by studying the interpretations
that are available in the shoe logic as translated into First-Order Logic.

1. A unary predicate can be associated with the universal quantifier of a
source theory. A Horn clause connot serve the same function because
the translation would produce formulas not allowed in the shoe logic.

2. A constant can be translated into another constant. A constant cannot
be translated into a term with operators because the shoe language is
operator-free.

3. Since the shoe language is operator-free, operators cannot be trans-
lated.

4. A predicate can be translated into a another predicate. A predicate
cannot be translated into a Horn clause if the predicate appears in the
hypothesis of another Horn clause.

shoe provides a limited facility for expressing interpretations. It provides
a mechanism for renaming predicate symbols. There is no general mecha-
nism for translating constants, and no mechanism for associating a predicate
with the universal quantifier of a source theory. The use of an operator-free
language allows efficient inference algorithms, but greatly limits the ways in
which information can be combined when it shares no ontologies.

5 Conclusion

Using the method of interpretations between theories in pfol, this paper es-
tablished criteria for combining information from a semantic web in a fashion
that preserves the inferences available in the original information. The use
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of pfol allows translations in which each term is translated into a term, and
allows a natural description of specifications that involve undefined terms.
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