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This document declares and axiomatizes the IFF Classification Ontology. The IFF Classification Ontology 
provides a formalism for the theory of Distributed Conceptual Structures (Kent 2001). This theory is con-
cerned with the distribution and conception of knowledge. It rests upon two related theories, Information 
Flow and Formal Concept Analysis, which it seeks to unify. Information Flow (IF) (Barwise and Seligman 
1997) is concerned with the distribution of knowledge. The foundations of Information Flow is explicitly 
based upon a mathematical theory known as the Chu Construction in *-autonomous categories (Barr 1991). 
Formal Concept Analysis (FCA) (Ganter and Wille 1999) is concerned with the conception and analysis of 
knowledge. The theory of distributed conceptual structures merges these two studies by categorizing the 
basic theorem of Formal Concept Analysis, thus extending it to the distributed realm of Information Flow. 
The main result of the merged theory is the representation of the basic theorem of Formal Concept Analysis 
as the categorical equivalence between classifications and concept lattices at the level of functions, and the 
categorical equivalence between bonds and the opposite of complete adjoints and between bonding pairs 
and complete homomorphisms at the level of relations. This accomplishes a rapprochement between In-
formation Flow and Formal Concept Analysis. The IFF Classification Ontology currently contains 286 
non-identical terms (288 terms with 2 synonyms), partitioned into 32 terms for large concept lattices (CL, 
CL.MOR), 41 terms for large complete lattices (LAT, LAT.ADJ, LAT.MOR), and 213 terms for large classifica-
tions (CLS, CLS.CL, CLS.FIB, CLS.COLL, CLS.INFO, CLS.REL, CLS.BND, CLS.BNDPR, CLS.COL, 
CLS.COL.COPRD, CLS.COL.COINV, CLS.COL.COEQ, CLS.COL.PSH). 
 
 

http://uk.cambridge.org/mathematics/catalogue/0521583861/
http://www.mathematik.tu-darmstadt.de/ags/esz/Welcome-engl.html
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The Namespace of Large Concept Lattices 
This namespace will represent large concept lattices and their morphisms. The terms introduced in this 
namespace are listed in Table 1. 

Table 1: Terms introduced into the large concept lattice namespace 

 Collection Function Other 
CL concept-

lattice 
complete-lattice = underlying 
instance type  
instance-embedding type-embedding 
partial-order class 
classification 
opposite instance-power 

 

CL 
.MOR 

concept-
morphism 

source target adjoint-pair 
instance type 
infomorphism 
instance-join type-meet right-representation 
extent intent left-representation  
representation  
opposite composition identity 
instance-power 

composable-
opspan 
composable 

 
 
 
 

instance 
power 
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target 
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type 
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type  
embedding 

instance 
power 

opposite 

opposite 

identity 
representation 
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Diagram 1: Core Collections and Functions for Concept Lattices 
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Concept Lattices 
CL 

○ An (abstract) concept lattice L = 〈 lat(L), inst(L), typ(L), ιL, τL〉  (Figure 1) consists of a complete lattice 
lat(L), two classes inst(L) and typ(L) called the instance class and the type class of L, respectively; 
along with two functions, an instance embedding function ιL : inst(L) → lat(L) and a type embedding 
function τL : typ(L) → lat(L), which satisfying the following conditions. 

− The image ιL(inst(L)) is join-dense in lat(L).  

− The image τL(typ(L)) is meet-dense in lat(L).  

(1) (KIF$collection concept-lattice) 
 
(2) (KIF$function complete-lattice) 
    (KIF$function underlying) 
    (= underlying complete-lattice) 
    (= (KIF$source complete-lattice) concept-lattice) 
    (= (KIF$target complete-lattice) LAT$complete-lattice) 
 
(3) (KIF$function instance) 
    (= (KIF$source instance) concept-lattice) 
    (= (KIF$target instance) SET$class) 
 
(4) (KIF$function type) 
    (= (KIF$source type) concept-lattice) 
    (= (KIF$target type) SET$class) 
 
(5) (KIF$function instance-embedding) 
    (= (KIF$source instance-embedding) concept-lattice) 
    (= (KIF$target instance-embedding) SET.FTN$function) 
    (forall (?l (concept-lattice ?l)) 
        (and (= (SET.FTN$source (instance-embedding ?l)) (instance ?l)) 
             (= (SET.FTN$target (instance-embedding ?l)) 
                (ORD$class (LAT$partial-order (complete-lattice ?l)))))) 
 
(5) (KIF$function type-embedding) 
    (= (KIF$source type-embedding) concept-lattice) 
    (= (KIF$target type-embedding) SET.FTN$function) 
    (forall (?l (concept-lattice ?l)) 
        (and (= (SET.FTN$source (type-embedding ?l)) (type ?l)) 
             (= (SET.FTN$target (type-embedding ?l)) 
                (ORD$class (LAT$partial-order (complete-lattice ?l)))))) 
 
(6) (forall (?a (CLS$classification ?a)) 
        (and ((ORD$join-dense (LAT$partial-order (complete-lattice ?l))) 
                 (SET.FTN$image (instance-embedding ?l))) 
             ((ORD$meet-dense (LAT$partial-order (complete-lattice ?l))) 
                 (SET.FTN$image (type-embedding ?l))))) 

o Here we define two convenience terms – the partial order underlying a concept lattice and the class of 
elements in the concept lattice. These facilitate the expression of some of the axioms below. 
(7) (KIF$function partial-order) 
    (= (KIF$source partial-order) concept-lattice) 
    (= (KIF$target partial-order) ORD$partial-order) 
    (forall (?l (concept-lattice ?l)) 
        (= (partial-order ?l) (LAT$partial-order (complete-lattice ?l)))) 
 
(8) (KIF$function class) 
    (= (KIF$source class) concept-lattice) 
    (= (KIF$target class) SET$class) 
    (forall (?l (concept-lattice ?l)) 
        (= (class ?l) (ORD$class (partial-order ?l)))) 

≤L 

typ(L) 

inst(L) 

lat(L) 

lat(L) 

τL 

ιL 

Figure 1:  
Concept Lattice
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o Any concept lattice L = 〈 lat(L), inst(L), typ(L), ιL, τL〉  has an associated classification A = 
〈 inst(A), typ(A), ⊨A〉  whose incidence relation is defined by i ⊨A t iff ι( i) ≤A τ(t). 

 
(9) (KIF$function classification) 
    (= (KIF$source classification) concept-lattice) 
    (= (KIF$target classification) CLS$classification) 
    (forall (?l (concept-lattice ?l)) 
        (and (= (CLS$instance (classification ?l)) (instance ?l)) 
             (= (CLS$type (classification ?l)) (type ?l)) 
             (forall (?i ((instance ?l) ?i) ?t ((type ?l) ?t)) 
                 (<=> ((classification ?l) ?i ?t) 
                      ((partial-order ?l) 
                          ((instance-embedding ?l) ?i) ((type-embedding ?l) ?t)))))) 

o From properties discussed above, it can be immediately proven that the composition of ‘concept-
lattice’ and ‘classification’ is the identity on the ‘classification’ collection. We state this in 
an external namespace. 
    (forall (?c (CLS$classification ?c)) 
        (= (CL$classification (CLS.CL$concept-lattice ?c)) ?c)) 

o Also, from properties discussed above, it can be immediately proven that for any complete lattice L, 
the complete lattice of the concept lattice of L is L itself; that is, that the composition of ‘concept-
lattice’ and ‘complete-lattice’ is the identity on the ‘complete-lattice’ collection. We state 
this in an external namespace. 
    (forall (?l (LAT$complete-lattice ?l)) 
        (= (CL$complete-lattice (LAT$concept-lattice ?l)) ?l)) 

o For any concept lattice L = 〈 lat(L), inst(L), typ(L), ιL, τL〉 , the opposite or dual of L is the concept lat-
tice L⊥  = 〈 lat(L)⊥ , typ(L), inst(L), τL, ιL〉 , whose instances are the types of L, whose types are the in-
stances of L, whose instance embedding function is the type embedding function of L, whose type em-
bedding function is the instance embedding function of L, and whose complete lattice is the opposite 
of the complete lattice of L (turn it upside down). Axiom (7) specifies the opposite operator on concept 
lattices. 
(10) (KIF$function opposite) 
     (= (KIF$source opposite) concept-lattice) 
     (= (KIF$target opposite) concept-lattice) 
     (forall (?l (concept-lattice ?l)) 
         (and (= (complete-lattice (opposite ?l)) 
                 (LAT$opposite (complete-lattice ?l))) 
              (= (instance (opposite ?l)) (type ?l)) 
              (= (type (opposite ?l)) (instance ?l)) 
              (= (instance-embedding (opposite ?l)) (type-embedding ?l)) 
              (= (type-embedding (opposite ?l)) (instance-embedding ?l)))) 

o For any class A the instance power concept lattice ℘ A = 〈〈℘ A, ⊆ A, ∩A, ∪A〉 , A, ℘ A, { -} A, id℘ A〉  over 
A is defined as follows: the complete lattice is the power lattice generated by A, the instance class is A; 
the type class is the power class ℘ A (so that a type is a subclass of A), the instance embedding func-
tion is the singleton function for A, and the type-embedding function is the identity. Axiom (8) speci-
fies the instance power operator from classes to concept lattices. 
(11) (KIF$function instance-power) 
     (= (KIF$source instance-power) SET$class) 
     (= (KIF$target instance-power) concept-lattice) 
     (forall (?c (SET$class ?c)) 
         (and (= (complete-lattice (instance-power ?c)) (LAT$power ?c)) 
              (= (instance (instance-power ?c)) ?c) 
              (= (type (instance-power ?c)) (SET$power ?c)) 

The classification associated with a concept lattice is the image of the object function of the clas-
sification functor applied to the concept lattice: 

C : CONCEPT LATTICE → CLASSIFICATION. 
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              (= (instance-embedding (instance-power ?c)) (SET.FTN$singleton ?c)) 
              (= (type-embedding (instance-power ?c)) 
                 (SET.FTN$identity (SET$power ?c))))) 

Concept Morphisms 
CL.MOR 

o Concept lattices are related through concept morphisms. An (abstract) 
concept morphism f : L ⇄ K from (abstract) concept lattice L to (abstract) 
concept lattice K (Figure 2) consists of a pair of oppositely directed func-
tions, inst(f) : inst(K) → inst(L) and typ(f) : typ(L) → typ(K), between 
instance classes and type classes, and an adjoint pair of monotonic func-
tions adj(f) : K ⇄ L, where the right adjoint right(f) : L → K is a mono-
tonic function in the forward direction (for the concept lattice morphism, 
not the adjoint pair) that preserves types (in the sense that the upper rec-
tangle in Figure 5 is commutative) 

τL · right(adj(f)) = typ(f) · τK 

and the left adjoint left(f) : K → L is a monotonic function in the reverse 
direction that preserves instances (in the sense that the lower rectangle in Figure 2 is commutative) 

ιK · left(adj(f)) = inst(f) · ιL . 

Note the contravariance between the concept morphism and the adjoint pair – the concept morphism is 
oriented in the same direction as the type function, whereas the adjoint pair is oriented in the same di-
rection as the left adjoint. Let CONCEPT LATTICE denote the quasi-category of concept lattices and 
concept morphism. 
(1) (KIF$collection concept-morphism) 
 
(2) (KIF$function source) 
    (= (KIF$source source) concept-morphism) 
    (= (KIF$target source) CL$concept-lattice) 
 
(3) (KIF$function target) 
    (= (KIF$source target) concept-morphism) 
    (= (KIF$target target) CL$concept-lattice) 
 
(4) (KIF$function adjoint-pair) 
    (= (KIF$source adjoint-pair concept-morphism) 
    (= (KIF$target adjoint-pair) LAT.ADJ$adjoint-pair) 
    (forall (?f (concept-morphism ?f)) 
        (and (= (LAT.ADJ$source (adjoint-pair ?f)) 
                (CL$complete-lattice (target ?f))) 
             (= (LAT.ADJ$target (adjoint-pair ?f)) 
                (CL$complete-lattice (source ?f))))) 
 
(5) (KIF$function instance) 
    (= (KIF$source instance) concept-morphism) 
    (= (KIF$target instance) SET.FTN$function) 
    (forall (?f (concept-morphism ?f)) 
        (and (= (SET.FTN$source (instance ?f)) (CL$instance (target ?f))) 
             (= (SET.FTN$target (instance ?f)) (CL$instance (source ?f))) 
             (= (SET.FTN$composition 
                    [(CL$instance-embedding (target ?f)) 
                     (ORD.FTN$function (LAT.ADJ$left (adjoint-pair ?f)))]) 
                (SET.FTN$composition 
                    [(instance ?f) 
                     (CL$instance-embedding (source ?f))])))) 
 
(6) (KIF$function type) 
    (= (KIF$source type) concept-morphism) 
    (= (KIF$target type) SET.FTN$function) 
    (forall (?f (concept-morphism ?f)) 

typ(L) 

inst(L) 

typ(K) 

inst(K) 

L 

L 

K 

K 

typ(f) 

inst(f) 

≤L ≤K 

right(adj(f))

left(adj(f)) 

τL τK 

ιK ιL 

Figure 2: Concept 
Lattice Morphism 
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        (and (= (SET.FTN$source (type ?f)) (CL$type (source ?f))) 
             (= (SET.FTN$target (type ?f)) (CL$type (target ?f))) 
             (= (SET.FTN$composition 
                    [(CL$type-embedding (source ?f)) 
                     (ORD.FTN$function (LAT.ADJ$right (adjoint-pair ?f)))]) 
                (SET.FTN$composition 
                    [(type ?f) 
                     (CL$type-embedding (target ?f))])))) 

o Any concept morphism f : L ⇄ K has an associated infomorphism info(f) : cls(L) ⇄ cls(K) whose 
fundamental property, expressed as  

inst(info(f))(i) ⊨cls(L) t iff i ⊨cls(K) typ(info(f))(t) 

for all instances i ∈  inst(K) and all types t ∈  typ(L), is an easy translation of the adjointness condition 
for the adjoint pair adj(f) and the commutativity of the instance/type functions with the left/right 
monotonic functions.  

 
(7) (KIF$function infomorphism) 
    (= (KIF$source infomorphism) concept-morphism) 
    (= (KIF$target infomorphism) CLS.INFO$infomorphism) 
    (forall (?f (concept-morphism ?l)) 
        (and (= (CLS.INFO$instance (infomorphism ?f)) (instance ?f)) 
             (= (CLS.INFO$type (infomorphism ?f)) (type ?f)))) 

o From properties discussed above, it can be immediately proven that the composition of ‘concept-
morphism’ and ‘infomorphism’ is the identity on the ‘infomorphism’ collection. We state this in an 
external namespace. 
    (forall (?f (CLS.INFO$infomorphism ?f)) 
        (= (CL.MOR$infomorphism (CLS.CL$concept-morphism ?f)) ?f)) 

○ In section 3.1 of the paper (Kent 2001), which is concerned with functional equivalence, the following 
ideas are introduced and developed in order to demonstrate the categorical equivalence CLASSIFI-
CATION ≡ CONCEPT LATTICE. For any concept lattice L, the instance-join function lat(cls(L)) → 
L maps a formal concept (A, Γ) in the complete lattice of the classification of L to the join of the in-
stance-embedding image of its extent. Dually, the type-meet function lat(cls(L)) → L maps a formal 
concept (A, Γ) in the complete lattice of the classification of L to the meet of the type-embedding im-
age of its intent. These two mappings are the same. 
(8) (KIF$function instance-join) 
    (= (KIF$source instance-join) CL$concept-lattice) 
    (= (KIF$target instance-join) ORD.FTN$function) 
    (forall (?l (CL$concept-lattice ?l)) 
        (and (= (ORD.FTN$source (instance-join ?l)) 
                (CL$partial-order (CLS$concept-lattice (CL$classification ?l)))) 
             (= (ORD.FTN$target (instance-join ?l)) (CL$partial-order ?l)) 
             (= (ORD.FTN$function (instance-join ?l)) 
                (SET.FTN$composition 
                    [(SET.FTN$composition 
                         [(CLS.CL$extent (CL$classification ?l)) 
                          (SET.FTN$power (CL$instance-embedding ?l))]) 
                     (LAT$join (CL$complete-lattice ?l))])))) 
 
(9) (KIF$function type-meet) 
    (= (KIF$source type-meet) CL$concept-lattice) 
    (= (KIF$target type-meet) ORD.FTN$function) 
    (forall (?l (CL$concept-lattice ?l)) 
        (and (= (ORD.FTN$source (type-meet ?l)) 
                (CL$partial-order (CLS$concept-lattice (CL$classification ?l)))) 
             (= (ORD.FTN$target (type-meet ?l)) (CL$partial-order ?l)) 
             (= (ORD.FTN$function (type-meet ?l)) 

The infomorphism associated with a concept morphism is the image of the morphism function of
the classification functor applied to the concept morphism: 

C : CONCEPT LATTICE → CLASSIFICATION. 
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                (SET.FTN$composition 
                    [(SET.FTN$composition 
                         [(CLS.CL$intent (CL$classification ?l)) 
                          (SET.FTN$power (CL$type-embedding ?l))]) 
                     (LAT$meet (CL$complete-lattice ?l))])))) 

o The previous two functions can be shown to be identical monotonic functions. 
(forall (?l (CL$concept-lattice ?l)) 
    (= (instance-join ?l) (type-meet ?l)))  

o Let us call this common function the right representation of L. 
(10) (KIF$function right-representation) 
     (= (KIF$source right-representation) CL$concept-lattice) 
     (= (KIF$target right-representation) ORD.FTN$function) 
     (= right-representation instance-join)  

o Any concept lattice L is indirectly related to the concept lattice of the classification of L through the 
following two functions. The extent of an element l ∈  L, considered as a concept, is the class of all in-
stances whose generated concept is at or below the concept, extent(l) = { a ∈  inst(L) | ιL(a) ≤L l} . 
Since the extent of an element l ∈  L, considered as a type in the classification of L, is the class ex-
tentcls(L)(l) = {k ∈  L | k ≤L l}, the conceptual extent can expressed as extent(l) = ιL

−1(extentcls(L)(l)). 
The intent is the dual notion: intent(l) = {α ∈  typ(L) | l ≤L τL(α)} . As indicated above, and as we shall 
axiomatize, both the extent and intent represent concepts of L. 
(11) (KIF$function extent) 
     (= (KIF$source extent) CL$concept-lattice) 
     (= (KIF$target extent) SET.FTN$function) 
     (forall (?l (CL$concept-lattice ?l)) 
         (and (= (source (extent ?l)) (CL$class ?l)) 
              (= (target (extent ?l)) (SET$power (CL$instance ?l))) 
              (= (extent ?l) 
                 (SET.FTN$composition  
                     [(CLS$extent (CL$classification ?l)) 
                      (SET.FTN$inverse-image (CL$instance-embedding ?l))])))) 
 
(12) (KIF$function intent) 
     (= (KIF$source intent) CL$concept-lattice) 
     (= (KIF$target intent) SET.FTN$function) 
     (forall (?l (CL$concept-lattice ?l)) 
         (and (= (source (intent ?l)) (CL$class ?l)) 
              (= (target (intent ?l)) (SET$power (CL$type ?l))) 
              (= (intent ?l) 
                 (SET.FTN$composition 
                     [(CLS$intent (CL$classification ?l)) 
                      (SET.FTN$inverse-image (CL$type-embedding ?l))])))) 

o The following fact can be proven: there is a unique function, whose source class is the source of the 
extent and intent functions, whose target is the class underlying the concept lattice of the classification 
of L, whose composition with the extent function of the concept lattice of the classification of L is the 
above extent function, and whose composition with the intent function of the concept lattice of the 
classification of L is the above intent function. Moreover, this function preserves order; that is , it is a 
monotonic function. Let us call this function the left representation of L. We use a definite description 
to define this. 
(13) (KIF$function left-representation) 
     (= (KIF$source left-representation) CL$concept-lattice) 
     (= (KIF$target left-representation) ORD.FTN$function) 
     (forall (?l (CL$concept-lattice ?l)) 
         (= (left-representation ?l) 
            (the (?f (ORD.FTN$function ?f)) 
              (and (= (source ?f) (CL$partial-order ?l)) 
                   (= (target ?f) 
                      (CL$partial-order (CLS$concept-lattice (CL$classification ?l)))) 
                   (= (SET.FTN$composition 
                          [(ORD.FTN$function ?f) 
                           (CLS$extent (CLS$concept-lattice (CL$classification ?l)))]) 
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                      (extent ?l)) 
                   (= (SET.FTN$composition 
                          [(ORD.FTN$function ?f) 
                           (CLS$intent (CLS$concept-lattice (CL$classification ?l)))]) 
                      (intent ?l)))))) 

o For any concept lattice L, it can be proven that the left and right representation monotonic functions 
are inverse to each other. This demonstrates that the concept lattice of the classification of L represents 
L via left representation (extent and intent functions). 
  (forall (?l (CL$concept-lattice ?l)) 
    (and (= (ORD.FTN$composition [(left-representation ?l) (right-representation ?l)]) 
            (ORD.FTN$identity (CL$class ?l))) 
         (= (ORD.FTN$composition [(right-representation ?l) (left-representation ?l)]) 
            (ORD.FTN$identity 
                (CL$class (CLS$concept-lattice (CL$classification ?l))))))) 

○ Since two inverse monotonic functions form an adjoint pair, we can rephrase this in terms of concept 
morphisms: for any concept lattice L, there is a representation concept morphism L ⇄ clat(cls(L)) 
from L to the concept lattice of the classification of L.  

 
(14) (KIF$function representation) 
     (= (KIF$source representation) CL$concept-lattice) 
     (= (KIF$target representation) concept-morphism) 
     (forall (?l (CL$concept-lattice ?l)) 
         (and (= (source (representation ?l)) ?l) 
              (= (target (representation ?l)) 
                 (CLS$concept-lattice (CL$classification ?l))) 
              (= (LAT.ADJ$left (adjoint-pair (representation ?l))) 
                 (left-representation ?l)) 
              (= (LAT.ADJ$right (adjoint-pair (representation ?l))) 
                 (right-representation ?l)) 
              (= (instance (representation ?l)) 
                 (SET.FTN$identity (CL$instance ?l))) 
              (= (type (representation ?l)) 
                 (SET.FTN$identity (CL$instance ?l)))))     

o In addition, from properties discussed above, it can be immediately proven that for any (complete lat-
tice) adjoint pair f, the adjoint pair of the concept morphism of f is f itself; that is, that the composition 
of ‘ORD.LAT$concept-morphism’ and ‘adjoint-pair’ is the identity on the ‘adjoint-pair’ collec-
tion. We state this in an external namespace. 
    (forall (?f (LAT.ADJ$adjoint-pair ?f)) 
        (= (CL.MOR$adjoint-pair (LAT.ADJ$concept-morphism ?f)) ?f)) 

Duality can be extended to concept morphisms. For any concept morphism f : L ⇄ K, the opposite or 
dual of f is the concept morphism f ⊥  : K⊥  ⇄ L⊥ , whose source concept lattice is the opposite of the 
target of f, whose target concept lattice is the opposite of the source of f, whose adjoint pair is the op-
posite of the adjoint pair of f, whose instance function is the type function of f, whose type function is 
the instance function of f, and whose preservation conditions have been dualized. 
(15) (KIF$function opposite) 
     (= (KIF$source opposite) concept-morphism) 
     (= (KIF$target opposite) concept-morphism) 
     (forall (?f (concept-morphism ?f)) 
         (and (= (source (opposite ?f)) (CL$opposite (target ?f))) 
              (= (target (opposite ?f)) (CL$opposite (source ?f))) 
              (= (adjoint-pair (opposite ?f)) (LAT.ADJ$opposite (adjoint-pair ?f))) 
              (= (instance (opposite ?f)) (type ?f)) 
              (= (type (opposite ?f)) (instance ?f)))) 

For any concept lattice L the representation concept morphism at L is the Lth component of a natu-
ral isomorphism L ≅  L(C(L)), demonstrating that the quasi-category of concept lattices is cate-
gorically equivalent to the quasi-category of classifications:  

CINCEPT LATTICE ≡ CLASSIFICATION. 
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o The function ‘composition’ operates on any two concept morphisms that are composable in the sense 
that the target concept lattice of the first is equal to the source concept lattice of the second. Composi-
tion produces a concept morphism, whose components are constructed using composition. 
(16) (KIF$opspan composable-opspan) 
     (= composable-opspan [target source]) 
 
(17) (KIF$relation composable) 
     (= (KIF$collection1 composable) concept-morphism) 
     (= (KIF$collection2 composable) concept-morphism) 
     (= (KIF$extent composable) (KIF$pullback composable-opspan)) 
 
(18) (KIF$function composition) 
     (= (KIF$source composition) (KIF$pullback composable-opspan)) 
     (= (KIF$target composition) concept-morphism) 
     (forall (?f1 (concept-morphism ?f1)  
              ?f2 (concept-morphism ?f2) (composable ?f1 ?f2)) 
         (and (= (source (composition [?f1 ?f2])) (source ?f1)) 
              (= (target (composition [?f1 ?f2])) (target ?f2)) 
              (= (adjoint-pair (composition [?f1 ?f2])) 
                 (LAT.ADJ$composition [(adjoint-pair ?f2) (adjoint-pair ?f1)])) 
              (= (instance (composition [?f1 ?f2])) 
                 (SET.FTN$composition [(instance ?f2) (instance ?f1)])) 
              (= (type (composition [?f1 ?f2])) 
                 (SET.FTN$composition [(type ?f1) (type ?f2)])))) 

o The function ‘identity’ associates a well-defined (identity) concept morphism with any concept lat-
tice – its components are identities.  
(19) (KIF$function identity) 
     (= (KIF$source identity) CL$concept-lattice) 
     (= (KIF$target identity) concept-morphism) 
     (forall (?l (CL$concept-lattice ?l)) 
         (and (= (source (identity ?l)) ?l) 
              (= (target (identity ?l)) ?l) 
              (= (adjoint-pair (identity ?l))  
                 (LAT.ADJ$identity (complete-lattice ?l))) 
              (= (instance (identity ?l)) (SET.FTN$identity (CL$instance ?l))) 
              (= (type (identity ?c)) (SET.FTN$identity (CL$type ?l))))) 

o A very useful generic concept morphism represents the instance power concept morphism construc-
tion. For any class function f : B → A the components of the instance power concept morphism  

℘ f  = 〈〈℘ f, f−1〉 , f, f−1〉  : ℘ A ⇄ ℘ B 

over f are defined as follows: the source concept lattice is the instance power concept lattice ℘ A = 
〈〈℘ A, ⊆ A, ∩A, ∪A〉 , A, ℘ A, { -} A, id℘ A〉  over A, the target concept lattice is the instance power concept 
lattice ℘ B = 〈〈℘ B, ⊆ B, ∩B, ∪B〉 , B, ℘ B, { -} B, id℘ B〉  over B, the adjoint pair is the (complete lattice) 
power adjoint pair over f, the instance function is f, and the type function is the inverse image function 
f −1 : ℘ A → ℘ B from the power-class of A to the power-class of B. Note the contravariance. 
(20) (KIF$function instance-power) 
     (= (KIF$source instance-power) SET.FTN$function) 
     (= (KIF$target instance-power) concept-morphism) 
     (forall (?f (SET.FTN$function ?f)) 
         (and (= (source (instance-power ?f)) (CL$instance-power (SET.FTN$target ?f))) 
              (= (target (instance-power ?f)) (CL$instance-power (SET.FTN$source ?f))) 
              (= (adjoint-pair (instance-power ?f)) (LAT.ADJ$power ?f)) 
              (= (instance (instance-power ?f)) ?f) 
              (= (type (instance-power ?f)) (SET.FTN$inverse-image ?f)))) 
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The Namespace of Large Complete Lattices 
This namespace will represent large complete lattices, their adjoint pairs and their complete homomor-
phisms. The terms introduced in this namespace are listed in Table 1. 

Table 1: Terms introduced into the large complete lattice namespace 

 
Collection Function Other 

LAT complete-
lattice 

partial-order = underlying 
class meet join 
classification 
cut 
opposite power concept-lattice 

 

LAT 
.ADJ 

adjoint-pair source target underlying left right 
infomorphism bond  
cut-forward cut-reverse 
opposite composition identity 
power concept-morphism 

composable-opspan 
composable 

LAT 
.MOR 

homomorphism source target function forward reverse 
bonding-pair cut 
opposite composition identity 

composable-opspan 
composable 

 

Complete Lattices 
LAT 

○ A partial order L = 〈L, ≤L, ⊓L, ⊔L〉  is a complete lattice when the meet and join exist for all classes 
Q ⊆  L. The underlying partial order is represented by |L| = 〈L, ≤L〉 . We define a convenience term –the 
class of elements in the complete lattice. These facilitate the expression of some of the axioms below. 
(1) (KIF$collection complete-lattice) 
      
(2) (KIF$function partial-order) 
    (KIF$function underlying) 
    (= underlying partial-order) 
    (= (KIF$source partial-order) complete-lattice) 
    (= (KIF$target partial-order) ORD$partial-order) 
 
(3) (KIF$function class) 
    (= (KIF$source class) complete-lattice) 
    (= (KIF$target class) SET$class) 
    (forall (?l (complete-lattice ?l)) 
        (= (class ?l) (ORD$class (partial-order ?l)))) 
 
(4) (KIF$function meet) 
    (= (KIF$source meet) complete-lattice) 
    (= (KIF$target meet) SET.FTN$function) 
    (forall (?l (complete-lattice ?l))  
        (and (= (SET.FTN$source (meet ?l)) (SET$power (class ?l))) 
             (= (SET.FTN$target (meet ?l)) (class ?l)) 
             (forall (?q ((SET$power (class ?l)) ?q)) 
                 (((greatest (partial-order ?l)) 
                  ((lower-bound (partial-order ?l)) ?q)) 
                   ((meet ?l) ?q))))) 
  
(5) (KIF$function join) 
    (= (KIF$source join) complete-lattice) 
    (= (KIF$target join) SET.FTN$function) 
    (forall (?l (complete-lattice ?l))  
        (and (= (SET.FTN$source (join ?l)) (SET$power (class ?l))) 
             (= (SET.FTN$target (join ?l)) (class ?l)) 
             (forall (?q ((SET$power (class ?l)) ?q)) 
                 (((least (partial-order ?l)) 
                  ((upper-bound (partial-order ?l)) ?q)) 
                   ((join ?l) ?q))))) 
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o Associated with any complete lattice L = 〈L, ≤L, ⊓L, ⊔L〉  is the classification cls(L) = cls(|L|) = 
〈L, L, ≤L〉 , which has L-elements as its instances and types, and the lattice order as its incidence. 
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The classification associated with a complete lattice is  
− the image of the object function of the bond functor applied to the complete lattice: 

B : COMPLETE ADJOINT → BOND. 
− the image of the object function of the bonding pair functor applied to the complete lattice: 

B2 : COMPLETE LATTICE → BONDING PAIR. 
6) (KIF$function classification) 
   (= (KIF$source classification) complete-lattice) 
   (= (KIF$target classification) CLS$classification) 
   (forall (?l (complete-lattice ?l)) 
       (= (classification ?l) 
          (ORD$classification (partial-order ?l)))) 

or any complete lattice L = 〈L, ≤L, ⊓L, ⊔L〉  and for every element l ∈  L, the pair ↕L(l) = (↓Ll,↑Ll) is a 
rmal concept in the concept lattice of the classification of L. Hence, there is a special cut function 

ut(L) = ↕L : L → lat(cls(L)).  
7) (KIF$function cut) 
   (= (KIF$source cut) complete-lattice) 
   (= (KIF$target cut) SET.FTN$function) 
   (forall (?l (complete-lattice ?l)) 
       (and (SET.FTN$source (cut ?l)) (class ?l)) 
            (SET.FTN$target (cut ?l)) (CLS.CL$concept (classification ?l))) 
            (= (SET.FTN$composition [(cut ?l) (CLS.CL$extent (classification ?l))]) 
               (ORD$down-embedding (partial-order ?l))) 
            (= (SET.FTN$composition [(cut ?l) (CLS.CL$intent (classification ?l))]) 
               (ORD$up-embedding (partial-order ?l))))) 

ere are some preliminary observations that pertain to this cut function. 

n the underlying partial-order of a complete lattice, the composition of the down-embedding and join 
 the identity on the underlying class. Dually, the composition of the up-embedding and meet is the 
entity on the underlying class. 
forall (?l (complete-lattice ?l)) 
    (and (= (SET.FTN$composition [(ORD$down-embedding (partial-order ?l)) (join ?l)]) 
            (SET.FTN$identity (class ?l))) 
         (= (SET.FTN$composition [(ORD$up-embedding (partial-order ?l)) (meet ?l)]) 
            (SET.FTN$identity (class ?l))))) 

n the classification of a complete lattice, the instance generation function factors as the composition 
f join and the above cut function. Dually, the type generation function is the composition of meet fol-
wed by cut. 
forall (?l (complete-lattice ?l)) 
       (and (= (CLS.CL$instance-generation (classification ?l)) 
               (SET.FTN$composition [(join ?l) (cut ?l)])) 
            (= (CLS.CL$type-generation (classification ?l)) 
               (SET.FTN$composition [(meet ?l) (cut ?l)])))) 

n the classification of a complete lattice, the instance embedding and type embedding functions are 
oth equal to the above cut function.  
   (forall (?l (complete-lattice ?l)) 
       (and (= (CLS.CL$instance-embedding (classification ?l)) 
               (cut ?l)) 
            (= (CLS.CL$type-embedding (classification ?l)) 
               (cut ?l)))) 

 is important to observe that any concept in lat(cls(L)) is of the form (↓Lx,↑Lx) for some element 
 ∈  L. In fact, the cut function is a bijection, and its inverse function has two expressions – it is the 
omposition of conceptual extent and join, and it is the composition of conceptual intent and meet. 
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(forall (?l (complete-lattice ?l)) 
    (and (= (SET.FTN$composition 
                [(cut ?l) 
                 (SET.FTN$composition 
                     [(CLS.CL$extent (classification ?l)) (join ?l)])]) 
            (SET.FTN$identity (class ?l))) 
         (= (SET.FTN$composition 
                [(SET.FTN$composition 
                     [(CLS.CL$extent (classification ?l)) (join ?l)]) 
                 (cut ?l)]) 
            (SET.FTN$identity (CLS.CL$concept (classification ?l)))) 
         (= (SET.FTN$composition 
                [(cut ?l) 
                 (SET.FTN$composition 
                     [(CLS.CL$intent (classification ?l)) (meet ?l)])]) 
            (SET.FTN$identity (class ?l))) 
         (= (SET.FTN$composition 
                [(SET.FTN$composition 
                     [(CLS.CL$intent (classification ?l)) (meet ?l)]) 
                (cut ?l)]) 
            (SET.FTN$identity (CLS.CL$concept (classification ?l)))))) 

o For any complete lattice L = 〈L, ≤L, ⊓L, ⊔L〉 , the opposite or dual of L is the complete lattice L⊥  = 
〈L, ≥L, ⊔L, ⊓L〉 , whose underlying partial order is the opposite of the underlying partial order of L, 
whose meet is the join of L, and whose join is the meet of L.  
(8) (KIF$function opposite) 
    (= (KIF$source opposite) complete-lattice) 
    (= (KIF$target opposite) complete-lattice) 
    (forall (?l (complete-lattice ?l)) 
        (and (= (partial-order (opposite ?l)) (ORD$opposite (partial-order ?l))) 
             (= (meet (opposite ?l)) (join ?l)) 
             (= (join (opposite ?l)) (meet ?l)))) 

○ For any class C, the power complete lattice ℘( C) = 〈℘ C, ⊆ C, ∩C, ∪C〉  is the power class with subclass 
ordering, intersection as meet and union as join. There is a KIF power function that maps a class to its 
power lattice. 
(9) (KIF$function power) 
    (= (KIF$source power) SET$class) 
    (= (KIF$target power) complete-lattice) 
    (forall (?c (SET$class ?c)) 
        (and (= (partial-order (power ?c)) (ORD$power ?c)) 
             (= (meet (power ?c)) (SET.FTN$intersection ?c)) 
             (= (join (power ?c)) (SET.FTN$union ?c)))) 

○ Any complete lattice L = 〈L, ≤L, ⊓L, ⊔L〉  has an associated concept lattice L = 〈L, L, L, idL, idL〉 , where 
the instance and type classes are the underlying class of the lattice and the instance and type embed-
dings are the identity function. 
(10) (KIF$function concept-lattice) 
     (= (KIF$source concept-lattice) complete-lattice) 
     (= (KIF$target concept-lattice) CL$concept-lattice) 
     (forall (?l (complete-lattice ?l)) 
         (and (= (CL$complete-lattice (concept-lattice ?l)) ?l) 
              (= (CL$instance (concept-lattice ?l)) (class ?l)) 
              (= (CL$type (concept-lattice ?l)) (class ?l)) 
              (= (CL$instance-embedding (concept-lattice ?l))  
                 (SET.FTN$identity (class ?l))) 
              (= (CL$type-embedding (concept-lattice ?l))  
                 (SET.FTN$identity (class ?l))))) 

o An easy check shows that the classification of the concept lattice of a complete lattice L is the same as 
the classification associated with L. 
    (forall (?l (complete-lattice ?l)) 
        (= (CL$classification (concept-lattice ?l)) 
           (classification ?l))) 
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Complete Adjoint 
LAT.ADJ 

○ Complete lattices are related through adjoint pairs. This is a restric-
tion to complete lattices of the adjoint pair notion for preorders. For an 
adjoint pair 〈ϕ, ψ〉  : L ⇄ K between complete lattices L = 
〈L, ≤L, ⊓L, ⊔L〉 , and K = 〈K, ≤K, ⊓K, ⊔K〉 , the left adjoint ϕ : L → K is 
join-preserving and the right-adjoint ψ : K → L is meet-preserving. 
The two functions determine each other as follows. 

ϕ(l) = ⊓K { k ∈  K | l ≤L ψ(k)}  
ψ(k) = ⊔L { l ∈  L | k ≤K ϕ(l)}  

For example, suppose ψ : K → L is a meet-preserving monotonic function, and define the function 
ϕ : L → K as above. 
− If l1 ≤L l2 then { k ∈  K | l1 ≤L ψ(k)}  ⊇  { k ∈  K | l2 ≤L ψ(k)} . Hence, ϕ(l1) ≤K ϕ(l2). 
− If l ≤L ψ(k) then k ∈  { k  ∈  K | l ≤L ψ(k )} . Hence, ϕ(l) ≤K k. 
− ψ(ϕ(l)) = ψ(⊓K { k ∈  K | l ≤L ψ(k)})  = ⊓L { ψ(k) ∈  L | l ≤L ψ(k)}  ≥L l. 
− If ϕ(l) ≤K k then ψ(ϕ(l)) ≤L ψ(k). Hence, l ≤L ψ(k). 

Let COMPLETE ADJOINT denote the quasi-category of complete lattices and adjoint pairs. 
(1) (KIF$collection adjoint-pair) 
 
(2) (KIF$function source) 
    (= (KIF$source source) adjoint-pair) 
    (= (KIF$target source) LAT$complete-lattice) 
 
(3) (KIF$function target) 
    (= (KIF$source target) adjoint-pair) 
    (= (KIF$target target) LAT$complete-lattice) 
 
(4) (KIF$function underlying) 
    (= (KIF$source underlying) adjoint-pair) 
    (= (KIF$target underlying) ORD.ADJ$adjoint-pair) 
    (forall (?a (adjoint-pair ?a)) 
        (and (= (ORD.ADJ$source (underlying ?a)) (LAT$underlying (source ?a))) 
             (= (ORD.ADJ$target (underlying ?a)) (LAT$underlying (target ?a))))) 

o We define the following two terms for convenience of reference. 
(5) (KIF$function left) 
    (= (KIF$source left) adjoint-pair) 
    (= (KIF$target left) ORD.FTN$monotonic-function) 
    (forall (?a (adjoint-pair ?a)) 
        (= (left ?a) (ORD.ADJ$left (underlying ?a)))) 
  
(6) (KIF$function right) 
    (= (KIF$source right) adjoint-pair) 
    (= (KIF$target right) ORD.FTN$monotonic-function) 
    (forall (?a (adjoint-pair ?a)) 
        (= (right ?a) (ORD.ADJ$right (underlying ?a)))) 

o Any adjoint pair has an associated infomorphism (Figure 1). 
(7) (KIF$function infomorphism) 
    (= (KIF$source infomorphism) adjoint-pair) 
    (= (KIF$target infomorphism) CLS.INFO$infomorphism) 
    (forall (?a (adjoint-pair ?a)) 
        (= (infomorphism ?a) 
           (ORD.ADJ$infomorphism (underlying ?a)))) 

Figure 1: Complete Adjoint 
as an Infomorphism 

K 

K 

≤K 

L 

L 

≤L 

ψ = right(f) 

ϕ = left(f) 
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o Associated with any adjoint pair f = 〈 left(f), right(f)〉  = 〈ϕ, ψ〉  : L ⇄ K, from complete lattice L to com-
plete lattice K, is the bond bnd(f) : cls(K) ⇀⇀⇀⇀ cls(L) (whose classification relation is) defined by the 
adjointness property: lbnd(f)k iff ϕ(l) ≤K k iff l ≤L ψ(k) for all elements l ∈  L and k ∈  K. The closure 
property of bonds is obvious, since lbnd(f) = ↑K ϕ(l) for all elements l ∈  L and bnd(f)k = ↓L ψ(k) for 
all elements k ∈  K. This can equivalently be defined in terms of either the left or the right monotonic 
function. Here we use the left monotonic function. In particular, we define the classification of the 
bond via the right operator that maps the left function to a classification relation in the presence of the 
underlying partial order of the target complete lattice. 

 
(8) (KIF$function bond) 
    (= (KIF$source bond) adjoint-pair) 
    (= (KIF$target bond) CLS.BND$bond) 
    (forall (?a (adjoint-pair ?a)) 
        (and (= (CLS.BND$source (bond ?a)) (LAT$classification (target ?a))) 
             (= (CLS.BND$target (bond ?a)) (LAT$classification (source ?a))) 
             (= (CLS.BND$classification (bond ?a)) 
                (SET.FTN$right  
                    [(ORD.FTN$function (left ?a)) 
                     (LAT$partial-order (target ?a))])))) 

o This bond is the bond of the underlying adjoint pair. This fact could be used as a definition. 
    (forall (?a (adjoint-pair ?a)) 
        (= (bond ?a) 
           (ORD.ADJ$bond (underlying ?a)))) 

o The composition of two composable adjoint pairs F : A → B and G : B → C is the composition of the 
underlying adjoint pairs.  
(9) (KIF$opspan composable-opspan) 
    (= composable-opspan [target source]) 
 
(10) (KIF$relation composable) 
     (= (KIF$collection1 composable) adjoint-pair) 
     (= (KIF$collection2 composable) adjoint-pair) 
     (= (KIF$extent composable) (KIF$pullback composable-opspan)) 
 
(11) (KIF$function composition) 
     (= (KIF$source composition) (KIF$pullback composable-opspan)) 
     (= (KIF$target composition) adjoint-pair) 
     (forall (?f1 (adjoint-pair ?f1)  
              ?f2 (adjoint-pair ?f2) (composable ?f1 ?f2)) 
         (and (= (source (composition [?f1 ?f2])) (source ?f1)) 
              (= (target (composition [?f1 ?f2])) (target ?f2)) 
              (= (underlying (composition [?f1 ?f2])) 
                 (ORD.ADJ$composition [(underlying ?f1) (underlying ?f2)])))) 

o The identity adjoint pair at a complete lattice L is the identity adjoint pair of the underlying order. 
(12) (KIF$function identity) 
     (= (KIF$source identity) LAT$complete-lattice) 
     (= (KIF$target identity) adjoint-pair) 
     (forall (?l (LAT$complete-lattice ?l)) 
         (and (= (source (identity ?l)) ?l) 
              (= (target (identity ?l)) ?l) 
              (= (underlying (identity ?l)) 
                 (ORD.ADJ$identity (LAT$underlying ?l))))) 

○ In section 3.2 of the paper (Kent 2001), which is concerned with relational equivalence, the following 
ideas are introduced and developed in order to demonstrate the categorical equivalence BOND ≡ 

The bond associated with an adjoint pair is the image of the morphism function of the bond func-
tor applied to the adjoint pair: 

B : COMPLETE ADJOINT → BOND. 



IFF Foundation Ontology 

Robert E. Kent Page 15 1/2/2002 

COMPLETE ADJOINT. The cut monotonic function L → A(B(L)) was defined in the complete lat-
tice namespace.  
− The cut-forward adjoint pair 〈extent(cls(L)) · join(L), cut(L)〉  : lat(cls(L)) ⇄ L has the cut func-

tion as its right monotonic function and the composition of extent and join (or the composition of 
intent and meet) as its left monotonic function. This adjoint pair is a pair of inverse functions, and 
hence is an isomorphism from the complete lattice of its associated classification A(B(L)) to a 
complete lattice L.  

− The cut-reverse adjoint pair 〈cut(L), extent(cls(L)) · join(L)〉  : L ⇄ lat(cls(L)) flips the inverses – 
it has the cut function as its left monotonic function and the composition of extent and join as its 
right monotonic function.  

This adjoint pair is a pair of inverse functions, and hence is an isomorphism from a complete lattice L 
to the complete lattice of its associated classification lat(cls(L)). 
(13) (KIF$function cut-forward) 
     (= (KIF$source cut-forward) LAT$complete-lattice) 
     (= (KIF$target cut-forward) adjoint-pair) 
     (forall (?l (LAT$complete-lattice ?l)) 
         (and (= (source (cut-forward ?l)) 
                 (CLS.CL$complete-lattice (LAT$classification ?l))) 
              (= (target (cut-forward ?l)) ?l) 
              (= (ORD.FTN$function (left (cut-forward ?l))) 
                 (SET.FTN$composition 
                     [(CLS.CL$extent (LAT$classification ?l)) 
                      (LAT$join ?l)])) 
              (= (ORD.FTN$function (right (cut-forward ?l))) (LAT$cut ?l)))) 
 
(14) (KIF$function cut-reverse) 
     (= (KIF$source cut-reverse) LAT$complete-lattice) 
     (= (KIF$target cut-reverse) adjoint-pair) 
     (forall (?l (complete-lattice ?l)) 
         (and (= (source (cut-reverse ?l)) ?l) 
              (= (target (cut-reverse ?l))  
                 (CLS.CL$complete-lattice (LAT$classification ?l))) 
              (= (ORD.FTN$function (left (cut-reverse ?l))) (LAT$cut ?l)) 
              (= (ORD.FTN$function (right (cut-reverse ?l))) 
                 (SET.FTN$composition 
                     [(CLS.CL$extent (LAT$classification ?l)) 
                      (LAT$join ?l)])))) 

○ Let f = 〈ϕ, ψ〉  : L ⇄ K be a complete adjoint, an adjoint pair of 
monotonic functions, between complete lattices L = 
〈L, ≤L, ∧ L, ∨ L〉 , and K = 〈K, ≤K, ∧ K, ∨ K〉  with associated bond 
bnd(f) : cls(L) → cls(K). Then, the right adjoint of 
adj(bnd(f) maps (↓Lx,↑Lx) ↦ (↓Kψ(x),↑Kψ(x)) and the left ad-
joint of adj(bnd(f) maps (↓Ky,↑Ky) ↦ (↓Lϕ(y),↑Lϕ(y)). This is 
equivalent to the natural isomorphism (commuting Diagram 1):  

cut-reverse(L) · adj(bnd(f))= f · cut-reverse(K).  

So, up to isomorphism, adj(bnd(f) is the same as f.  

 
 
 
 

lat(cls(L)) 

lat(cls(K)) 

L 

K 

cut-reverse(L) 

cut-reverse(K) 

f adj(bnd(f)) 

Diagram 1: Natural Isomorphism 
For any complete lattice L the cut-reverse adjoint pair cut-reverse(L) is the Lth component of a
natural isomorphism L ≅  A(B(L)), demonstrating that the quasi-category of complete adjoints is
categorically equivalent to the quasi-category of bonds:  

COMPLETE ADJOINT ≡ BOND. 
    (forall (?a (adjoint-pair ?a)) 
        (= (composition (cut-reverse (source ?a)) (adjoint-pair (bond ?a))) 
           (composition ?a (cut-reverse (target ?a))))) 
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o Duality can be extended to adjoint pairs. For any adjoint pair f : L ⇄ K, the opposite or dual of f is the 
adjoint pair f ⊥  : K⊥  ⇄ L⊥ , whose source complete lattice is the opposite of the target of f, whose target 
complete lattice is the opposite of the source of f, whose underlying adjoint pair is the opposite of the 
adjoint pair of f. 
 (15) (KIF$function opposite) 
      (= (KIF$source opposite) adjoint-pair) 
      (= (KIF$target opposite) adjoint-pair) 
      (forall (?f (adjoint-pair ?f)) 
          (and (= (source (opposite ?f)) (CL$opposite (target ?f))) 
               (= (target (opposite ?f)) (CL$opposite (source ?f))) 
               (= (underlying (opposite ?f)) (ORD.ADJ$opposite (underlying ?f))))) 

o For any class function f : A → B there is a power adjoint pair ℘ f : ℘ A ⇄ ℘ B over f defined as fol-
lows: the source is the complete lattice ℘( A) = 〈℘ A, ⊆ A,∩A,∪A〉 , the target is the complete lattice 
℘( B) = 〈℘ B, ⊆ B,∩B,∪B〉 , the left monotonic function is the direct image function ℘ f :℘ A →℘ B, 
whose right monotonic function is the inverse image function f −1:℘ B →℘ A , and whose fundamental 
property holds, since the following equivalence holds 

℘ f(X) ⊆ B Y iff X ⊆ A f −1(Y) 

for all subclasses X ⊆  A and Y ⊆  B.  
(16) (KIF$function power) 
     (= (KIF$source power) SET.FTN$function) 
     (= (KIF$target power) adjoint-pair) 
      (forall (?f (SET.FTN$function ?f)) 
          (and (= (source (power ?f)) (LAT$power (SET.FTN$source ?f))) 
               (= (target (power ?f)) (LAT$power (SET.FTN$target ?f))) 
               (= (left (power ?f)) (SET.FTN$direct-image ?f)) 
               (= (right (power ?f)) (SET.FTN$inverse-image ?f)))) 

○ For any adjoint pair f : L = 〈L, ≤L, ⊓L, ⊔L〉  ⇄ K = 〈K, ≤K, ⊓K, ⊔K〉  between complete lattices there is a 
associated concept morphism f : 〈K, K, K, idK, idK〉  ⇄ 〈L, L, L, idL, idL〉  (in the reverse direction) be-
tween the concept lattices associated with the target and source complete lattices.  
(17) (KIF$function concept-morphism) 
     (= (KIF$source concept-morphism) adjoint-pair) 
     (= (KIF$target concept-morphism) CL.MOR$concept-morphism) 
     (forall (?f (adjoint-pair ?f)) 
         (and (= (CL.MOR$source (concept-morphism ?f)) 
                 (LAT$concept-lattice (target ?f))) 
              (= (CL.MOR$target (concept-morphism ?f)) 
                 (LAT$concept-lattice (source ?f))) 
              (= (CL.MOR$adjoint-pair (concept-morphism ?f)) ?f) 
              (= (CL.MOR$instance (concept-morphism ?f)) 
                 (ORD.ADJ$left (underlying ?f))) 
              (= (CL.MOR$type (concept-morphism ?f)) 
                 (ORD.ADJ$right (underlying ?f))))) 

o An easy check shows that the infomorphism of the concept morphism of an adjoint pair f is the same 
as the infomorphism associated with f. 
    (forall (?f (adjoint-pair ?f)) 
        (= (CL.MOR$infomorphism (concept-morphism ?f)) 
           (infomorphism ?f))) 
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Complete Lattice Homomorphism 
LAT.MOR 

Unfortunately, adjoint pairs are not the best morphisms for making struc-
tural comparisons between complete lattices. Another morphism between 
complete lattices called complete homomorphisms are best for this.  

○ A homomorphism ψ : L → K between complete lattices L and K is a 
monotonic function that preserves both joins and meets (Figure 2). Be-
ing meet-preserving, ψ has a left adjoint ϕ : K → L, and being join-
preserving ψ has a right adjoint θ : K → L. Therefore, a complete 
homomorphism is the middle monotonic function in two adjunctions 
ϕ ⊣ ψ ⊣ θ. Since it is more algebraic, we use the latter adjoint pair 
characterization in the definition of a complete lattice homomorphism. 
Let COMPLETE LATTICE denote the quasi-category of complete lat-
tices and complete homomorphisms. 

(1) (KIF$collection homomorphism) 
 
(2) (KIF$function source) 
    (= (KIF$source source) homomorphism) 
    (= (KIF$target source) LAT$complete-lattice) 
 
(3) (KIF$function target) 
    (= (KIF$source target) homomorphism) 
    (= (KIF$target target) LAT$complete-lattice) 
 
(4) (KIF$function function) 
    (= (KIF$source function) homomorphism) 
    (= (KIF$target function) ORD.FTN$monotonic-function) 
 
(5) (KIF$function forward) 
    (= (KIF$source forward) homomorphism) 
    (= (KIF$target forward) LAT.ADJ$adjoint-pair) 
    (forall (?h (homomorphism ?h)) 
        (and (= (LAT.ADJ$source (forward ?h)) (target ?h)) 
             (= (LAT.ADJ$target (forward ?h)) (source ?h)) 
             (= (LAT.ADJ$right (forward ?h)) (function ?h)))) 
 
(6) (KIF$function reverse) 
    (= (KIF$source reverse) homomorphism) 
    (= (KIF$target reverse) LAT.ADJ$adjoint-pair) 
    (forall (?h (homomorphism ?h)) 
        (and (= (LAT.ADJ$source (reverse ?h)) (source ?h)) 
             (= (LAT.ADJ$target (reverse ?h)) (target ?h)) 
             (= (LAT.ADJ$left (reverse ?h)) (function ?h)))) 

○ For each complete lattice homomorphism ψ : L → K there is an associated bonding pair. 

 
(7) (KIF$function bonding-pair) 
    (= (KIF$source bonding-pair) homomorphism) 
    (= (KIF$target bonding-pair) CLS.BNDPR$bonding-pair) 
    (forall (?h (homomorphism ?h)) 
        (and (= (CLS.BND$source (bonding-pair ?h)) (LAT$classification (source ?a))) 
             (= (CLS.BND$target (bonding-pair ?h)) (LAT$classification (target ?a))) 
             (= (CLS.BND$forward (bonding-pair ?h)) (LAT.ADJ$bond (forward ?h))) 
             (= (CLS.BND$reverse (bonding-pair ?h)) (LAT.ADJ$bond (reverse ?h))))) 

Figure 2: Complete 
Homomorphism 

K 

K 

≤K 

L 
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≤L 

θ 

ψ 

L 

L 

≤L 

K 

K 

≤K 

ψ 

ϕ 

reverse 

forward 

The bonding pair associated with a complete lattice homomorphism is the image of the morphism
function of the bonding pair functor applied to the complete lattice homomorphism: 

B2 : COMPLETE LATTICE → BONDING PAIR. 
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o The composition of two composable homomorphisms ψ1 : L → K and ψ2 : K → M is the composition 
of the underlying function and forward and reverse adjoint pairs.  
(8) (KIF$opspan composable-opspan) 
    (= composable-opspan [target source]) 
 
(9) (KIF$relation composable) 
    (= (KIF$collection1 composable) homomorphism) 
    (= (KIF$collection2 composable) homomorphism) 
    (= (KIF$extent composable) (KIF$pullback composable-opspan)) 
 
(10) (KIF$function composition) 
     (= (KIF$source composition) (KIF$pullback composable-opspan)) 
     (= (KIF$target composition) adjoint-pair) 
     (forall (?h1 (homomorphism ?h1)  
              ?h2 (homomorphism ?h2) (composable ?h1 ?h2)) 
         (and (= (source (composition [?h1 ?h2])) (source ?h1)) 
              (= (target (composition [?h1 ?h2])) (target ?h2)) 
              (= (function (composition [?h1 ?h2])) 
                 (ORD.FTN$composition [(function ?h1) (function ?h2)])) 
              (= (forward (composition [?h1 ?h2])) 
                 (LAT.ADJ$composition [(forward ?h2) (forward ?h1)])) 
              (= (reverse (composition [?h1 ?h2])) 
                 (LAT.ADJ$composition [(reverse ?h1) (reverse ?h2)])))) 

o The identity homomorphism at a complete lattice L is the identity monotonic function of the underly-
ing order. 
(11) (KIF$function identity) 
     (= (KIF$source identity) LAT$complete-lattice) 
     (= (KIF$target identity) homomorphism) 
     (forall (?l (LAT$complete-lattice ?l)) 
         (and (= (source (identity ?l)) ?l) 
              (= (target (identity ?l)) ?l) 
              (= (function (identity ?l)) (ORD.FTN$identity (LAT$underlying ?l))) 
              (= (forward (identity ?l)) (LAT.ADJ$identity ?l)) 
              (= (reverese (identity ?l)) (LAT.ADJ$identity ?l)))) 

o Duality can be extended to complete homomorphisms. For any homomorphism ψ : L → K, the oppo-
site or dual of ψ is the complete homomorphism ψ ⊥  : K⊥  ⇄ L⊥ , whose source complete lattice is the 
opposite of the target of f, whose target complete lattice is the opposite of the source of f, whose for-
ward adjoint pair is the opposite of the reverse adjoint pair of f, and whose reverse adjoint pair is the 
opposite of the forward adjoint pair of f. 
 (12) (KIF$function opposite) 
      (= (KIF$source opposite) adjoint-pair) 
      (= (KIF$target opposite) adjoint-pair) 
      (forall (?f (adjoint-pair ?f)) 
          (and (= (source (opposite ?f)) (CL$opposite (target ?f))) 
               (= (target (opposite ?f)) (CL$opposite (source ?f))) 
               (= (function (opposite ?f)) (ORD.FTN$opposite (function ?f))) 
               (= (forward (opposite ?f)) (ORD.ADJ$opposite (reverse ?f))) 
               (= (reverse (opposite ?f)) (ORD.ADJ$opposite (forward ?f))))) 

○ In section 3.3 of the paper (Kent 2001), which is concerned 
with complete relational equivalence, the following ideas are in-
troduced and developed in order to demonstrate the categorical 
equivalence BONDING PAIR ≡ COMPLETE LATTICE. The 
cut complete lattice homomorphism ψ : L → lat(cls(L)) is a bi-
jection from a complete lattice L to the complete lattice of its 
classification lat(cls(L)). Its forward adjoint pair is the cut-
forward adjoint pair and its reverse adjoint pair is the cut-
reverse adjoint pair. 
(13) (KIF$function cut) 
     (= (KIF$source cut) LAT$complete-lattice) 
     (= (KIF$target cut) homomorphism) 

Diagram 2: Natural Isomorphism 

lat(cls(L)) 

lat(cls(K)) 

L 

K 

cut(L) 

cut(K) 

ψ adj(bndpr(ψ)) 

→ 

→ 

→ → 
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     (forall (?l (complete-lattice ?l)) 
         (and (= (source (cut ?l)) ?l) 
              (= (target (cut ?l)) (CLS.CL$complete-lattice (LAT$classification ?l))) 
              (= (forward (cut ?l)) (LAT.ADJ$cut-forward ?l)) 
              (= (reverse (cut ?l)) (LAT.ADJ$cut-reverse ?l)))) 

○ Now consider any complete lattice homomorphism ψ : L → K between complete lattices L and K with 
associated adjunctions ϕ ⊣ ψ ⊣ θ. The bonding pair functor maps this to the bonding pair bndpr(ψ) = 
(B(〈ϕ, ψ〉), B(〈ψ, θ〉)), and the complete lattice functor maps this to the complete homomorphism 
adj(bndpr(ψ)) = ψ : L(〈L, L, ≤L〉) → L(〈K, K, ≤K〉) with associated adjunctions ϕ  ⊣ ψ ⊣ θ, where 
ϕ ((↓K y,↑K y)) = (↓Lϕ(y),↑Lϕ(y)), ψ((↓Lx,↑Lx)) = (↓Kψ(x),↑Kψ(x)) and  θ((↓K y,↑K y)) = (↓Lθ(y),↑Lθ(y)). 
Clearly, the naturality condition holds (commuting Diagram 2) between ψ and adj(bndpr(ψ)). 

 
    (forall (?h (homomorphism ?h)) 
       (= (composition [(cut (source ?h)) (CLS.BNDPR$homomorphism (bonding-pair ?h))]) 
          (composition [?h (cut (target ?h))]))) 

 

 

 

For any complete lattice L the cut complete lattice homomorphism cut(L) is the Lth component of 
a natural isomorphism L ≅  A2(B2(L)), demonstrating that the quasi-category of complete lattices 
is categorically equivalent to the quasi-category of bonding pairs:  

COMPLETE LATTICE ≡ BONDING PAIR. 
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Figure 1: Architectural Diagram of Distributed Conceptual Structures 
(functors and natural isomorphisms) 
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Table 1: Mathematical–Ontological Correspondences in the Architectural Diagram 

Mathematical Notation  Ontological Terminology 

A2 object part:  ‘CLS.CL$complete-lattice’ 
Complete Lattice Functor morphism part: ‘CLS.BNDPR$homomorphism’ 

B2  object part:  ‘LAT$classification’ 
Bonding Pair Functor morphism part: ‘LAT.MOR$bonding-pair’ 

IdCOMPLETE LATTICE ≡ B2 ◦ A2  
Cut Natural Isomorphism 

component:  ‘LAT.MOR$cut’ 

A2 ◦ B2 ≡ IdBONDING PAIR 
Iota-Tau Natural Isomorphism 

component: ‘CLS.BNDPR$iota-tau’ 

A  object part:  ‘CLS.CL$complete-lattice’ 
Complete Adjoint Functor morphism part: ‘CLS.BND$bond’ 

B  object part:  ‘LAT$classification’ 
Bond Functor morphism part: ‘LAT.ADJ$bond’ 

IdCOMPLETE ADJOINT ≡ B ◦ A   
Cut-Reverse Natural Isomorphism 

component:  ‘LAT.ADJ$cut-reverse’ 

A ◦ B ≡ IdBOND 
Iota Natural Isomorphism 

component: ‘CLS.BND$iota’ (and ‘CLS.BND$tau’) 

L  object part:  ‘CLS.CL$concept-lattice’ 
Concept Lattice Functor morphism part: ‘CLS.INFO$concept-morphism’ 

C  object part:  ‘CL$classification’ 
Classification Functor morphism part: ‘CL.MOR$infomorphism’ 

IdCONCEPT LATTICE ≡ C ◦ L 
Representation Natural Isomorphism 

component:  ‘CL.MOR$representation’ 

L ◦ C = IdCLASSIFICATION   
equality   
∂0  object part:  implicit identity function 

0th Bond Projection Functor morphism part: ‘CLS.BNDPR$forward’ 
∂1  object part:  implicit identity function 

1st Bond Projection Functor morphism part: ‘CLS.BNDPR$reverse’ 
∂0  object part:  implicit identity function 

0th Adjoint Pair Projection Functor morphism part: ‘LAT.MOR$forward’ 
∂1  object part:  implicit identity function 

1st Adjoint Pair Projection Functor morphism part: ‘LAT.MOR$reverse’ 
λλλλ  object part:  ‘LAT$underlying’ 

Left Projection Functor morphism part: ‘LAT.ADJ$left’ 
ρρρρ  object part:  ‘LAT$underlying’ 

Right Projection Functor morphism part: ‘LAT.ADJ$right’ 
 
○ The complete lattice functor A2 : BONDING PAIR → COMPLETE LATTICE is the operator that 

maps a classification A to its concept lattice A2(A) ≙ L(A) regarded as a complete lattice only, and 
maps a bonding pair 〈F, G〉  : A ⇌ B to its complete lattice homomorphism 
A2(〈F, G〉) ≙ ψF = ϕG : L(A) → L(B). 

○ The bonding pair functor B 2 : COMPLETE LATTICE → BONDING PAIR is the operator that maps 
a complete lattice L to its classification 〈L, L, ≤L〉  and maps a complete lattice homomorphism to its 
bonding pair as above. Since the bond functor B is functorial, so is B 2. 



IFF Foundation Ontology 

Robert E. Kent Page 22 1/2/2002 

 

 

 

 

 

Diagram 1: Core Collections and Functions in the Architectural Diagram 
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The Namespace of Large Classifications 
This is the namespace for large classification and their morphisms: functional/relational infomorphisms, 
bonds and bonding pairs. In addition to strict classification terminology and axioms, this namespace will 
provide a bridge from classifications and their morphisms to complete/concept lattices and their mor-
phisms. The terms introduced in this namespace are listed in Table 1. 

Table 1: Terms introduced into the large classification namespace 

 Collection Function Other 
CLS classification 

separated 
extensional 

instance type incidence 
extent intent 
indistinguishable coextensive  
opposite instance-power 

 

CLS 
.CL 

 left-derivation right-derivation 
instance-closure type-closure 
concept extent intent  
instance-generation type-generation 
concept-order meet join  
complete-lattice 
coreflection reflection 
instance-embedding type-embedding 
instance-concept type-concept  
instance-order type-order  
concept-lattice  

truth-classification 
truth-concept-
lattice 
type-closed 
instance-closed 
 

CLS 
.FIB 

 instance instance-index type type-index 
left-derivation right-derivation 
instance-closure type-closure 
concept extent intent index 
instance-generation type-generation 

 

CLS 
.COLL 

concept classification index 
extent intent 
opposite 
2-cell source target index-function  
terminal 
mediator-function mediator 
inverse-image inverse-image-mediator 
instance-distribution type-distribution 

inverse-image-opspan 
invertible 

CLS 
.INFO 

infomorphism source target instance type 
bond 
monotonic-instance monotonic-type 
relational-instance relational-type 
relational-infomorphism fn2rel 
opposite composition identity 
instance-power eta 
adjoint-pair concept-morphism 

composable-image-
opspan composable 

CLS 
.REL 

infomorphism source target instance type 
bond 
opposite composition identity 

composable-image-
opspan composable 

CLS 
.BND 

bond source target classification 
bimodule infomorphism adjoint-pair 
opposite composition identity 
iota tau  

composable-image-
opspan composable 

CLS 
.BNDPR 

bonding-pair source target forward reverse 
conceptual-image 
opposite composition identity 
tau-iota iota-tau 
homomorphism 

composable-image-
opspan composable 

CLS 
.COL 

 counique initial 
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CLS 
.COL 
.COPRD 

diagram 
pair 
cocone 

classification1 classification2 
instance-diagram instance-pair 
type-diagram type-pair 
opposite 
cocone-diagram opvertex opfirst opsecond 
instance-cone type-cocone 
colimiting-cocone colimit binary-coproduct 
injection1 injection2 
comediator 

 

CLS 
.COL 
.COINV 

coinvariant classification base class endorelation 
coquotient canon comediator 

respects 

CLS 
.COL 
.COEQ 

diagram 
parallel-pair 
cocone 

source target 
infomorphism1 infomorphism2 
instance-diagram instance-parallel-pair 
type-diagram type-parallel-pair 
coinvariant 
cocone-diagram opvertex infomorphism  
instance-cone type-cocone 
colimiting-cocone colimit coequalizer canon 

 

CLS 
.COL 
.PSH 

diagram 
span 
cocone 

classification1 classification2 vertex 
first second 
pair opposite 
instance-diagram instance-opspan 
type-diagram type-span 
coequalizer-diagram parallel-pair 
cocone-diagram opvertex opfirst opsecond 
binary-coproduct-cocone 
coequalizer-cocone 
colimiting-cocone colimit pushout injec-
tion1 injection2 comediator 
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Table 2 lists the correspondence between standard mathematical notation and the ontological terminology 
in the namespace for classifications and functional/relation infomorphisms and bonds. 

Table 2: Correspondence between Mathematical Notation and Ontological Terminology 

Mathematical 
Notation 

Ontological 
Terminology 

Natural Language 
Description 

CLS   
A = 〈 tok(A), typ(A), ⊨A〉  ‘classification’ a classification – identified with a binary relation; it is de-

termined by its three components 
tok(A) ‘instance’ the instance (token) class of a classification – identified with 

the source class of a binary relation 
typ(A) ‘type’ the type class of a classification – identified with the target 

class of a binary relation 
⊨A ‘incidence’ the incidence (or classification) class of a classification – 

identified with the extent class of a binary relation 
℘  ‘instance-power’ 

 
the instance power operator on classes – this maps classes to 
classifications 

i1 ∼ A i2 ‘indistinguishable’ the information flow indistinguishable relation on instances 
t1 ∼ A t2 ‘coextensive’ the information flow coextensive relation on types 

“separated” ‘separated’ the separated subcollection of classifications 
“extensional” ‘extensional’ the extensional subcollection of classifications 
(-)∝ or (-)⊥ or (-)op ‘opposite’ the involution (or transpose or opposite or dual) operator on 

classifications 
CLS.CL   

(-)′ or (-)A ‘left-derivation’, 
‘right-derivation’ 

left/right derivation operations for a classification 

(-)′′  or (-)AA ‘instance-closure’ 
‘type-closure’ 

instance/type closure operations for a classification 

c = (X,Y) ‘concept’ a formal concept for a classification 
c1 ≤A c2 ‘concept-order’ the concept order of a classification – this is the partial order 

underlying the concept lattice of a classification 
ℬA ‘concept-lattice’ the concept lattice of a classification – the German word for  

“formal concepts” is die begriffe 
γA : tok(B) → ℬA ‘instance-embedding’ the instance embedding function – maps an instance to the 

concept that it generates 
µA : typ(B) → ℬA ‘type-embedding’ the type embedding function – maps a type to the concept 

that it generates 
CLS.INFO   

f = 〈 f ˆ,  f ˇ〉  : A ⇄ B ‘infomorphism’ an infomorphism from classification A to classification B – 
determined by its instance and type functions 

f ˆ : typ(A) → typ(B) ‘type’ the type function of an infomorphism 

f ˇ : tok(B) → tok(A) ‘instance’ the instance (or token) function of an infomorphism 

gf : A ⇄ C ‘composition’ the composition of two composable infomorphisms 
f : A ⇄ B and g : B ⇄ C 

1A : A ⇄ A ‘identity’ the identity infomorphism on classification A 
(-)∝ or (-)⊥ or (-)op ‘opposite’ the involution (or transpose or opposite or dual) operator on 

infomorphisms 
℘  ‘instance-power’ 

 
the instance power operator on functions – this maps func-
tions to infomorphisms 
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Classifications 
CLS 

o A (large) classification A = 〈 inst(A), typ(A), ⊨A〉  (Figure 1) is identical to a 
(large) binary relation. However, from a category-theoretic standpoint, the 
context of classifications is very different from the context of relations, 
since their morphisms are very different. A large classification consists of 
a class of instances inst(A) identified with the first or source class of a bi-
nary relation, a class of types typ(A) identified with the second or target 
class of a binary relation, and a class of incidence or classification ⊨A iden-
tified with the extent class of a binary relation.  

The following is a KIF representation for the elements of a classification. The elements in the KIF 
representation are useful for the specification of a classification by declaration and population. The 
term ‘classification’ allows one to declare classifications. The terms ‘instance’, ‘type’ and ‘inci-
dence’ resolve classifications into their parts, thus allowing one to populate classifications.  
(1) (KIF$collection classification) 
    (= classification REL$relation) 
 
(2) (KIF$function instance) 
    (= (KIF$source instance) classification) 
    (= (KIF$target instance) SET$class) 
    (= instance REL$class1) 
 
(3) (KIF$function type) 
    (= (KIF$source type) classification) 
    (= (KIF$target type) SET$class) 
    (= type REL$class2) 
 
(4) (KIF$function incidence) 
    (= (KIF$source incidence) classification) 
    (= (KIF$target incidence) SET$class) 
    (= incidence REL$extent) 

⊆  

extent(Composable) 

Relation 

Class 

Function 

Classification 

Infomorphism 

Extensional 
Separated 

power 

source 

composition 

indistinguishable 
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source target 
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identity eta 

Diagram 1: Core Collections and Functions for
Classifications and Infomorphisms 

Figure 1: Classification 
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o Associated with any classification is a function that produces the intent of an instance and a function 
that produces the extent of a type, both within the context of the classification. Dually, the intent of an 
instance i ∈  inst(A) in a classification A = 〈 inst(A), typ(A), ⊨A〉  is defined by 

intentA(i) = {t ∈  typ(A) | i ⊨A t}. 

The extent of a type t ∈  typ(A) in a classification A defined by 
extentA(t) = {i ∈  inst(A) | i ⊨A t}. 

Intent and extent are synonymous with relational fibers (12 and 21, respectively). The following axi-
oms specify the intent and extent functions. 
(5) (KIF$function intent) 
    (= (KIF$source intent) classification) 
    (= (KIF$target intent) SET.FTN$function) 
    (= intent REL$fiber12) 
  
(6) (KIF$function extent) 
    (= (KIF$source extent) classification) 
    (= (KIF$target extent) SET.FTN$function) 
    (= extent REL$fiber21) 

These axioms demonstrate that the relative instantiation-predication represented by the incidence rela-
tion is compatible with, generalizes and relativizes the absolute KIF instantiation-predication – an in-
stance is a member of the extent of a type (or dually, a type is a member of the intent of an instance) iff 
the instance is classified by the type. 
    (forall (?a (classification ?a)) 
        (and (= (SET.FTN$source (extent ?a)) (type ?a)) 
             (= (SET.FTN$target (extent ?a)) (SET$power (instance ?a))) 
             (forall (?i ((instance ?a) ?i) ?t ((type ?a) ?t)) 
                 (<=> (((extent ?a) ?t) ?i) (?a ?i ?t))) 
             (= (SET.FTN$source (intent ?a)) (instance ?a)) 
             (= (SET.FTN$target (intent ?a)) (SET$power (type ?a))) 
             (forall (?i ((instance ?a) ?i) ?t ((type ?a) ?t)) 
                 (<=> (((intent ?a) ?i) ?t) (?a ?i ?t))))) 

o For any classification A = 〈 inst(A), typ(A), ⊨A〉 , two instances i1, i2 ∈  inst(A) are indistinguishable in 
A (Barwise and Seligman, 1997), written symbolically as i1 ∼ A i2, when intentA(i1) = intentA(i2). Two 
types t1, t2 ∈  typ(A) are coextensive in A, written symbolically as t1 ∼ A t2, when extentA(t1) = extentA(t2). 
A classification A is separated when there are no two distinct but indistinguishable instances, and ex-
tensional when there are no distinct coextensive types.  

The terms ‘(indistinguishable ?a)’ and ‘(coextensive ?a)’ represent the Information Flow 
notions of instance indistinguishability and type coextension, respectively. The terms ‘separated’ and 
‘extensional’ represent the Information Flow notions of classification separateness and extensional-
ity, respectively. 
(7) (KIF$function indistinguishable) 
    (= (KIF$source indistinguishable) classification) 
    (= (KIF$target indistinguishable) REL.ENDO$relation) 
    (forall (?a (classification ?a)) 
        (and (= (REL$class (indistinguishable ?a)) (instance ?a)) 
             (forall (?i1 ((instance ?a) ?i1) 
                      ?i2 ((instance ?a) ?i2)) 
                 (<=> ((indistinguishable ?a) ?i1 ?i2) 
                      (= ((intent ?a) ?i1) ((intent ?a) ?i2)))))) 
 
(8) (KIF$function coextensive) 
    (= (KIF$source coextensive) classification) 
    (= (KIF$target coextensive) REL.ENDO$relation) 
    (forall (?a (classification ?a)) 
        (and (= (REL$class (coextensive ?a)) (type ?a)) 
             (forall (?t1 ((type ?a) ?t1) 
                      ?t2 ((type ?a) ?t2)) 
                 (<=> ((coextensive ?a) ?t1 ?t2) 
                      (= ((extent ?a) ?t1) ((extent ?a) ?t2)))))) 
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(9) (KIF$collection separated) 
    (KIF$subcollection separated classification) 
    (forall (?a (classification ?a)) 
        (<=> (separated ?a) 
             (REL.ENDO$subendorelation 
                  (indistinguishable ?a) 
                  (REL.ENDO$identity (instance ?a))))) 
 
(10) (KIF$collection extensional) 
     (KIF$subcollection extensional classification) 
     (forall (?a (classification ?a)) 
         (<=> (extensional ?a) 
              (REL.ENDO$subendorelation 
                  (coextensive ?a) 
                  (REL.ENDO$identity (type ?a)))))  

o To quote (Barwise and Seligman, 1997), “in any classification, we think of the types as classifying the 
instances, but it is often useful to think of the instances as classifying the types.” For any classification 
A = 〈 inst(A), typ(A), ⊨A〉 , the opposite or dual of A is the opposite binary relation; that is, the classifi-
cation A⊥  = 〈 typ(A), inst(A), ⊨A

⊥ 〉 , whose instances are types of A, and whose types are instances of A, 
and whose incidence is: t ⊨⊥  i when i ⊨ t.  
(11) (KIF$function opposite) 
     (= (KIF$source opposite) classification) 
     (= (KIF$target opposite) classification) 
     (= opposite REL$opposite) 

o For any class A the instance power classification ℘ A = 〈A, ℘ A, ∈ A〉  over A is defined as follows: the 
instance class is A; the type class is the power class ℘ A (so that a type is a subclass of A), and inci-
dence is the membership relation ∈ A.  
(12) (KIF$function instance-power) 
     (= (KIF$source instance-power) SET$class) 
     (= (KIF$target instance-power) classification) 
     (forall (?a (SET$class ?a)) 
         (and (= (instance (instance-power ?a)) ?a) 
              (= (type (instance-power ?a)) (SET$power ?a)) 
              (forall (?x (?a ?x) ?y ((SET$power ?a) ?y)) 
                  (<=> ((instance-power ?a) ?x ?y) (?y ?x))))) 

Concept Lattices 
CLS.CL 

The central notions that are axiomatized in 
this section, are illustrated as an integrated 
framework in the partially commutative 
Diagram 2. 

○ For any large classification A = 
〈 inst(A), typ(A), ⊨A〉  there are two 
senses of derivation corresponding to the two senses of relational residuation. Left derivation maps a 
subset of instances to the types on which they are all incident, and dually right derivation maps a sub-
set of types to the instances, which are incident on all of them. For all X ⊆  inst(A) and Y ⊆  typ(A) 

X ↦ X′ = X\A = { t ∈  typ(A) | i ⊨A t for all i ∈  X}  
Y ↦ Y′ = A/Y = { i ∈  inst(A) | i ⊨A t for all t ∈  Y} . 

(1) (KIF$function left-derivation) 
    (= (KIF$source left-derivation) CLS$classification) 
    (= (KIF$target left-derivation) SET.FTN$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (SET.FTN$source (left-derivation ?a)) (SET$power (CLS$instance ?a))) 
             (= (SET.FTN$target (left-derivation ?a)) (SET$power (CLS$type ?a))) 
             (forall (?x (SET$subclass ?x (CLS$instance ?a))) 
                      ?t ((CLS$type ?a) ?t)) 

concept(A) 

℘ (inst(A)) ℘ (typ(A)) 

extentA 
inst-genA 

typ-genA 
intentA 

left-derivA 

right-derivA 

inst-clsrA typ-clsrA 

Diagram 2: Core classes/functions for Concept Lattices 
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                 (<=> (((left-derivation ?a) ?x) ?t) 
                      (forall (?i (?x ?i)) (?a ?i ?t)))))) 
 
(2) (KIF$function right-derivation) 
    (= (KIF$source right-derivation) CLS$classification) 
    (= (KIF$target right-derivation) SET.FTN$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (SET.FTN$source (right-derivation ?a)) (SET$power (CLS$type ?a))) 
             (= (SET.FTN$target (right-derivation ?a)) (SET$power (CLS$instance ?a))) 
             (forall (?y (SET$subclass ?y (CLS$type ?a))) 
                      ?i ((CLS$instance ?a) ?i)) 
                 (<=> (((right-derivation ?a) ?y) ?i) 
                      (forall (?t (?y ?t)) (?a ?I ?t)))))) 

○ A simple fundamental result is the following equivalence. For all X ⊆  inst(A) and Y ⊆  typ(A) 

Y ⊆  X\A in ℘ (typ(A))op iff X×Y ⊆  ⊨A iff X ⊆  A/Y in ℘ (inst(A)). 

This describes a Galois connection (preorder adjunction) between the left derivation 

(-)\A : ℘ (inst(A)) → ℘ (typ(A))op  

and the right derivation 

A/(-) : ℘ (typ(A))op → ℘ (inst(A)). 

The first two facts assert (contravariant) monotonicity of derivation. The last fact asserts the adjoint-
ness condition. 
    (forall (?x1 (SET$subclass ?x1 (CLS$instance ?a)) 
             ?x2 (SET$subclass ?x2 (CLS$instance ?a))) 
        (=> (SET$subclass ?x1 ?x2) 
            (SET$subclass ((left-derivation ?a) ?x2) ((left-derivation ?a) ?x1)))) 
 
    (forall (?y1 (SET$subclass ?y1 (CLS$type ?a)) 
             ?y2 (SET$subclass ?y2 (CLS$type ?a))) 
        (=> (SET$subclass ?y2 ?y1) 
            (SET$subclass ((right-derivation ?a) ?y1) ((right-derivation ?a) ?y2)))) 
 
    (forall (?x (SET$subclass ?x (CLS$instance ?a)) 
             ?y (SET$subclass ?y (CLS$type ?a))) 
        (<=> (SET$subclass ?y ((left-derivation ?a) ?x)) 
             (SET$subclass ?x ((right-derivation ?a) ?y)))) 

○ The composition of derivations gives two senses of closure operator. 
(3) (KIF$function instance-closure) 
    (= (KIF$source instance-closure) CLS$classification) 
    (= (KIF$target instance-closure) SET.FTN$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (SET.FTN$source (instance-closure ?a)) (SET$power (CLS$instance ?a))) 
             (= (SET.FTN$target (instance-closure ?a)) (SET$power (CLS$instance ?a))) 
             (= (instance-closure ?a) 
                (SET.FTN$composition [(left-derivation ?a) (right-derivation ?a)])))) 
 
(4) (KIF$function type-closure) 
    (= (KIF$source type-closure) CLS$classification) 
    (= (KIF$target type-closure) SET.FTN$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (SET.FTN$source (type-closure ?a)) (SET$power (CLS$type ?a))) 
             (= (SET.FTN$target (type-closure ?a)) (SET$power (CLS$type ?a))) 
             (= (type-closure ?a) 
                (SET.FTN$composition [(right-derivation ?a) (left-derivation ?a)])))) 

○ The following (easily proven) results confirm that these are closure operators. 

X ⊆  X′′  and X′ = X′′′  for all X ⊆  inst(A). 

Y ⊆  Y′′  and Y′ = Y′′′  for all Y ⊆  typ(A). 
    (forall (?a (CLS$classification ?a)) 
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        (and (= (left-derivation ?a) 
                (SET.FTN$composition [(instance-closure ?a) (left-derivation ?a)])) 
             (forall (?x (SET$subclass ?x (CLS$instance ?a)) 
                 (SET$subclass ?x ((instance-closure ?a) ?x))))) 
 
    (forall (?a (CLS$classification ?a)) 
        (and (= (right-derivation ?a) 
                (SET.FTN$composition [(type-closure ?a) (right-derivation ?a)])) 
             (forall (?y (SET$subclass ?y (CLS$type ?a)) 
                 (SET$subclass ?y ((type-closure ?a) ?y))))) 

○ Further properties of Galois connection relate to continuity – the closure of a union of a family of 
classes is the intersection of the closures.  

(∪j∈ J Xj)′ = ∩j∈ J Xj′ for any family of subsets Xj ⊆  inst(A) for j∈ J. 

(∪k∈ K Yk)′ = ∩k∈ K Yk′ for any family of subsets Yk ⊆  typ(A) for k∈ K. 

○ By embedding the subsets of instances and types above as relations, we can connect derivation to 
residuation. We can prove the following simple identities: the embedding of the left-derivation of a 
subset of instances is the left-residuation of the classification along the opposite of the embedding of 
the subset, and dually for the right notions. 
(forall (?a (CLS$classification ?a)) 
         ?x (SET$subclass ?x (CLS$instance ?a))) 
    (= ((REL$embed (CLS$type ?a)) ((left-derivation ?a) ?x)) 
       (REL$left-residuation [(REL$opposite ((REL$embed (CLS$instance ?a)) ?x)) ?a]))) 
 
(forall (?a (CLS$classification ?a)) 
         ?y (SET$subclass ?y (CLS$type ?a))) 
    (= (REL$opposite ((REL$embed (CLS$instance ?a)) ((right-derivation ?a) ?y))) 
       (REL$right-residuation [((REL$embed (CLS$type ?a)) ?y) ?a]))) 

○ For any classification A = 〈 inst(A), typ(A), ⊨A〉 , the closed elements of the derivation Galois connec-
tion are called formal concepts. There are several ways to define this notion, but traditionally it has 
been given the following (slightly redundant) definition. A (large) formal concept c = 〈ex-
tentA(c), intentA(c)〉  is a pair of classes, extentA(c) ⊆  inst(A) and intentA(c) ⊆  typ(A), that satisfy the 
equivalent conditions that extentA(c) = intentA(c)′ and intentA(c) = extentA(c)′. Let concept(A) de-
note the class of all formal concepts of a classification A. There are two functions,  

extentA : concept(A) → ℘ (inst(A)) and intentA : concept(A) → ℘ (typ(A)),  

that map concepts to their component extent and intent.  
(5) (KIF$function concept) 
    (= (KIF$source concept) CLS$classification) 
    (= (KIF$target concept) SET$class) 
 
(6) (KIF$function extent) 
    (= (KIF$source extent) CLS$classification) 
    (= (KIF$target extent) SET.FTN$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (SET.FTN$source (extent ?a)) (concept ?a)) 
             (= (SET.FTN$target (extent ?a)) (SET$power (CLS$instance ?a))))) 
 
(7) (KIF$function intent) 
    (= (KIF$source intent) CLS$classification) 
    (= (KIF$target intent) SET.FTN$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (SET.FTN$source (intent ?a)) (concept ?a)) 
             (= (SET.FTN$target (intent ?a)) (SET$power (CLS$type ?a))))) 
 
(8) (forall (?a (CLS$classification ?a)) 
       (and (= (SET.FTN$composition [(intent ?a) (right-derivation ?a)]) (extent ?a)) 
            (= (SET.FTN$composition [(extent ?a) (left-derivation ?a)]) (intent ?a)))) 
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○ There are surjective generator functions, called instance-generation and type-generation, that map sub-
sets of instances and types to their generated concepts. For all X ⊆  inst(A) and Y ⊆  typ(A) 

X ↦ 〈X′′ , X′〉  “instance-generation” 
Y ↦ 〈Y′, Y′′〉  “type-generation”. 

See diagram 4 for a visualization of the following conditions. 
− The composition of instance-generation and intent equals left-derivation, and the composition of 

type-generation and extent equals right-derivation.  
− The composition of instance-generation and extent equals instance-closure, and the composition of 

type-generation and intent equals type-closure.  
− The composition of extent and instance-generation is identity, and the composition of intent and 

type-generation is identity.  
These conditions define generation, and also insure that all concepts are captured in the class ‘(con-
cept ?a)’. Concepts are determined by either their extents or their intents – this is represented by the 
fact that the extent and intent functions are injective. 
(9) (KIF$function instance-generation) 
    (= (KIF$source instance-generation) CLS$classification) 
    (= (KIF$target instance-generation) SET.FTN$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (SET.FTN$source (instance-generation ?a)) 
                (SET$power (CLS$instance ?a))) 
             (= (SET.FTN$target (instance-generation ?a)) 
                (concept ?a)) 
             (= (SET.FTN$composition [(instance-generation ?a) (intent ?a)]) 
                (left-derivation ?a)) 
             (= (SET.FTN$composition [(instance-generation ?a) (extent ?a)]) 
                (instance-closure ?a)) 
             (= (SET.FTN$composition [(extent ?a) (instance-generation ?a)]) 
                (SET.FTN$identity (concept ?a))))) 
 
(10) (KIF$function type-generation) 
     (= (KIF$source type-generation) CLS$classification) 
     (= (KIF$target type-generation) SET.FTN$function) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (SET.FTN$source (type-generation ?a)) 
                 (SET$power (CLS$type ?a))) 
              (= (SET.FTN$target (type-generation ?a)) 
                 (concept ?a)) 
              (= (SET.FTN$composition [(type-generation ?a) (extent ?a)]) 
                 (right-derivation ?a)) 
              (= (SET.FTN$composition [(type-generation ?a) (intent ?a)]) 
                 (type-closure ?a)) 
              (= (SET.FTN$composition [(intent ?a) (type-generation ?a)]) 
                 (SET.FTN$identity (concept ?a))))) 

○ A concept c1 = 〈extentA(c1), intentA(c1)〉  is a subconcept of a concept c2 = 〈extentA(c2), intentA(c2)〉 , 
denoted c1 ≤A c2, when extentA(c1) ⊆  extentA(c2) or equivalently when intentA(c1) ⊇  intentA(c2). Other 
language used for this notion is that c1 is “more specific” than c2 and c2 is “more generic” than c1. For 
any classification A = 〈 inst(A), typ(A), ⊨A〉 , the class of concepts together with the subconcept relation 
form a partial order ord(A) = 〈concept(A), ≤A〉 . 
(11) (KIF$function concept-order) 
     (= (KIF$source concept-order) CLS$classification) 
     (= (KIF$target concept-order) ORD$partial-order) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (ORD$class (concept-order ?a)) (concept ?a)) 
              (forall (?c1 ((concept ?a) ?c1) 
                       ?c2 ((concept ?a) ?c2)) 
                  (<=> ((concept-order ?a) ?c1 ?c2) 
                       (SET$subclass ((extent ?a) ?c1) ((extent ?a) ?c2)))))) 

○ There are both a meet and a join operations defined on subclasses of concepts 

meetA : ℘ (concept(A)) →  concept(A) 
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joinA : ℘ (concept(A)) →  concept(A) 

defined as follows: 

⊓L(C) = ⊓c∈ C 〈extentA(c), intentA(c)〉  = 〈∩c∈ C extentA(c), (∪c∈ C intentA(c))′′〉   

⊔L(C) = ⊔c∈ C 〈extentA(c), intentA(c)〉  = 〈(∪c∈ C extentA(c))′′ , ∩c∈ C intentA(c)〉   

for any subclass C ⊆  concept(A). 
(12) (KIF$function meet) 
     (= (KIF$source meet) CLS$classification) 
     (= (KIF$target meet) SET.FTN$function) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (SET.FTN$source (meet ?a)) (SET$power (concept ?a))) 
              (= (SET.FTN$target (meet ?a)) (concept ?a)) 
              (forall (?c (SET$subclass ?c (concept ?a))) 
                  (and (= (SET.FTN$composition [(meet ?a) (extent ?a)]) 
                          (SET.FTN$composition 
                              [(SET.FTN$power (extent ?a)) 
                               (SET$intersection (instance ?a))])]) 
                       (= (SET.FTN$composition [(meet ?a) (intent ?a)]) 
                          (SET.FTN$composition 
                              [(SET.FTN$composition 
                                  [(SET.FTN$power (intent ?a)) 
                                   (SET$union (type ?a))]) 
                               (type-closure ?a)])))))) 
 
(13) (KIF$function join) 
     (= (KIF$source join) CLS$classification) 
     (= (KIF$target join) SET.FTN$function) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (SET.FTN$source (join ?a)) (SET$power (concept ?a))) 
              (= (SET.FTN$target (join ?a)) (concept ?a)) 
              (forall (?c (SET$subclass ?c (concept ?a))) 
                  (and (= (SET.FTN$composition [(join ?a) (extent ?a)]) 
                          (SET.FTN$composition 
                              [(SET.FTN$composition 
                                  [(SET.FTN$power (extent ?a)) 
                                   (SET$union (instance ?a))]) 
                               (instance-closure ?a)])) 
                       (= (SET.FTN$composition [(join ?a) (intent ?a)]) 
                          (SET.FTN$composition 
                              [(SET.FTN$power (intent ?a)) 
                               (SET$intersection (type ?a))])))))) 

○ For any classification A = 〈 inst(A), typ(A), ⊨A〉 , the partial order order(A) = 〈concept(A), ≤A〉  of con-
cepts together with the conceptual join and meet operators form a complete lattice lat(A) = 〈or-
der(A), join(A), meet(A)〉 .  

 
(
 
 
 
 
 
 

The complete lattice associated with a classification is  
− the image of the object function of the complete adjoint functor applied to the classification: 

A : BOND → COMPLETE ADJOINT. 
− the image of the object function of the complete lattice functor applied to the classification: 

A2 : BONDING PAIR → COMPLETE LATTICE. 
14) (KIF$function complete-lattice) 
    (= (KIF$source complete-lattice) CLS$classification) 
    (= (KIF$target complete-lattice) LAT$complete-lattice) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (LAT$partial-order (complete-lattice ?a)) (concept-order ?a)) 
             (= (LAT$join (complete-lattice ?a)) (join ?a)) 
             (= (LAT$meet (complete-lattice ?a)) (meet ?a)))) 
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o For any two classifications A = 〈 inst(A), typ, ⊨A〉  and C = 〈 inst(C), typ, ⊨C〉  that have the same class of 
types and where the classification (binary relation) C is type-closed (A/C)\A = C with respect to A 
(Figure 2), there is an associated coreflection (adjoint pair) intC,A = 〈∂0, ∂0〉  : lat(C) ⇄ lat(A) between 
their complete lattices, where ∂0 : lat(A) → lat(C) is right adjoint right inverse (rari) to 
∂0 : lat(C) → lat(A). Hence, ∂0 embeds lat(C) as an internal part of lat(A). These functions are defined 
as follows. 

∂0(〈X, Y〉)  = (〈Y ′, Y〉)  for any concept 〈X, Y〉  ∈  lat(C) 
∂0(〈X, Y〉)  = (〈Y ′, Y ′′〉)  for any concept 〈X, Y〉  ∈  lat(A) 

o Dually, for any two classifications C = 〈 inst, typ(C), ⊨C〉  and B = 〈 inst, typ(B), ⊨B〉  that have the same 
class of instances and where the classification (binary relation) C is instance-closed B/(C\B) = C with 
respect to B (Figure 3), there is an associated reflection (adjoint pair) extB,C = 〈∂ 1, ∂1〉  : lat(B) ⇄ lat(C) 
between their complete lattices, where ∂1 : lat(B) → lat(C) is left adjoint right inverse (lari) to 
∂1 : lat(C) → lat(B). Hence, ∂1 embeds lat(C) as an external part of lat(A). These functions are defined 
as follows. 

∂1(〈X, Y〉)  = (〈X, X ′〉)  for any concept 〈X, Y〉  ∈  lat(C) 
∂1(〈X, Y〉)  = (〈X ′′ , X ′〉)  for any concept 〈X, Y〉  ∈  lat(B). 

(15) (KIF$relation type-closed) 
     (= (KIF$collection1 type-closed) CLS$classification)  
     (= (KIF$collection2 type-closed) CLS$classification)  
     (forall (?c (CLS$classification ?c) 
              ?a (CLS$classification ?a)) 
         (<=> (type-closed ?c ?a) 
              (and (= (CLS$type ?c) (CLS$type ?a)) 
                   (= (REL$left-residuation [(REL$right-residuation [?c ?a]) ?a]) ?c)))) 
 
(16) (KIF$function coreflection) 
     (= (KIF$source coreflection) (KIF$extent type-closed)) 
     (= (KIF$target coreflection) LAT.ADJ$adjoint-pair) 
     (forall (?c (CLS$classification ?c) 
              ?a (CLS$classification ?a) (type-closed ?c ?a)) 
        (and (= (LAT.ADJ$source (coreflection [?c ?a])) (complete-lattice c?)) 
             (= (LAT.ADJ$target (coreflection [?c ?a])) (complete-lattice ?a)) 
             (= (SET.FTN$composition [(LAT.ADJ$left (coreflection [?c ?a])) (extent ?a)]) 
                (SET.FTN$composition [(intent ?c) (right-derivation ?c)])) 
             (= (SET.FTN$composition [(LAT.ADJ$left (coreflection [?c ?a])) (intent ?a)]) 
                (intent ?c)) 
             (= (SET.FTN$composition [(LAT.ADJ$right (coreflection [?c ?a])) (extent ?c)]) 
                (SET.FTN$composition [(intent ?a) (right-derivation ?a)])) 
             (= (SET.FTN$composition [(LAT.ADJ$right (coreflection [?c ?a])) (intent ?c)]) 
                (SET.FTN$composition [(intent ?a) (type-closure ?a)])))) 
 
(17) (KIF$relation instance-closed) 
     (= (KIF$collection1 instance-closed) CLS$classification)  
     (= (KIF$collection2 instance-closed) CLS$classification)  
     (forall (?b (CLS$classification ?b) 
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≤A 
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≤C 

∂0 

∂0 

Figure 2: Type-closed coreflection Figure 3: Instance-closed reflection 
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              ?c (CLS$classification ?c)) 
         (<=> (instance-closed ?c ?b) 
              (and (= (CLS$instance ?b) (CLS$instance ?c)) 
                   (= (REL$right-residuation [(REL$left-residuation [?c ?b]) ?b]) ?c)))) 
 
(18) (KIF$function reflection) 
     (= (KIF$source reflection (KIF$extent instance-closed)) 
     (= (KIF$target reflection) LAT.ADJ$adjoint-pair) 
     (forall (?c (CLS$classification ?c) 
              ?b (CLS$classification ?b) (instance-closed ?c ?b)) 
        (and (= (LAT.ADJ$source (reflection [?b ?c])) (complete-lattice b?)) 
             (= (LAT.ADJ$target (reflection [?b ?c])) (complete-lattice c?)) 
             (= (REL.FTN$composition [(LAT.ADJ$right (reflection [?b ?c])) (extent ?b)]) 
                (extent ?c)) 
             (= (REL.FTN$composition [(LAT.ADJ$right (reflection [?b ?c])) (intent ?b)]) 
                (REL.FTN$composition [(extent ?c) (left-derivation c?)])) 
             (= (REL.FTN$composition [(LAT.ADJ$left (reflection [?b ?c])) (extent ?c)]) 
                (REL.FTN$composition [(extent ?b) (instance-closure ?b)])) 
             (= (REL.FTN$composition [(LAT.ADJ$left (reflection [?b ?c])) (intent ?c)]) 
                (REL.FTN$composition [(extent ?b) (left-derivation ?b)])))) 

o For any classification A = 〈 inst(A), typ(A), ⊨A〉 , we can restrict the instance-generation and type-
generation to elements, thus defining an instance embedding function ιA : inst(A) → lat(A) and a type 
embedding function τA : typ(A) → lat(A). 
(19) (KIF$function instance-embedding) 
     (= (KIF$source instance-embedding) CLS$classification) 
     (= (KIF$target instance-embedding) SET.FTN$function) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (SET.FTN$source (instance-embedding ?a)) (CLS$instance ?a)) 
              (= (SET.FTN$target (instance-embedding ?a)) (concept ?a)) 
              (= (instance-embedding ?a) 
                 (SET.FTN$composition 
                     [(SET.FTN$singleton (CLS$instance ?a)) 
                      (instance-generation ?a)])))) 
  
(20) (KIF$function type-embedding) 
     (= (KIF$source type-embedding) CLS$classification) 
     (= (KIF$target type-embedding) SET.FTN$function) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (SET.FTN$source (type-embedding ?a)) (CLS$type ?a)) 
              (= (SET.FTN$target (type-embedding ?a)) (concept ?a)) 
              (= (type-embedding ?a) 
                 (SET.FTN$composition 
                     [(SET.FTN$singleton (CLS$type ?a)) 
                      (type-generation ?a)])))) 

○ By means of these two embedding functions, we can prove that the notions of extent and intent for 
classifications extends to the notions of extent and intent for concept lattices. 

extentA (for classifications) = τA · extentA (for concept lattices) 

intentA (for classifications) = ιA · intentA (for concept lattices) 

For clarity, we state these identities in an external namespace. 
 (forall (?a (CLS$classification ?a)) 
     (and (= (CLS$extent ?a) 
             (SET.FTN$composition [(CLS.CL$type-embedding ?a) (CLS.CL$extent ?a)])) 
          (= (CLS$intent ?a) 
             (SET.FTN$composition [(CLS.CL$instance-embedding ?a) (CLS.CL$intent ?a)])))) 

o Concepts in ιA(inst(A)) are called instance concepts, whereas concepts in τA(typ(A)) are called type 
concepts.  
(21) (KIF$function instance-concept) 
     (= (KIF$source instance-concept) CLS$classification) 
     (= (KIF$target instance-concept) CLS$class) 
     (forall (?a (CLS$classification ?a)) 
         (and (SET$subclass (instance-concept ?a) (concept ?a)) 
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              (= (instance-concept ?a) 
                 (SET.FTN$image (instance-embedding ?a))))) 
 
(22) (KIF$function type-concept) 
     (= (KIF$source type-concept) CLS$classification) 
     (= (KIF$target type-concept) CLS$class) 
     (forall (?a (CLS$classification ?a)) 
         (and (SET$subclass (type-concept ?a) (concept ?a)) 
              (= (type-concept ?a) 
                 (SET.FTN$image (type-embedding ?a))))) 

○ Because of the resolutions 

c = ⊔i ∈ extentA(c) ιA(i) = ⊓t ∈ intentA(c) τA(t)  

for any concept c ∈  concept(A), these functions satisfy the following conditions. 

− The image ιA(inst(A)) is join-dense in ord(A).  
− The image τA(typ(A)) is meet-dense in ord(A).  
− The classification incidence can be expressed in terms of embeddings and lattice order:  

i ⊨A t iff ιA(i) ≤A τA(t). 
     (forall (?a (CLS$classification ?a)) 
         (and ((ORD$join-dense (concept-order ?a)) (instance-concept ?a)) 
              ((ORD$meet-dense (concept-order ?a)) (type-concept ?a)) 
              (forall (?i ((instance ?a) ?i) ?t ((type ?a) ?t)) 
                  (<=> (?a ?i ?t) 
                       ((concept-order ?a) 
                           ((instance-embedding ?a) ?i) ((type-embedding ?a) ?t)))))) 

o For any classification A = 〈 inst(A), typ(A), ⊨A〉 , there are two classifications (binary relations) that 
correspond to the instance and type embedding functions.  

The instance embedding classification ιA = 〈 inst(A), concept(A), ιA〉  (Figure 4) 
is defined as follows: for every instance a ∈  inst(A) and every formal concept 
a ∈  concept(A), the incidence relationship aιAa holds when a is in the extent 
of a; that is, a ∈  extA(a). As a relation, this classification is closed on the right 
with respect to lattice order. The instance embedding classification can be de-
fined in terms of the instance embedding function as follows: 

aιAa when ιA(a) ≤A a, for a ∈  inst(A) and a ∈  concept(A). 

This is an application of the right operator for a preorder that maps functions to binary relations.  

The type embedding classification τA = 〈concept(A), typ(A), τA〉  (Figure 4) is defined as follows: for 
every formal concept a ∈  concept(A) and every type α ∈  typ(A), the incidence relationship aτAα 
holds when α is in the intent of a; that is, α ∈  intA(a). As a relation, this classification is closed on the 
left with respect to lattice order. The type embedding classification can be defined in terms of the type 
embedding function as follows: 

aτAα when a ≤A τA(α), for a ∈  concept(A) and α ∈  typ(A). 

This is an application of the left operator for a preorder that maps functions to binary relations. 
(23) (KIF$function iota) 
     (= (KIF$source iota) CLS$classification) 
     (= (KIF$target iota) CLS$classification) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (CLS$instance (iota ?a)) (CLS$instance ?a)) 
              (= (CLS$type (iota ?a)) (concept ?a)) 
              (= (iota ?a) 
                 (SET.FTN$right [(instance-embedding ?a) (concept-order ?a)])))) 
 
(24) (KIF$function tau) 
     (= (KIF$source tau) CLS$classification) 
     (= (KIF$target tau) CLS$classification) 

Figure 4: iota & tau 
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     (forall (?a (CLS$classification ?a)) 
         (and (= (CLS$instance (tau ?a)) (concept ?a)) 
              (= (CLS$type (tau ?a)) (CLS$type ?a)) 
              (= (tau ?a) 
                 (SET.FTN$left [(type-embedding ?a) (concept-order ?a)])))) 

o Conversely, the instance embedding function can be defined in terms of the instant embedding relation  
ιA(i) = ⊓A(iιA), for i ∈  inst(A), and 

the type embedding function can be defined in terms of the type embedding relation  
τA(t) = ⊔A(τAt), for t ∈  typ(A). 

Since we have already defined these functions by other means, these facts are expressed as theorems in 
an external namespace. 
     (forall (?a (CLS$classification ?a)) ?i ((CLS$instance ?a) ?i)) 
         (= ((CLS.CL$instance-embedding ?a) ?i) 
            ((CLS.CL$meet ?a) ((CLS$intent (CLS.CL$iota ?a)) ?i)))) 
 
     (forall (?a (CLS$classification ?a)) ?t ((CLS$type ?a) ?t)) 
         (= ((CLS.CL$type-embedding ?a) ?t) 
            ((CLS.CL$join ?a) ((CLS$extent (CLS.CL$tau ?a)) ?t)))) 

○ Intent induces a preorder on the instance class inst(A) defined by i1 ≼A i2 when ιA(i1) ≤A ιA(i2) or 
i1′ ⊇   i2′. Dually, extent induces a preorder on the type class typ(A) defined by t1 ≼A t2 when 
τA(t1) ≤A τA(t2) or t1′ ⊆   t2′. 
(25) (KIF$function instance-order) 
     (= (KIF$source instance-order) CLS$classification) 
     (= (KIF$target instance-order) ORD$preorder) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (ORD$class (instance-order ?a)) (instance ?a)) 
              (forall (?i1 ((instance ?a) ?i1)  
                       ?i2 ((instance ?a) ?i2)) 
              (<=> ((instance-order ?a) ?i1 ?i2) 
                   ((concept-order ?a) 
                       ((instance-embedding ?a) ?i1) 
                       ((instance-embedding ?a) ?i2))))) 
 
(26) (KIF$function type-order) 
     (= (KIF$source type-order) CLS$classification) 
     (= (KIF$target type-order) ORD$preorder) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (ORD$class (type-order ?a)) (type ?a)) 
              (forall (?t1 ((type ?a) ?t1) 
                       ?t2 ((type ?a) ?t2)) 
              (<=> ((type-order ?a) ?t1 ?t2) 
                   ((concept-order ?a) 
                       ((type-embedding ?a) ?t1) 
                       ((type-embedding ?a) ?t2))))) 

○ Part of the fundamental theorem of Formal Concept Analysis states that every classification A = 
〈 inst(A), typ(A), ⊨A〉  has an associated concept lattice cl(A) = 〈 lat(A), inst(A), typ(A), ιA, τA〉 . 

 
(27) (KIF$function concept-lattice) 
     (= (KIF$source concept-lattice) CLS$classification) 
     (= (KIF$target concept-lattice) CL$concept-lattice) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (CL$complete-lattice (concept-lattice ?a)) (complete-lattice ?a)) 
              (= (CL$instance (concept-lattice ?a)) (CLS$instance ?a)) 
              (= (CL$type (concept-lattice ?a)) (CLS$type ?a)) 

The concept lattice associated with a classification is the image of the object function of the con-
cept lattice functor applied to the classification: 

L : CLASSIFICATION → CONCEPT LATTICE. 
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              (= (CL$instance-embedding (concept-lattice ?a)) (instance-embedding ?a)) 
              (= (CL$type-embedding (concept-lattice ?a)) (type-embedding ?a)))) 

o The following fact of abstract Formal Concept Analysis, stated in terms of the embedding relations 
above, is straightforward to prove: 

A = ιA ◦ ≤A ◦ τA
op. 

This says that any classification A = 〈 inst(A), typ(A), ⊨A〉  (viewed as a binary relation) is identical to 
the composition of the instance-embedding relation followed by the lattice order of the classification 
followed by the type embedding relation. 
 (forall (?a (CLS$classification ?a)) 
     (= ?a 
        (REL$composition [(REL$composition [(iota ?a) (concept-order ?a)]) (tau ?a)]))) 

 

Conceptual Fibers 
CLS.FIB 

This section defines fibers along the function  
classification : Concept → CLASSIFICATION  

or compositions with this function (see Diagram 4).  

o For any classification A = 〈 inst(A), typ(A), ⊨A〉 , a (collective) A-instance 
(Figure 5) indexed by a class A is a binary relation X ⊆  inst(A)×A. For a fixed 
classification A, the collection of all A-instances is denoted ‘(instance ?a)’. 
Dually, a (collective) A-type indexed by a class A is a binary relation 
Y ⊆  A×typ(A). For a fixed classification A, the collection of all A-types is denoted ‘(type ?a)’. 
(1) (KIF$function instance) 
    (= (KIF$source instance) CLS$classification) 
    (= (KIF$target instance) KIF$collection) 
    (forall (?a (CLS$classification ?a) 
        (and (KIF$subcollection (instance ?a) REL$relation) 
             (forall (?x (REL$relation ?x)) 
                 (<=> ((instance ?a) ?x) 
                      (= (REL$source ?x) (CLS$instance ?a)))))) 
 
(2) (KIF$function instance-index) 
    (= (KIF$source instance-index) CLS$classification) 
    (= (KIF$target instance-index) KIF$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (KIF$source (instance-index ?a)) (instance ?a)) 
             (= (KIF$target (instance-index ?a)) SET$class) 
             (forall (?x ((instance ?a) ?x)) 
                 (= ((instance-index ?a) ?x) (REL$target ?x))))) 
 
(3) (KIF$function type) 
    (= (KIF$source type) CLS$classification) 

Diagram 3: Core Collections and Functions for Fibers 
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    (= (KIF$target type) KIF$collection) 
    (forall (?a (CLS$classification ?a) 
        (and (KIF$subcollection (type ?a) REL$relation) 
             (forall (?y (REL$relation ?y)) 
                 (<=> ((type ?a) ?y) 
                      (= (REL$target ?y) (CLS$type ?a)))))) 
 
(4) (KIF$function type-index) 
    (= (KIF$source type-index) CLS$classification) 
    (= (KIF$target type-index) KIF$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (KIF$source (type-index ?a)) (type ?a)) 
             (= (KIF$target (type-index ?a)) SET$class) 
             (forall (?y ((type ?a) ?y)) 
                 (= ((type-index ?a) ?y) (REL$source ?y))))) 

○ Two derivation operators in this fibered setting correspond to the two relational residuation operators. 
For any large classification A there are two senses of derivation corresponding to the two senses of re-
lational residuation. Derivation preserves indices. Left derivation maps an instance to the type on 
which it is “universally incident,” and dually, right derivation maps a type to the instance which is 
“universally incident” on it: for all instances X ⊆  inst(A)×A and all types Y ⊆  A×typ(A),  

X ↦ X′ = X\A and Y ↦ Y′ = A/Y.  
(5) (KIF$function left-derivation) 
    (= (KIF$source left-derivation) CLS$classification) 
    (= (KIF$target left-derivation) KIF$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (KIF$source (left-derivation ?a)) (instance ?a)) 
             (= (KIF$target (left-derivation ?a)) (type ?a)) 
             (forall (?x ((instance ?a) ?x)) 
                 (= ((left-derivation ?a) ?x) 
                    (REL$left-residuation [?x ?a]))))) 
 
(6) (KIF$function right-derivation) 
    (= (KIF$source right-derivation) CLS$classification) 
    (= (KIF$target right-derivation) SET.FTN$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (KIF$source (right-derivation ?a)) (type ?a)) 
             (= (KIF$target (right-derivation ?a)) (instance ?a)) 
             (forall (?y ((type ?a) ?y)) 
                 (= ((right-derivation ?a) ?y) 
                    (REL$right-residuation [?y ?a]))))) 

○ A simple result is the following equivalence. For all instances X ⊆  inst(A)×A and types Y ⊆  A×typ(A) 

Y ⊆  X\A in REL[A, typ(A)] iff X ◦ Y ⊆  A iff X ⊆  A/Y in REL[inst(A), A]. 

This describes a Galois connection between left derivation 

(-)\A : REL[inst(A), A] → (REL[A, typ(A)])op  

and right derivation 

A/(-) : (REL[A, typ(A)])op → REL[inst(A), A]. 

The first two facts assert (contravariant) monotonicity of derivation. The last fact asserts the adjoint-
ness condition. 
    (forall (?x1 ((instance ?a) ?x1) ?x2 ((instance ?a) ?x2) 
             (= ((instance-index ?a) ?x1) ((instance-index ?a) ?x2))) 
        (=> (REL$subrelation ?x1 ?x2) 
            (REL$subrelation ((left-derivation ?a) ?x2) ((left-derivation ?a) ?x1)))) 
 
    (forall (?y1 ((type ?a) ?y1) ?y2 ((type ?a) ?y2) 
             (= ((type-index ?a) ?y1) ((type-index ?a) ?y2))) 
        (=> (REL$subrelation ?y2 ?y1) 
            (REL$subrelation ((right-derivation ?a) ?y1) ((right-derivation ?a) ?y2)))) 
 
    (forall (?x ((instance ?a) ?x) ?y ((type ?a) ?y) 
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             (= ((instance-index ?a) ?x) ((type-index ?a) ?y))) 
        (<=> (REL$subrelation ?y ((left-derivation ?a) ?x)) 
             (REL$subrelation ?x ((right-derivation ?a) ?y)))) 

○ The composition of derivations gives two senses of closure operator. 
(7) (KIF$function instance-closure) 
    (= (KIF$source instance-closure) CLS$classification) 
    (= (KIF$target instance-closure) KIF$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (KIF$source (instance-closure ?a)) (instance ?a)) 
             (= (KIF$target (instance-closure ?a)) (instance ?a)) 
             (forall (?x ((instance ?a) ?x)) 
                 (and (= (instance-index ((instance-closure ?a) ?x)) 
                         (instance-index ?x)) 
                      (= ((instance-closure ?a) ?x) 
                         ((right-derivation ?a) ((left-derivation ?a) ?x))))))) 
 
(8) (KIF$function type-closure) 
    (= (KIF$source type-closure) CLS$classification) 
    (= (KIF$target type-closure) KIF$function) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (KIF$source (type-closure ?a)) (type ?a)) 
             (= (KIF$target (type-closure ?a)) (type ?a)) 
             (forall (?y ((type ?a) ?y)) 
                 (and (= (type-index ((type-closure ?a) ?y)) 
                         (type-index ?y)) 
                      (= ((type-closure ?a) ?y) 
                         ((left-derivation ?a) ((right-derivation ?a) ?y))))))) 

○ The following (easily proven) results confirm that these are closure operators. 

X ⊆  X′′  and X′ = X′′′  for all instances X ⊆  inst(A)×A. 

Y ⊆  Y′′  and Y′ = Y′′′  for all types Y ⊆  A×typ(A). 
    (forall (?x ((instance ?a) ?x)) 
        (and (REL$subrelation ?x ((instance-closure ?a) ?x)) 
             (= ((left-derivation ?a) ?x) 
                ((left-derivation ?a) ((instance-closure ?a) ?x))))) 
 
    (forall (?y ((type ?a) ?y)) 
        (and (REL$subrelation ?y ((type-closure ?a) ?y)) 
             (= ((right-derivation ?a) ?y) 
                ((right-derivation ?a) ((type-closure ?a) ?y))))) 

o For any classification A = 〈 inst(A), typ(A), ⊨A〉 , a (collective) A-concept C = 
〈 ind(C), ext(C), int(C)〉  (Figure 6), consists of an extent A-instance  
ext(C) : inst(A) → ind(A) indexed by ind(A), and an intent A-type 
int(C) : ind(A) → typ(A) indexed by ind(A), which satisfy the following 
closure conditions:  

ext(C) = A/int(C) and int(C) = ext(C)\A. 

(9) (KIF$function concept) 
    (= (KIF$source concept) CLS$classification) 
    (= (KIF$target concept) KIF$collection) 
 
(10) (KIF$function extent)  
     (= (KIF$source extent) CLS$classification) 
     (= (KIF$target extent) KIF$function) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (KIF$source (extent ?a)) (concept ?a)) 
              (= (KIF$target (extent ?a)) (instance ?a)))) 
 
(11) (KIF$function intent)  
     (= (KIF$source intent) CLS$classification) 
     (= (KIF$target intent) KIF$function) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (KIF$source (intent ?a)) (concept ?a)) 

Figure 6: A-Concept 
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              (= (KIF$target (intent ?a)) (type ?a)))) 
 
(12) (KIF$function index) 
     (= (KIF$source index) CLS$classification) 
     (= (KIF$target index) KIF$function) 
     (forall (?a (CLS$classification ?a)) 
        (and (= (KIF$source (index ?a)) (concept ?a)) 
             (= (KIF$target (index ?a)) SET$class) 
             (forall (?c ((concept ?a) ?c)) 
                 (and (= ((index ?a) ?c) ((instance-index ?a) ((extent ?a) ?c))) 
                      (= ((index ?a) ?c) ((type-index ?a) ((intent ?a) ?c))) 
                      (= ((left-derivation ?a) ((extent ?a) ?c)) ((intent ?a) ?c)) 
                      (= ((right-derivation ?a) ((intent ?a) ?c)) ((extent ?a) ?c)))))) 

○ There are surjective generator functions, called instance-generation and type-generation, that map in-
stances and types to their generated concepts. For all instances X ⊆  inst(A)×A and types Y ⊆  A×typ(A) 

X ↦ 〈X′′ , X′〉  “instance-generation” 
Y ↦ 〈Y′, Y′′〉  “type-generation”. 

− The composition of instance-generation and intent equals left-derivation, and the composition of 
type-generation and extent equals right-derivation.  

− The composition of instance-generation and extent equals instance-closure, and the composition of 
type-generation and intent equals type-closure.  

− The composition of extent and instance-generation is identity, and the composition of intent and 
type-generation is identity.  

These conditions define generation, and also insure that all concepts are captured in the collection 
‘(concept ?a)’. Concepts are determined by either their extents or their intents – this is represented by 
the fact that the extent and intent functions are injective. 
(13) (KIF$function instance-generation) 
     (= (KIF$source instance-generation) CLS$classification) 
     (= (KIF$target instance-generation) KIF$function) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (KIF$source (instance-generation ?a)) (instance ?a)) 
              (= (KIF$target (instance-generation ?a)) (concept ?a)) 
              (forall (?x ((instance ?a) ?x)) 
                  (and (= ((index ?a) ((instance-generation ?a) ?x)) 
                          ((instance-index ?a) ?x)) 
                       (= ((intent ?a) ((instance-generation ?a) ?x)) 
                          ((left-derivation ?a) ?x)) 
                       (= ((extent ?a) ((instance-generation ?a) ?x)) 
                          ((instance-closure ?a) ?x)))) 
              (forall (?c ((concept ?a) ?c)) 
                  (= ((instance-generation ?a) ((extent ?a) ?c)) ?c)))) 
 
(14) (KIF$function type-generation) 
     (= (KIF$source type-generation) CLS$classification) 
     (= (KIF$target type-generation) KIF$function) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (KIF$source (type-generation ?a)) (type ?a)) 
              (= (KIF$target (type-generation ?a)) (concept ?a)) 
              (forall (?y ((type ?a) ?y)) 
                  (and (= ((index ?a) ((type-generation ?a) ?y)) 
                          ((type-index ?a) ?y)) 
                       (= ((extent ?a) ((type-generation ?a) ?y)) 
                          ((right-derivation ?a) ?y)) 
                       (= ((intent ?a) ((type-generation ?a) ?y)) 
                          ((type-closure ?a) ?y)))) 
              (forall (?c ((concept ?a) ?c)) 
                  (= ((type-generation ?a) ((intent ?a) ?c)) ?c)))) 
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Collective Concepts 
CLS.CONC 

Here we define concepts that internally include their underlying classifications.  

o A formal (collective) concept C = 〈cls(C), ind(C), ext(C), int(C)〉  (Fig-
ure 7) consists of an underlying classification cls(C), an indexing class 
ind(C), an extent relation ext(C) and an intent relation int(C). These com-
ponents satisfy the equivalent closure conditions: 

ext(C) = cls(C)/int(C) and int(C) = ext(C)\cls(C). 

The underlying classification function is part of a fibration. When the index function maps to unity (the 
unit class), the concept is a point. The collection of all concepts is the disjoint union of all the concep-
tual fibers concept(A) as A ranges over the collection of all large classifications. The last axiom ex-
presses this. 
(1) (KIF$collection concept) 
 
(2) (KIF$function classification) 
    (= (KIF$source classification) concept) 
    (= (KIF$target classification) CLS$classification) 
 
(3) (KIF$function index) 
    (= (KIF$source index) concept) 
    (= (KIF$target index) SET$class) 
 
(4) (KIF$function extent)  
    (= (KIF$source extent) concept) 
    (= (KIF$target extent) REL$relation) 
    (forall (?c (concept ?c)) 
        (and (= (REL$source (extent ?c)) (CLS$instance (classification ?c))) 
             (= (REL$target (extent ?c)) (index ?c)))) 
 
(5) (KIF$function intent)  
    (= (KIF$source intent) concept) 
    (= (KIF$target intent) REL$relation) 
    (forall (?c (concept ?c)) 
        (and (= (REL$source (intent ?c)) (index ?c)) 
             (= (REL$target (intent ?c)) (CLS$type (classification ?c))))) 
 
(6) (forall (?c (concept ?c)) 
        (and (= (extent ?c) (REL$right-residuation [(intent ?c) (classification ?c)])) 
             (= (intent ?c) (REL$left-residuation [(extent ?c) (classification ?c)])))) 
 
(7) (forall (?c) 
        (<=> (concept ?c) 

Figure 7: Collective Concept 
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             (exists (?cf ((CLS.FIB$concept (classfication ?c)) ?cf)) 
                 (and (= (index ?c) ((CLS.FIB$index (classfication ?c)) ?cf)) 
                      (= (extent ?c) ((CLS.FIB$extent (classfication ?c)) ?cf)) 
                      (= (intent ?c) ((CLS.FIB$intent (classfication ?c)) ?cf)))))) 

o For any concept C = 〈cls(C), ind(C), ext(C), int(C)〉 , the opposite or dual of C is the concept C⊥  = 
〈cls(C)⊥ , ind(C), int(C), ext(C)〉 , whose classification is the opposite of the classification of C, whose 
index is the same as the index of C, whose extent is the intent of C, and whose intent is the extent of C.  
(8) (KIF$function opposite) 
    (= (KIF$source opposite) concept) 
    (= (KIF$target opposite) concept) 
    (forall (?c (concept ?c)) 
        (and (= (classification (opposite ?c)) (CLS$opposite (classification ?c))) 
             (= (index (opposite ?c)) (index ?c)) 
             (= (extent (opposite ?c)) (intent ?c)) 
             (= (intent (opposite ?c)) (extent ?c)))) 

o For any two collective concepts C1 and C2 over the same 
classification cls(C1) = A = cls(C2), a two cell f : C1 ⇒  C2 
from C1 to C2 (Figure 8) consists of an index function 
f : ind(C1) → ind(C2) between index classes, which satis-
fies the following conditions:  

ext(C1) = ext(C2) ◦ f  op = ext(C2) / f 

int(C1) = f ◦ int(C2) = f  op \ int(C2) 

(9) (KIF$collection two-cell) 
 
(10) (KIF$function source) 
     (= (KIF$source source) two-cell) 
     (= (KIF$target source) concept) 
 
(11) (KIF$function target) 
     (= (KIF$source target) two-cell) 
     (= (KIF$target target) concept) 
 
(12) (KIF$function index-function) 
     (= (KIF$source index-function) two-cell) 
     (= (KIF$target index-function) SET.FTN$function) 
 
     (forall (?f (two-cell ?f)) 
         (and (= (classification (source ?f)) (classification (target ?f))) 
              (= (index (source ?f)) (SET.FTN$source (index-function ?f))) 
              (= (index (target ?f)) (SET.FTN$target (index-function ?f))) 
              (= (REL$composition 
                     [(extent (target ?f)) 
                      (REL$opposite (SET.FTN$fn2rel (index-function ?f)))]) 
                 (extent (source ?f))) 
              (= (REL$composition 
                     [(SET.FTN$fn2rel (index-function ?f)) 
                      (intent (target ?f))]) 
                 (intent (source ?f))))) 

o Any classification A determines a terminal collective concept terminal(A) = 〈A, concept(A), ιA, τA〉 . 
Its extent relation ιA ⊆  inst(A) × concept(A) is the instance embedding relation, its intent relation 
τA ⊆  concept(A) × typ(A) is the type embedding relation, and its index is the concept class con-
cept(A). The closure conditions ιA = A/τA and τA = ιA\A that hold between the instance embedding re-
lation ιA : inst(A) → concept(A) and the type embedding relation τA : concept(A) → typ(A) ensure 
that this is well-defined. 
(13) (KIF$function terminal) 
     (= (KIF$source terminal) CLS$classification) 
     (= (KIF$target terminal) concept) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (classification (terminal ?a)) ?a) 

Figure 8: 2-cell 
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              (= (index (terminal ?a)) (CLS.CL$concept ?a)) 
              (= (extent (terminal ?a)) (CLS.CL$iota ?a)) 
              (= (intent (terminal ?a)) (CLS.CL$tau ?a)))) 

○ Any collective concept C = 〈A, A, X, Y〉  = 〈cls(C), ind(C), ext(C), int(C)〉  induces a unique mediating 
function µC : ind(C) → concept(cls(C)) define pointwise by µC(a) = 〈Xa, aY〉  as a ranges over the in-
dex class. This definition is well-defined, since the collective closure conditions X = Y′ and Y = X′ are 
equivalent to the (pointwise) closure conditions Xa = (aY)′ and aY = (Xa)′, as a ranges over the index 
class; that is, 〈Xa, aY〉  ∈  concept(A). 
(14) (KIF$function mediator-function) 
     (= (KIF$source mediator-function) concept) 
     (= (KIF$target mediator-function) SET.FTN$function) 
     (forall (?c (concept ?c)) 
         (and (= (SET.FTN$source (mediator-function ?c)) 
                 (index ?c)) 
              (= (SET.FTN$target (mediator-function ?c)) 
                 (CLS.CL$concept (classification ?c))) 
              (= (SET.FTN$composition 
                     [(mediator-function ?c) 
                      (CLS.CL$extent (classification ?c))]) 
                 (REL$fiber21 (extent ?c))) 
              (= (SET.FTN$composition 
                     [(mediator-function ?c) 
                      (CLS.CL$intent (classification ?c))]) 
                 (REL$fiber12 (intent ?c))))) 

o Any collective concept C = 〈A, A, X, Y〉  = 
〈cls(C), ind(C), ext(C), int(C)〉  induces a unique mediator 
2-cell µC : C ⇒  terminal(A) = terminal(cls(C)) (Figure 
9), since its mediator function satisfies the following con-
straints: 

ext(C) = ι cls(C) ◦ µC
op = ι cls(C) / µC 

int(C) = µC ◦ τcls(C) = µC
op \ τcls(C). 

(15) (KIF$function mediator) 
     (= (KIF$source mediator) concept) 
     (= (KIF$target mediator) 2-cell) 
     (forall (?c (concept ?c)) 
         (and (= (source (mediator ?c)) ?c) 
              (= (target (mediator ?c)) (terminal (classification ?c))) 
              (= (index-function (mediator ?c)) (mediator-function ?c)))) 

○ For any collective concept C and any class function f : A → index(C) whose target is the index class of 
C,  the quadruple f −1(C) = 〈cls(C), src(f), ext(C) ◦ f op, f ◦ int(C)〉  is also a collective concept, and the 
function f is the index function of a 2-cell with source f −1(C) and target C. The closure conditions for 
the inverse image concept follow from basic properties of functions and residuation. Hence, for a fixed 
classification A the function index : CLASSIFICATION → Class is part of a fibration. 
(16) (KIF$opspan inverse-image-opspan) 
     (= 2-cell-opspan [SET.FTN$target CLS$concept]) 
 
(17) (KIF$relation invertible) 
     (= (KIF$collection1 invertible) SET.FTN$function) 
     (= (KIF$collection2 invertible) CLS$classification) 
     (= (KIF$extent invertible) (KIF$pullback inverse-image-opspan)) 
 
(18) (KIF$function inverse-image) 
     (= (KIF$source inverse-image) (KIF$pullback inverse-image-opspan)) 
     (= (KIF$target inverse-image) concept) 
     (forall (?f (SET.FTN$function ?f) 
              ?a (CLS$classification ?a) (invertible ?f ?a)) 
         (and (= (classification (inverse-image [?f ?a])) ?a) 
              (= (index (inverse-image [?f ?a])) (SET.FTN$source ?f)) 
              (= (extent (inverse-image [?f ?a])) 

Figure 9: Mediating 2-cell 
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                 (REL$composition [(extent ?a) (REL$opposite (SET.FTN$fn2rel ?f))])) 
              (= (intent (inverse-image [?f ?a])) 
                 (REL$composition [?f (intent ?a)])))) 
 
(19) (KIF$function inverse-image-mediator) 
     (= (KIF$source inverse-image-mediator) (KIF$pullback inverse-image-opspan)) 
     (= (KIF$target inverse-image-mediator) 2-cell) 
     (forall (?f (SET.FTN$function ?f) 
              ?a (CLS$classification ?a) (invertible ?f ?a)) 
         (and (= (source (inverse-image-mediator [?f ?a])) (inverse-image [?f ?a])) 
              (= (target (inverse-image-mediator [?f ?a])) ?a) 
              (= (index-function (inverse-image-mediator [?f ?a])) ?f))) 

○ A collective concept 〈A, A, X, Y〉  = 〈cls(C), ind(C), ext(C), int(C)〉  is also called a concept space. The 
indexed or named formal concepts in a concept space are also called conceptual views. Conceptual 
knowledge is represented by the following components of a concept space. 
− The three preorders on instances, types and conceptual views. 
− The membership or instantiation relation between instances and conceptual views, whose col-

umns, when regarded as a Boolean matrix, record the extent of all the conceptual views. 

− The abstraction relation between conceptual views and types, whose rows, when regarded as a 
Boolean matrix, record the intent of all the conceptual views. 

− The classification relation between instances and types. 

The constraining relationships between the extent and intent of a concept space can be expressed in 
three different forms: residuation, inclusion and derivation. 

  incidence constraints 

residuation inclusion derivation 

Y = X\A  
X = A/Y 

∀ a ∈  A, t ∈  typ(A) aYt  iff  Xa ⊆  At 
∀ i ∈  inst(A), a ∈  A iXa  iff  iA ⊇  aY 

∀ a ∈  A  aY = (Xa)′  
∀ a ∈  A  Xa = (aY)′ 

In order to construct a concept space, we start out by specifying the class A to be a collection of names, 
with each a∈ A representing a subset of types aY0 ⊆  typ(A). We use the two residuation operators, 
which are a generalized form of the derivation operators of Formal Concept Analysis, in order to de-
fine the notion of a collective formal concept. We define the extent X to be the right residuation of A 
along Y0:  

X = A/Y0 = {(i, a) | ∀ t ∈  typ(A) (aY0t ⇒  iAt)}.  

so that X ◦ Y0 ⊆  A. We define Y to be the left residuation of A along X:  

Y = X\A = {(a, t) | ∀ i ∈  inst(A) (iXa ⇒  iAt)}.  

From these definitions it is straightforward to show that X is the right residuation, X = A/Y, of A along 
Y: First of all, since Y0 ⊆  X\A = Y, by contravariance of residuation X = A/Y0 ⊇  A/Y; and secondly, 
since X ◦ Y = X ◦ (X\A) ⊆  A, we have X ⊆  A/Y. 
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Table 3: KIF Functions used to define the Concept Lattice Functor 

left derivation : Classification → Function 
right derivation : Classification → Function 
instance closure : Classification → Function 
type closure : Classification → Function 
concept : Classification → Class 
extent : Classification → Function 
intent : Classification → Function 
instance concept : Classification → Function 
type concept : Classification → Function 
concept order : Classification → Partial Order 
meet : Classification → Function 
join : Classification → Function 
complete lattice : Classification → Complete Lattice 
adjoint pair : Infomorphism → Adjoint Pair 
instance embedding : Classification → Function 
type embedding : Classification → Function 
concept lattice : Classification →→→→ Concept Lattice 
concept morphism : Infomorphism →→→→ Concept Morphism 
instance embedding relation : Classification → Relation 
type embedding relation : Classification → Relation 

Table 4: Functors and Natural Isomorphisms 
CLS.CL$concept-lattice . CL$classification = Id 

L ◦ C = IdCLASSIFICATION CLS.INFO$concept-morphism . CL.MOR$infomorphism = Id 

CL$classification . CLS.CL$concept-lattice ≅  Id 
C ◦ L ≅≅≅≅  IdCLASSIFICATION CL.MOR$infomorphism . CLS.INFO$concept-morphism ≅  Id 

Functional Infomorphisms 
CLS.INFO 

o Classifications are related through (functional) infomorphisms. A 
(functional) infomorphism f : A ⇄ B from classification A to 
classification B (Figure 10) consists of a pair f = 〈 inst(f), typ(f)〉  
of oppositely directed functions, 
− a function between instances inst(f) : inst(B) → inst(A) and 
− a function between types typ(f) : typ(A) → typ(B),  
which satisfy the fundamental property: 

inst(f)(i) ⊨A t iff i ⊨B typ(f)(t) 

for all instances i ∈  inst(B) and all types t ∈  typ(A). The relation expressed on the either side of this 
equivalence is the bond of the relational infomorphism generated by this functional infomorphism. 
This relational infomorphism is defined below in terms of the left relation of the instance monotonic 
function and the right relation of the type monotonic function. 

The following is a KIF representation for the elements of an infomorphism. Such elements are 
useful for the definition of an infomorphism. In the same fashion as classifications, infomorphisms are 
specified by declaration and population. The term infomorphism allows one to declare infomorphisms 
themselves, and the two terms source and target allow one to declare their associated source (domain) 
and target (codomain) classifications, respectively. The terms instance and type resolve infomorphisms 
into their parts, thus allowing one to populate infomorphisms. Let CLASSIFICATION denote the 
quasi-category of classifications and infomorphisms. 
(1) (KIF$collection infomorphism) 
 
(2) (KIF$function source) 
    (= (KIF$source source) infomorphism) 
    (= (KIF$target source) CLS$classification) 

Figure 10: Functional Infomorphism 
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(3) (KIF$function target) 
    (= (KIF$source target) infomorphism) 
    (= (KIF$target target) CLS$classification) 
 
(4) (KIF$function instance) 
    (= (KIF$source instance) infomorphism) 
    (= (KIF$target instance) SET.FTN$function) 
    (forall (?f (infomorphism ?f)) 
        (and (= (SET.FTN$source (instance ?f)) (CLS$instance (target ?f))) 
             (= (SET.FTN$target (instance ?f)) (CLS$instance (source ?f))))) 
 
(5) (KIF$function type) 
    (= (KIF$source type) infomorphism) 
    (= (KIF$target type) SET.FTN$function) 
    (forall (?f (infomorphism ?f)) 
        (and (= (SET.FTN$source (type ?f)) (CLS$type (source ?f))) 
             (= (SET.FTN$target (type ?f)) (CLS$type (target ?f))))) 
 
(6) (forall (?f (infomorphism ?f) 
             ?i ((CLS$instance (target ?f)) ?i) 
             ?t ((CLS$type (source ?f)) ?t)) 
        (<=> ((source ?f) ((instance ?f) ?i) ?t) 
             ((target ?f) ?i ((type ?f) ?t)))) 

o The fundamental property of an infomorphism f : A ⇄ B expresses the bonding classification of 
bond(f) : A ⇄ B, the bond associated with the infomorphism. This can be equivalently define in terms 
of either the instance or the type function. Here we use the instance function. For comparison, see the 
right operator that maps a function to a relation in the presence of a preorder. 
(7) (KIF$function bond) 
    (= (KIF$source bond) infomorphism) 
    (= (KIF$target bond) CLS.BND$bond) 
    (forall (?f (infomorphism ?f)) 
        (and (= (CLS.BND$source (bond ?f)) (source ?f)) 
             (= (CLS.BND$target (bond ?f)) (target ?f)) 
             (forall (?i ((CLS$instance (target ?f)) ?i) 
                      ?t ((CLS$type (source ?f)) ?t)) 
             (<=> ((CLS.BND$classification (bond ?f)) ?i ?t) 
                  ((source ?f) ((instance ?f) ?i) ?t)))) 

o The instance monotonic function is the instance function regarded as a monotonic function between 
instance orders. Dually, the type monotonic function is the type function regarded as a monotonic func-
tion between type orders.  
(8) (KIF$function monotonic-instance) 
    (= (KIF$source monotonic-instance) infomorphism) 
    (= (KIF$target monotonic-instance) ORD.FTN$monotonic-function) 
    (forall (?f (infomorphism ?f)) 
        (and (= (ORD.FTN$source (monotonic-instance ?f)) 
                (CLS.CL$instance-order (target ?f))) 
             (= (ORD.FTN$target (monotonic-instance ?f)) 
                (CLS.CL$instance-order (source ?f))) 
             (= (ORD.FTN$function (monotonic-instance ?f)) (instance ?f)))) 
 
(9) (KIF$function monotonic-type) 
    (= (KIF$source monotonic-type) infomorphism) 
    (= (KIF$target monotonic-type) ORD.FTN$monotonic-function) 
    (forall (?f (infomorphism ?f)) 
        (and (= (ORD.FTN$source (monotonic-type ?f)) (CLS.CL$type-order (source ?f))) 
             (= (ORD.FTN$target (monotonic-type ?f)) (CLS.CL$type-order (target ?f))) 
             (= (ORD.FTN$function (monotonic-type ?f)) (type ?f)))) 

o The instance relation is the left relation of the instance monotonic function. The type relation is the 
right relation of the type monotonic function.  
(10) (KIF$function relational-instance) 
     (= (KIF$source relational-instance) infomorphism) 
     (= (KIF$target relational-instance) REL$relation) 
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     (forall (?f (infomorphism ?f)) 
         (and (= (REL$source (relational-instance ?f)) (instance (source ?f))) 
              (= (REL$target (relational-instance ?f)) (instance (target ?f))) 
              (= (relational-instance ?f) 
                 (SET.FTN$left [(instance ?f) (source ?f)])))) 
 
(11) (KIF$function relational-type) 
     (= (KIF$source relational-type) infomorphism) 
     (= (KIF$target relational-type) REL$relation) 
     (forall (?f (infomorphism ?f)) 
         (and (= (REL$source (relational-type ?f)) (type (source ?f))) 
              (= (REL$target (relational-type ?f)) (type (target ?f))) 
              (= (relational-type ?f) 
                 (SET.FTN$right [(type ?f) (target ?f)])))) 

o Any functional infomorphism can be transformed into a relational infomorphism.  
(12) (KIF$function relational-infomorphism) 
     (KIF$function fn2rel) 
     (= fn2rel relational-infomorphism) 
     (= (KIF$source relational-infomorphism) infomorphism) 
     (= (KIF$target relational-infomorphism) CLS.REL$infomorphism) 
     (forall (?f (infomorphism ?f)) 
         (and (= (CLS.REL$source (relational-infomorphism ?f)) (source ?f)) 
              (= (CLS.REL$target (relational-infomorphism ?f)) (target ?f)) 
              (= (CLS.REL$instance (relational-infomorphism ?f)) 
                 (relational-instance ?f)) 
              (= (CLS.REL$type (relational-infomorphism ?f)) 
                 (relational-type ?f)))) 

o It can be shown that the bond of the relational infomorphism of a functional infomorphism f is the 
bond associated with f. 
     (forall (?f (infomorphism ?f)) 
         (= (CLS.REL$bond (relational-infomorphism ?f)) (bond ?f))) 

o The composition function operates on any two infomorphisms that are composable in the sense that the 
target classification of the first is equal to the source classification of the second. Composition pro-
duces an infomorphism, whose instance function is the composition of the instance functions of the 
components and whose type function is the composition of the type functions of the components. 
(13) (KIF$opspan composable-opspan) 
     (= composable-opspan [target source]) 
 
(14) (KIF$relation composable) 
     (= (KIF$collection1 composable) infomorphism) 
     (= (KIF$collection2 composable) infomorphism) 
     (= (KIF$extent composable) (KIF$pullback composable-opspan)) 
 
(15) (KIF$function composition) 
     (= (KIF$source composition) (KIF$pullback composable-opspan)) 
     (= (KIF$target composition) infomorphism) 
     (forall (?f1 (infomorphism ?f1) ?f2 (infomorphism ?f2) (composable ?f1 ?f2)) 
         (and (= (source (composition [?f1 ?f2])) (source ?f1)) 
              (= (target (composition [?f1 ?f2])) (target ?f2)) 
              (= (instance (composition [?f1 ?f2])) 
                 (SET.FTN$composition [(instance ?f2) (instance ?f1)])) 
              (= (type (composition [?f1 ?f2])) 
                 (SET.FTN$composition [(type ?f) (type ?g)])))) 

o The identity function associates a well-defined identity infomorphism with any classification, whose 
instance function is the identity class function on instances and whose type function is the identity 
class function on types.  
(16) (KIF$function identity) 
     (= (KIF$source identity) CLS$classification) 
     (= (KIF$target identity) infomorphism) 
     (forall (?c (CLS$classification ?c)) 
         (and (= (source (identity ?c)) ?c) 
              (= (target (identity ?c)) ?c) 
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              (= (instance (identity ?c)) 
                 (SET.FTN$identity (CLS$instance ?c))) 
              (= (type (identity ?c)) 
                 (SET.FTN$identity (CLS$type ?c))))) 

o Duality can be extended to infomorphisms. For any infomorphism f : A ⇄ B, the opposite or dual of f 
is the infomorphism f ⊥  : B⊥  ⇄ A⊥  whose source classification is the opposite of the target classifica-
tion of f, whose target classification is the opposite of the source classification of f, whose instance 
function is the type function of f, whose type function is the instance function of f, and whose funda-
mental condition is equivalent to that of f:  

typ(f )(t) ⊨⊥  i iff t ⊨⊥  inst(f )(i). 
(17) (KIF$function opposite) 
     (= (KIF$source opposite) infomorphism) 
     (= (KIF$target opposite) infomorphism) 
     (forall (?f (infomorphism ?f)) 
         (and (= (source (opposite ?f)) (CLS$opposite (target ?f))) 
              (= (target (opposite ?f)) (CLS$opposite (source ?f))) 
              (= (instance (opposite ?f)) (type ?f)) 
              (= (type (opposite ?f)) (instance ?f)))) 

o For any class function f : B → A the components of the instance power in-
fomorphism ℘ f : ℘ A ⇄ ℘ B over f (Figure 11) is defined as follows: the 
source classification ℘ A = 〈A, ℘ A, ∈ A〉  is the instance power classification 
over the target class A, the target classification ℘ B = 〈B, ℘ B, ∈ B〉  is the in-
stance power classification over the source class B, the instance function is 
f, and the type function is the inverse image function f −1 : ℘ A → ℘ B from 
the power-class of A to the power-class of B. Note the contravariance. 
(18) (KIF$function instance-power) 
     (= (KIF$source instance-power) SET.FTN$function) 
     (= (KIF$target instance-power) infomorphism) 
     (forall (?f (SET.FTN$function ?f)) 
         (and (= (source (instance-power ?f)) 
                 (SET.FTN$power (SET.FTN$target ?f))) 
              (= (target (instance-power ?f)) 
                 (SET.FTN$power (SET.FTN$source ?f))) 
              (= (instance (instance-power ?f)) ?f) 
              (= (type (instance-power ?f)) 
                 (SET.FTN$inverse-image ?f)))) 

o It is a standard fact in Information Flow that from any classification A 
there is a canonical extent infomorphism ηA : A ⇄ ℘ inst(A) (Figure 12) 
from A to the instance power classification ℘ inst(A) = 
〈 inst(A), ℘ inst(A), ∈〉  over the instance class. This infomorphism is the 
Ath component of a natural quasi-transformation called eta, the unit of 
the adjunction between the underlying instance functor and the instance 
power functor. The instance function of eta is the identity function on 
the instance class inst(A), and the type function of eta is the extent func-
tion extentA : typ(A) → ℘ inst(A).  
(19) (KIF$function eta) 
     (= (KIF$source eta) CLS$classification) 
     (= (KIF$target eta) infomorphism) 
     (forall (?a (classification ?a)) 
         (and (= (source (eta ?a)) ?a) 
              (= (target (eta ?a)) (CLS$instance-power (CLS$instance ?a))) 
              (= (instance (eta ?a)) (SET.FTN$identity (CLS$instance ?a))) 
              (= (type (eta ?a)) (CLS$extent ?a)))) 

o Let f = 〈 inst(f), typ(f)〉  : A ⇄ B be any infomorphism from classification A to classification B with 
instance function inst(f) : inst(B) → inst(A) and type function typ(f) : typ(A) → typ(B). There is an 
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adjoint pair adj(f) = 〈 left(adj(f)), right(adj(f))〉  : complete-lattice(A) ⇄ complete-lattice(B), defined 
as follows. 

left(adj(f))(d)  
= left(adj(f))(〈extentB(d), intentB(d)〉)   
= 〈(typ(f)−1(intentB(d)))′,  (typ(f)−1(intentB(d))〉  

for all concepts d ∈  complete-lattice(B), and 

right(adj(f))(c)  
= right(adj(f))(〈extentA(c), intentA(c)〉)   
= 〈( inst(f)−1(extentA(c)), (inst(f)−1(extentA(c)))′〉   

for all concepts c ∈  complete-lattice(A).  
(20) (KIF$function adjoint-pair) 
     (= (KIF$source adjoint-pair) infomorphism) 
     (= (KIF$target adjoint-pair) LAT.ADJ$adjoint-pair) 
     (forall (?f (infomorphism ?f)) 
         (and (= (LAT.ADJ$source (adjoint-pair ?f)) 
                 (CLS.CL$complete-lattice (target ?f))) 
              (= (LAT.ADJ$target (adjoint-pair ?f)) 
                 (CLS.CL$complete-lattice (source ?f))) 
              (= (SET.FTN$composition  
                     [(ORD.FTN$function (LAT.ADJ$left (adjoint-pair ?f))) 
                      (CLS.CL$intent (source ?f))]) 
                 (SET.FTN$composition  
                     [(CLS.CL$intent (target ?f)) 
                      (SET.FTN$inverse-image (type ?f))])) 
              (= (SET.FTN$composition  
                     [(ORD.FTN$function (LAT.ADJ$right (adjoint-pair ?f))) 
                      (CLS.CL$extent (target ?f))])  
                 (SET.FTN$composition  
                     [(CLS.CL$extent (source ?f)) 
                      (SET.FTN$inverse-image (instance ?f))])))) 

o Let f : A ⇄ B be any infomorphism from classification A to classification B with instance function 
inst(f) : inst(B) → inst(A) and type function typ(f) : typ(A) → typ(B). There is a concept morphism 

concept-morphism(f) = 〈 inst(A), typ(A), adj(A)〉  : concept-lattice(A) ⇄ concept-lattice(B),  

whose instance/type functions are the same as f, and whose adjoint pair the adjoint pair of f. 

 
(21) (KIF$function concept-morphism) 
     (= (KIF$source concept-morphism) infomorphism) 
     (= (KIF$target concept-morphism) CL.MOR$concept-morphism) 
     (forall (?f (infomorphism ?f)) 
         (and (= (CL.MOR$source (concept-morphism ?f)) 
                 (CLS.CL$concept-lattice (source ?f))) 
              (= (CL.MOR$target (concept-morphism ?f)) 
                 (CLS.CL$concept-lattice (target ?f))) 
              (= (CL.MOR$adjoint-pair (concept-morphism ?f)) (adjoint-pair ?f)) 
              (= (CL.MOR$instance (concept-morphism ?f)) (instance ?f)) 
              (= (CL.MOR$type (concept-morphism ?f)) (type ?f)))) 

 

The concept morphism associated with an infomorphism is the image of the morphism function of
the concept lattice functor applied to the infomorphism: 

L : CLASSIFICATION → CONCEPT LATTICE. 
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Relational Infomorphisms 
CLS.REL 

o Classifications are also related through (relational) infomorphisms. A 
(relational) infomorphism r : A ⇉ B from classification A to classifica-
tion B (Figure 13) is a pair r = 〈 inst(r), typ(r)〉  of binary relations in the 
same direction,  
− a relation between instances inst(r) : inst(A) → inst(B) and  
− a relation between types typ(r) : typ(A) → typ(B),  
which satisfy the fundamental property: 

inst(r) \ A  =  B / typ(r). 
(1) (KIF$collection infomorphism) 
 
(2) (KIF$function source) 
    (= (KIF$source source) infomorphism) 
    (= (KIF$target source) CLS$classification) 
 
(3) (KIF$function target) 
    (= (KIF$source target) infomorphism) 
    (= (KIF$target target) CLS$classification) 
 
(4) (KIF$function instance) 
    (= (KIF$source instance) infomorphism) 
    (= (KIF$target instance) REL$relation) 
    (forall (?r (infomorphism ?r)) 
        (and (= (REL$source (instance ?r)) (CLS$instance (source ?r))) 
             (= (REL$target (instance ?r)) (CLS$instance (target ?r))))) 
 
(5) (KIF$function type) 
    (= (KIF$source type) infomorphism) 
    (= (KIF$target type) REL$relation) 
    (forall (?r (infomorphism ?r)) 
        (and (= (REL$source (type ?r)) (CLS$type (source ?r))) 
             (= (REL$target (type ?r)) (CLS$type (target ?r))))) 
 
(6) (forall (?r (infomorphism ?r)) 
        (= (REL$left-residuation [(instance ?r) (source ?r)]) 
           (REL$right-residuation [(type ?r) (target ?r)]))) 

o For any relational infomorphism r : A ⇉ B, the common relation inst(r)\A  =  B/typ(r) in the funda-
mental property, consider to be a classification bond(r) = 〈 inst(B), typ(A), ⊨bond(r)〉 , is called the bond 
of r – it bonds the instance and type classifications into a unity.  
(7) (KIF$function bond) 
    (= (KIF$source bond) infomorphism) 
    (= (KIF$target bond) CLS.BND$bond) 
    (forall (?r (infomorphism ?r)) 
        (and (= (CLS.BND$source (bond ?r)) (source ?r)) 
             (= (CLS.BND$target (bond ?r)) (target ?r)) 
             (= (CLS.BND$classification (bond ?r)) 
                (REL$left-residuation [(instance ?r) (source ?r)])))) 

o Given any two relational infomorphisms 〈r1, s1〉  : A ⇉ B and 〈r2, s2〉  : B ⇉ C, which are composable in 
the sense the target classification of the first is the source classification of the second, there is a com-
posite infomorphism 〈r1, s1〉  ◦ 〈r2, s2〉  = 〈r1◦r2, s1◦s2〉  : A ⇉ C defined by composing the type and in-
stance relations – its fundamental property follows from composition and associative laws. 
(8) (KIF$opspan composable-opspan) 
    (= composable-opspan [target source]) 
 
(9) (KIF$relation composable) 
    (= (KIF$collection1 composable) infomorphism) 

Figure 13: Relational  
Infomorphism 
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    (= (KIF$collection2 composable) infomorphism) 
    (= (KIF$extent composable) (KIF$pullback composable-opspan)) 
 
(10) (KIF$function composition) 
     (= (KIF$source composition) (KIF$pullback composable-opspan)) 
     (= (KIF$target composition) infomorphism) 
     (forall (?r1 (infomorphism ?r1) ?r2 (infomorphism ?r2) (composable ?r1 ?r2)) 
         (and (= (source (composition [?r1 ?r2])) (source ?r1)) 
              (= (target (composition [?r1 ?r2])) (target ?r2)) 
              (= (instance (composition [?r1 ?r2])) 
                 (REL$composition [(instance ?r1) (instance ?r2)])) 
              (= (type (composition [?r1 ?r2])) 
                 (REL$composition [(type ?r1) (type ?r2)])))) 

o  Given any classification A = 〈 inst(A), typ(A), ⊨A〉 , the pair of identity relations on types and instances, 
with the bond being A, forms an identity infomorphism IdA : A ⇉ A (with respect to composition). 
(11) (KIF$function identity) 
     (= (KIF$source identity) CLS$classification) 
     (= (KIF$target identity) infomorphism) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (source (identity ?a)) ?a) 
              (= (target (identity ?a)) ?a) 
              (= (instance (identity ?a)) (REL$identity (CLS$instance ?a))) 
              (= (type (identity ?a)) (REL$identity (CLS$type ?a))))) 

o For any given infomorphism 〈r, s〉  : A ⇉ B the dual infomorphism 〈r, s〉 op = 〈sop, rop〉  : Bop ⇉ Aop is the 
relational infomorphism with type and instance relations switched and transposed. 
(12) (KIF$function opposite) 
     (= (KIF$source opposite) infomorphism) 
     (= (KIF$target opposite) infomorphism) 
     (forall (?r (infomorphism ?r)) 
         (and (= (source (opposite ?r)) (CLS$opposite (target ?r))) 
              (= (target (opposite ?r)) (CLS$opposite (source ?r))) 
              (= (instance (opposite ?r)) (REL$opposite (type ?r))) 
              (= (type (opposite ?r)) (REL$opposite (instance ?r))))) 

o The fundamental property of relational infomorphisms for composition, identity and involution follow 
from basic properties of residuation. 

Bonds 
CLS.BND 

o Classifications are also related through bonds. A bond F : A ⇀B from 
classification A  to classification B (Figure 14) is a classification cls(F) = 
〈 inst(B), typ(A), ⊨F〉  sharing types with A and instances with B, that is 
compatible with A and B in the sense of closure: type classes 
{ iF | i ∈  inst(B)}  are intents of A and instance classes { Ft | t ∈  typ(B)}  
are extents of B. Closure can be expressed relationally (in terms of 
residuation) as the following fundamental closure properties. 

(A/F)\A = F and B/(F \B) = F. 

The first expression says that 〈A/F, F〉  is an inst(B)-indexed collective A-concept (or F is a collective 
A-intent), and the second expression says that 〈F, F\B〉  is an typ(A)-indexed collective B-concept (or 
that F is a collective B-extent). The first expression also says that classification F is type-closed with 
respect to classification A, and the second expression says that classification F is instance-closed with 
respect to classification B. Let BOND denote the quasi-category of classifications and bonds. 
(1) (KIF$collection bond) 
 
(2) (KIF$function source) 
    (= (KIF$source source) bond) 
    (= (KIF$target source) CLS$classification) 

Figure 14: Bond 
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(3) (KIF$function target) 
    (= (KIF$source target) bond) 
    (= (KIF$target target) CLS$classification) 
 
(4) (KIF$function classification) 
    (= (KIF$source classification) bond) 
    (= (KIF$target classification) CLS$classification) 
    (forall (?b (bond ?b)) 
        (and (= (CLS$instance (classification ?b)) (CLS$instance (target ?b))) 
             (= (CLS$type (classification ?b)) (CLS$type (source ?b))))) 
 
(5) (forall (?b (bond ?b)) 
        (and (= (REL$left-residuation 
                    [(REL$right-residuation [(classification ?b) (source ?b)]) 
                     (source ?b)]) 
                (classification ?b)) 
             (= (REL$right-residuation 
                    [(REL$left-residuation [(classification ?b) (target ?b)]) 
                     (target ?b)]) 
                (classification ?b)))) 

o A bond has an associated bimodule, since the classification of a bond, as a relation, is order-closed on 
left and right: 

j′ ≤B j, jFt imply j′Ft, and jFt, t ≤A t′ imply jFt′; or,  

j′ ≤B j implies j′F ⊇  jF, and t ≤A t′ implies Ft ⊆  Ft′. 
(6) (KIF$function bimodule) 
    (= (KIF$source bimodule) bond) 
    (= (KIF$target bimodule) ORD$bimodule) 
    (forall (?b (bond ?b)) 
        (and (= (ORD.REL$source (bimodule ?b)) (CLS.CL$instance-order (target ?b))) 
             (= (ORD.REL$target (bimodule ?b)) (CLS.CL$type-order (source ?b))) 
             (= (ORD.REL$relation (bimodule ?b)) (classification ?b)))) 

o For any bond F : A ⇀B, the residuations in the fundamental closure property form a relation infomor-
phism info(F) = 〈(A/F), (F\B)〉  : A ⇄ B from classification A to classification B.  
(7) (KIF$function infomorphism) 
    (= (KIF$source infomorphism) bond) 
    (= (KIF$target infomorphism) CLS.REL$infomorphism) 
    (forall (?b (bond ?b)) 
        (and (= (CLS.REL$source (infomorphism ?b)) (source ?b)) 
             (= (CLS.REL$target (infomorphism ?b)) (target ?b)) 
             (= (CLS.REL$instance (infomorphism ?b))  
                (REL$right-residuation [(classification ?b) (source ?b)])) 
             (= (CLS.REL$type (infomorphism ?b))  
                (REL$left-residuation [(classification ?b) (target ?b)])))) 

o The fundamental closure property implies that the bond of this relational infomorphism is the original 
bond. 
    (forall (?b (bond ?b)) 
        (= (CLS.REL$bond (infomorphism ?b)) ?b)) 

o The fundamental closure property of a bond F : A ⇀B, the type-closure of F with respect to A and the 
instance-closure of F with respect to B, can also be expressed as follows.  
    (forall (?b (bond ?b)) 
        (and (CLS.CL$type-closed (classification ?b) (source ?b)) 
             (CLS.CL$instance-closed (classification ?b) (target ?b)))) 

o Associated with any bond is an adjoint pair between the complete lattices of source and target classifi-
cations.  
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− Since F is type-closed with respect to A, there is an associated coreflection (adjoint pair) coreflA,F 
= 〈∂0, ∂0〉  : lat(F) ⇄ lat(A) between their complete lattices, where ∂0 : lat(A) → lat(F) is right ad-
joint right inverse (rari) to ∂0 : lat(F) → lat(A).  

− Since F is instance-closed with respect to B, there is an associated reflection (adjoint pair) reflF,B = 
〈∂ 1, ∂1〉  : lat(B) ⇄ lat(F) between their complete lattices, where ∂1 : lat(B) → lat(F) is left adjoint 
right inverse (lari) to ∂1 : lat(F) → lat(B). 

The adjoint pair is the composition of the reflection followed by the coreflection. 
 
(8) (KIF$function adjoint-pair) 
    (= (KIF$source adjoint-pair) bond) 
    (= (KIF$target adjoint-pair) LAT.ADJ$adjoint-pair) 
    (forall (?b (bond ?b)) 
        (and (= (LAT.ADJ$source (adjoint-pair ?b)) 
                (CLS.CL$complete-lattice (target ?b))) 
             (= (LAT.ADJ$target (adjoint-pair ?b)) 
                (CLS.CL$complete-lattice (source ?b))) 
             (= (adjoint-pair ?b)  
                (LAT.ADJ$composition 
                    (CLS.CL$reflection [(target ?b) (classification ?b)]) 
                    (CLS.CL$coreflection [(classification ?b) (source ?b)]))))) 

o Two bonds F1 : A ⇀ B and F2 : B ⇀ C are composable when the target classification of the first is the 
source classification of the second. The composition of two composable bonds is the bond 
F1 ▫ F2 ≙ (B/F2)\F1 : A ⇀ C defined using left and right residuation. Since both F and G being bonds 
are closed with respect to B, an equivalent expression for the composition is 
F1 ▫ F2 ≙ F2/(F1\B) : A ⇀ C. Pointwise, the composition is F1 ▫ F2 = { (c, α) | F1α ⊇  (cF2)B} . To check 
closure, (A/(F1▫F2))\A = (A/((B/F2)\F1))\A = (B/F2)\F1, since F1 being a collective A-intent means that 
(B/F2)\F1 is also a collective A-intent.  

(8) (KIF$opspan composable-opspan) 
    (= composable-opspan [target source]) 
 
(9) (KIF$relation composable) 
    (= (KIF$collection1 composable) bond) 
    (= (KIF$collection2 composable) bond) 
    (= (KIF$extent composable) (KIF$pullback composable-opspan)) 
 
(11) (KIF$function composition) 
     (= (KIF$source composition) (KIF$pullback composable-opspan)) 
     (= (KIF$target composition) bond) 
     (forall (?b1 (bond ?b1) ?b2 (bond ?b2) (composable ?b1 ?b2)) 
       (and (= (source (composition [?b1 ?b2])) (source ?b1)) 
            (= (target (composition [?b1 ?b2])) (target ?b2)) 
            (= (classification (composition [?b1 ?b2])) 
               (REL$left-residuation [(REL$right-residuation [?b2 (source ?b2)]) ?b1]))) 

o With respect to bond composition, the identity bond at any classification A is A. 
(12) (KIF$function identity) 
     (= (KIF$source identity) CLS$classification) 
     (= (KIF$target identity) bond) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (source (identity ?a)) ?a) 
              (= (target (identity ?a)) ?a) 
              (= (classification (identity ?a)) ?a))) 

The adjoint pair associated with a bond is the image of the morphism function of the complete
adjoint functor applied to the bond: 

A : BOND → COMPLETE ADJOINT. 
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o For any given bond F : A ⇀ B the dual bond Fop : Bop ⇀ Aop is the bond with source and target classi-
fications switched, and source, target and classification relations transposed. 
(13) (KIF$function opposite) 
     (= (KIF$source opposite) bond) 
     (= (KIF$target opposite) bond) 
     (forall (?f (bond ?f)) 
         (and (= (source (opposite ?f)) (CLS$opposite (target ?f))) 
              (= (target (opposite ?f)) (CLS$opposite (source ?f))) 
              (= (classification (opposite ?f)) (CLS$opposite (classification ?f))))) 

The fundamental property of bonds for composition, identity and involution follow from basic proper-
ties of residuation. 

○ The basic theorem of Formal Concept Analysis can be framed in terms of two fundamental bonds  be-
tween any classification and its associated concept lattice.  
− For any classification A there is an instance embedding bond ιA : L(A) ⇀ A, whose source classifi-

cation is the classification of the complete lattice of A and whose target classification is A. The 
classification of the instance embedding bond is the instance embedding classification. The pair 
〈L(A)/ιA, τA〉  : L(A) ⇉ A is a relational infomorphism whose bond is the instance embedding bond.  

− For any classification A the type embedding bond τA : A ⇀ L(A), whose source classification is A 
and whose target classification is the classification of the complete lattice of A. The classification 
of the type embedding bond is the type embedding classification. The pair 
〈ι A, τA\L(A)〉  : A ⇉ L(A) is a relational infomorphism whose bond is the type embedding bond. 

(14) (KIF$function iota) 
     (= (KIF$source iota) CLS$classification) 
     (= (KIF$target iota) bond) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (source (iota ?a)) (LAT$classification (CLS.CL$complete-lattice ?a))) 
              (= (target (iota ?a)) ?a) 
              (= (classification (iota ?a)) (CLS.CL$iota ?a)))) 
 
(16) (KIF$function tau) 
     (= (KIF$source tau) CLS$classification) 
     (= (KIF$target tau) bond) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (source (iota ?a)) ?a) 
              (= (target (iota ?a)) (LAT$classification (CLS.CL$complete-lattice ?a))) 
              (= (classification (tau ?a)) (CLS.CL$tau ?a)))) 

o The instance and type embedding bonds are inverse to each other: ιA ▫ τA = IdL(A) and τA ▫ ιA = IdA. 
     (forall (?a (CLS$classification ?a)) 
         (and (= (composition [(iota ?a) (tau ?a)]) 
                 (identity (LAT$classification (CLS.CL$complete-lattice ?a)))) 
              (= (composition [(tau ?a) (iota ?a)]) 
                 (identity ?a)))) 

o This demonstrates the bond isomorphism (commuting 
Diagram 5) between any classification A and the clas-
sification of the complete lattice of A. It can be proven 
that this is a natural isomorphism; that is, that the 
quasi-category CLASSIFICATION of classifications 
and bonds is categorically equivalent to the quasi-
category of complete lattices and adjoint pairs. Let 
F : A ⇀ B be a bond with associated complete adjoint 
adj(F) : lat(B) ⇄ lat(A). The classification of the bond 
bnd(adj(F)) : cls(lat(A)) ⇀ cls(lat(B)) contains a conceptual pair (a, b) of the form a = (A, Γ) and 
b = (B, ∆) iff B ◦ Γ ⊆  F, where B ◦ Γ = B×Γ a Cartesian product or rectangle, iff B ⊆  ΓF iff Γ ⊆  BF. So, 
(ιA ▫ F) ▫ τB = (F/(ιA\A)) ▫ τB = (F/τA) ▫ τB = (B/τB)\(F/τA) = ιB\(F/τA) = bnd(adj(F)), by bond 
composition and properties of the instance and type relations. Hence, bnd(adj(F)) ▫ ιB = ιA ▫ F. This 

Diagram 5: Natural Isomorphism 
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For any classification A the iota bond ιA is the Ath component of a natural isomorphism
B(A(A)) ≅  A, demonstrating that the quasi-category of bonds is categorically equivalent to the
quasi-category of complete adjoints:  

COMPLETE ADJOINT ≡ BOND. 
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sition and properties of the instance and type relations. Hence, bnd(adj(F)) ▫ ιB = ιA ▫ F. This proves 
the required naturality condition. 
 
     (forall (?b (bond ?b)) 
         (= (composition [(CL.ADJ$bond (adjoint-pair ?b)) (iota (target ?f))]) 
            (composition [(iota (source ?f)) ?f]))) 

Bonding Pairs 
CLS.BNDPR 

The bond equivalent to a complete homomorphism would seem to be given 
by two bonds F : A ⇀ B and G : B ⇀ A where the right adjoint 
ψF : L(A) → L(B) of the complete adjoint A(F) = 〈ϕF, ψF〉  : L(A) ⇄ L(B) of 
one bond (say F, without loss of generality) is equal to the left adjoint 
ϕG : L(A) → L(B) of the complete adjoint A(G) = 〈ϕG, ψG〉  : L(B) ⇄ L(A) of 
the other bond G with the resultant adjunctions, ϕF ⊣ ψF = ϕG ⊣ ψG, where 
the middle adjoint is the complete homomorphism. This is indeed the case, 
but the question is what constraint to place on F and G in order for this to 
hold. The simple answer is to identify the actions of the two monotonic func-
tions ψG and ϕF. Let (A, Γ) ∈  L(A) be any formal concept in L(A). The action of the left adjoint ϕG on this 
concept is (A, Γ) ↦ (AGB, AG), whereas the action of the right adjoint ψF on this concept is (A, Γ) ↦ 
(ΓF, ΓFB). So the appropriate pointwise constraints are: AGB = ΓF and ΓFB = AG, for every concept 
(A, Γ) ∈  L(A). The relational representation of these pointwise constraints is used in the definition of a 
bonding pair. 

○ A bonding pair 〈F, G〉  : A ⇌ B between two classifications 
A and B (Figure 15) is a contravariant pair of bonds, a bond 
F : A ⇀ B in the forward direction and a bond G : A ↽ B 
in the reverse direction, satisfying the following pairing 
constraints: 

F/τA = B/(ιA\G) and ιA\G = (F/τA)\B, 

which state that (F/τA, ιA\G) = (ιA ▫ F, G ▫ τB) is an L(A)-indexed collective B-concept (Diagram 6). 
The definitions of the relations F/τA and ιA\G are given as follows: F/τA = { (b, a) | int(a) ⊆  bF}  = 
{ (b, a) | ((bF)A, bF) ≤B a}  and ιA\G = { (a, β) | ext(a) ⊆  Gβ}  = { (a, β) | a ≤B (Gβ, (Gβ)A)} . Any concept 
a = (A, Γ) ∈  L(A) is mapped by the relations as: (F/τA)((A, Γ)) = { b | Γ ⊆  bF}  = ΓF and (ιA\G)((A, Γ)) 
= {β | A ⊆  Gβ}  = AG. Hence, pointwise the constraints are ΓF = BGB and AG = ΓFB. These are the 
pointwise constraints discussed above. Let BONDING PAIR denote the quasi-category of classifica-
tions and bonding pairs. 
(1) (KIF$collection bonding-pair) 
 
(2) (KIF$function source) 
    (= (KIF$source source) bonding-pair) 
    (= (KIF$target source) CLS$classification) 
 
(3) (KIF$function target) 
    (= (KIF$source target) bonding-pair) 
    (= (KIF$target target) CLS$classification) 
 
(4) (KIF$function forward) 
    (= (KIF$source forward) bonding-pair) 
    (= (KIF$target forward) bond) 
    (forall (?bp (bonding-pair ?bp)) 
        (and (= (CLS.BND$source (forward ?bp)) (source ?bp)) 
             (= (CLS.BND$target (forward ?bp)) (target ?bp)))) 
 
(5) (KIF$function reverse) 
    (= (KIF$source reverse) bonding-pair) 

Figure 15: Bonding Pair 

typ(A) 

inst(A) 

typ(B) 

inst(B) 

ιA\G 

F/τA 

F 

G 
L(A) 

τA 

ιA 

⇀ 

⇀
 ⇀

 

↽ 

A 

B 

ιA 
L(A) 

A 

F τB 

G 

Diagram 6: Bonding Pair 
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    (= (KIF$target reverse) bond) 
    (forall (?bp (bonding-pair ?bp)) 
        (and (= (CLS.BND$source (reverse ?bp)) (target ?bp)) 
             (= (CLS.BND$target (reverse ?bp)) (source ?bp)))) 
 
(6) (forall (?bp (bonding-pair ?bp)) 
        (and (= (REL$right-residuation [(CLS.CL$tau (source ?bp)) (forward ?bp)]) 
                (REL$right-residuation 
                    [(REL$left-residuation [(CLS.CL$iota (source ?bp)) (reverse ?bp)]) 
                     (target ?bp)])) 
             (= (REL$left-residuation [(CLS.CL$iota (source ?bp)) (reverse ?bp)]) 
                (REL$left-residuation 
                    [(REL$right-residuation [(CLS.CL$tau (source ?bp)) (forward ?bp)]) 
                     (target ?bp)])))) 

o The pointwise constraints can be lifted to a collective setting – any bonding pair 〈F, G〉  : A ⇌ B pre-
serves collective concepts: for any A-indexed collective A-concept (X, Y), X\A = Y and A/Y = X, the 
conceptual image (F/Y, X\G) is an A-indexed collective B-concept (Figure 16), since B/(X\G) = F/Y 
and (F/Y)\B = X\G. An important special case is the L(A)-
indexed collective A-concept (ιA, τA). To state that the 〈F, G〉-
image (F/τA, ιA\F) is an L(A)-indexed collective B-concept, is 
to assert the pairing constraints F/τA = B/(ιA\G) and ιA\G = 
(F/τB)\B of the bonding pair. So, the concise definition in terms 
of pairing constraints, the original pointwise definition above, 
and the assertion that 〈F, G〉  preserves all collective concepts, 
are equivalent versions of the notion of a bonding pair. 
(7) (KIF$function conceptual-image) 
    (= (KIF$source conceptual-image) bonding-pair) 
    (= (KIF$target conceptual-image) KIF$function) 
    (forall (?bp (bonding-pair ?bp)) 
        (and (= (KIF$source (conceptual-image ?bp)) (CLS.FIB$concept (source ?bp))) 
             (= (KIF$target (conceptual-image ?bp)) (CLS.FIB$concept (target ?bp))) 
             (forall (?a ((CLS.FIB$concept (source ?bp)) ?a)) 
                 (and (= ((CLS.FIB$index (target ?bp)) ((conceptual-image ?bp) ?a)) 
                         ((CLS.FIB$index (source ?bp)) ?a)) 
                      (= ((CLS.FIB$extent (target ?bp)) ((conceptual-image ?bp) ?a)) 
                         (CLS.FIB$right-residuation 
                             [(((CLS.FIB$intent (source ?bp)) ?a) 
                              (CLS.BND$classification (forward ?bp))])) 
                      (= ((CLS.FIB$intent (target ?bp)) ((conceptual-image ?bp) ?a)) 
                         (CLS.FIB$left-residuation 
                             [(((CLS.FIB$extent (source ?bp)) ?a) 
                              (CLS.BND$classification (reverse ?bp))])))))) 

○ Let 〈F, G〉  : A ⇌ B be any bonding pair. Then F : A ⇀ B is a bond in the forward direction from clas-
sification A to classification B, and G : A ↽ B is a bond in the reverse direction to classification A 
from classification B. Applying the complete adjoint functor A : BOND → COMPLETE ADJOINT, 
we get two adjoint pairs in opposite directions: an adjoint pair 〈ϕ F, ψF〉  : L(B) ⇄ L(A) in the forward 
direction and an adjoint pair 〈ϕ G, ψG〉  : L(A) ⇄ L(B) in the reverse direction. The meet-preserving 
monotonic function ψF : L(A) → L(B) is equal to the join-preserving monotonic function 
ϕG : L(A) → L(B), giving a complete lattice homomorphism. This function is the unique mediating 
function for the L(A)-indexed collective B-concept (F/τA, ιA\G), the 〈F, G〉-image of the L(A)-indexed 
collective A-concept (ιA, τA), whose closure expressions define the pairing constraints. 

 
(8) (KIF$function homomorphism) 
    (= (KIF$source homomorphism) bonding-pair) 
    (= (KIF$target homomorphism) CL.MOR$homomorphism) 

Figure 16: Conceptual Image 
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The complete lattice homomorphism associated with a bonding pair is the image of the morphism
function of the complete lattice functor applied to the bonding pair: 

A2 : BONDING PAIR → COMPLETE LATTICE. 
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    (forall (?bp (bonding-pair ?bp)) 
        (and (= (CL.MOR$source (homomorphism ?bp)) 
                (CLS.CL$complete-lattice (source ?bp))) 
             (= (CL.MOR$target (homomorphism ?bp)) 
                (CLS.CL$complete-lattice (target ?bp))) 
             (= (CL.MOR$forward (homomorphism ?bp)) 
                (CLS.BND$adjoint-pair (forward ?h))) 
             (= (CL.MOR$reverse (homomorphism ?bp)) 
                (CLS.BND$adjoint-pair (reverse ?h))))) 

o Two bonding pairs 〈F, G〉  : A ⇌ B and 〈M, N〉  : B ⇌ C are composable when the target of the first is 
the source of the second. The composition 〈F, G〉  ▫ 〈M, N〉  ≙ 〈F ▫ M, N ▫ G〉  : A ⇌ C of two compos-
able bonding pairs is defined in terms of bond composition. 
(9) (KIF$opspan composable-opspan) 
    (= composable-opspan [target source]) 
 
(10) (KIF$relation composable) 
     (= (KIF$collection1 composable) bonding-pair) 
     (= (KIF$collection2 composable) bonding-pair) 
     (= (KIF$extent composable) (KIF$pullback composable-opspan)) 
 
(11) (KIF$function composition) 
     (= (KIF$source composition) (KIF$pullback composable-opspan)) 
     (= (KIF$target composition) bonding-pair) 
     (forall (?bp1 (bonding-pair ?bp1) 
              ?bp2 (bonding-pair ?bp2) (composable ?bp1 ?bp2)) 
         (and (= (source (composition [?bp1 ?bp2])) (source ?bp1)) 
              (= (target (composition [?bp1 ?bp2])) (target ?bp2)) 
              (= (forward (composition [?bp1 ?bp2])) 
                 (CLS.BND$composition (forward ?bp1) (forward ?bp2))) 
              (= (reverse (composition [?bp1 ?bp2])) 
                 (CLS.BND$composition [(reverse ?bp2) (reverse ?bp1)])))) 

o For any classification A, define the bonding pair identity 〈IdA, IdA〉  : A ⇌ A in terms of bond identity. 
(12) (KIF$function identity) 
     (= (KIF$source identity) CLS$classification) 
     (= (KIF$target identity) bonding-pair) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (source (identity ?a)) ?a) 
              (= (target (identity ?a)) ?a) 
              (= (forward (identity ?a)) (CLS.BND$identity ?a)) 
              (= (reverse (identity ?a)) (CLS.BND$identity ?a)))) 

o For any classification A the type and instance embedding relations form bonding pairs in two different 
ways, 〈τA, ιA〉  : A ⇌ L(A) and 〈ι A, τA〉  : L(A) ⇌ A. 
(13) (KIF$function tau-iota) 
     (= (KIF$source tau-iota) CLS$classification) 
     (= (KIF$target tau-iota) bonding-pair) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (source (tau-iota ?a)) ?a) 
              (= (target (tau-iota ?a)) 
                 (LAT$classification (CLS.CL$complete-lattice ?a))) 
              (= (forward (tau-iota ?a)) (CLS.BND$tau ?a)) 
              (= (reverse (tau-iota ?a)) (CLS.BND$iota ?a)))) 
 
(14) (KIF$function iota-tau) 
     (= (KIF$source iota-tau) CLS$classification) 
     (= (KIF$target iota-tau) bonding-pair) 
     (forall (?a (CLS$classification ?a)) 
         (and (= (source (iota-tau ?a)) 
                 (LAT$classification (CLS.CL$complete-lattice ?a))) 
              (= (target (iota-tau ?a)) ?a) 
              (= (forward (iota-tau ?a)) (CLS.BND$iota ?a)) 
              (= (reverse (iota-tau ?a)) (CLS.BND$tau ?a)))) 

o For any classification A the two bonding pairs, 〈τA, ιA〉  : A ⇌ L(A) and 〈ι A, τA〉  : L(A) ⇌ A, are inverse 
to each other: 〈τA, ιA〉  ▫ 〈ι A, τA〉  = IdA and 〈ι A, τA〉  ▫ 〈τA, ιA〉  = IdL(A). Therefore, each classification is iso-
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morphic in the quasi-category BONDING PAIR to the classification of its complete lattice: 
A ≅  cls(clat(A)).  
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For any classification A the iota-tau bonding pair 〈ι A, τA〉  is the Ath component of a natural iso-
morphism B2(A2(A)) ≅  A, demonstrating that the quasi-category of bonding pairs is categorically
equivalent to the quasi-category of complete lattices:  

BONDING PAIR ≡ COMPLETE LATTICE. 
    (forall (?a (CLS$classification ?a)) 
        (and (= (composition [(tau-iota ?a) (iota-tau ?a)]) 
                (identity ?a)) 
             (= (composition [(iota-tau ?a) (tau-iota ?a)]) 
                (identity (LAT$classification (CLS.CL$complete-lattice ?a)))))) 

his is a natural isomorphism. Any bonding pair 〈F, G〉  : A ⇌ B satisfies the following naturality con-
ition: 〈ι A, τA〉  ▫ 〈F, G〉  = bndpr(homo(〈F, G〉)) ▫ 〈ι B, τB〉 . 

    (forall (?bp (bonding-pair ?bp)) 
        (= (composition [(iota-tau (source ?bp)) ?bp]) 
           (composition 
               [(LAT.MOR$bonding-pair (homomorphism ?bp)) 
                (iota-tau (target ?bp))]))) 

or any given bonding pair 〈F, G〉  : A ⇌ B the dual or opposite bonding pair 〈Gop, Fop〉  : Aop ⇌ Bop is 
e bonding pair with source/target classifications dualized, and forward/reverse bonds switched and 

ualized. 
15) (KIF$function opposite) 
    (= (KIF$source opposite) bonding-pair) 
    (= (KIF$target opposite) bonding-pair) 
    (forall (?bp (bonding-pair ?bp)) 
        (and (= (source (opposite ?bp)) (CLS$opposite (source ?bp))) 
             (= (target (opposite ?bp)) (CLS$opposite (target ?bp))) 
             (= (forward (opposite ?bp)) (CLS.BND$opposite (reverse ?bp))) 
             (= (reverse (opposite ?bp)) (CLS.BND$opposite (forward ?bp))))) 



IFF Foundation Ontology 

Robert E. Kent Page 59 1/2/2002 

Finite Colimits 
CLS.COL 

Classifications can be fused together and internalized using colimit operations. Here we present axioms that 
make CLASSIFICATION, the quasi-category of classifications and infomorphisms, finitely cocomplete. 
We assert the existence of initial classifications, binary coproducts of classifications, coequalizers of paral-
lel pairs of infomorphisms and pushouts of spans of infomorphisms. Because of commonality, the termi-
nology for binary coproducts, coequalizers and pushouts are put into sub-namespaces. The diagrams and 
colimits are denoted by both generic and specific terminology.  

The following discussion refers to Figure 17 (where arrows denote functors). 
The existence of colimits is mediated through the quasi-adjunction INST⊣℘  between  

INST : CLASSIFICATION → SETop the underlying instance quasi-functor, and  
℘  : SETop → CLASSIFICATION the instance power quasi-functor, 

and the (trivial) quasi-adjunction TYP ⊣ 1 between 
TYP : CLASSIFICATION → SET the underlying type quasi-functor, and  
1 : SET → CLASSIFICATION the (trivial) terminal type quasi-functor. 

Since the quasi-functors INST and TYP are left adjoint, they preserve all colimits. Using preservation as a 
guide, all diagrams, cocones and colimits in CLASSIFICATION have (and use) underlying instance/type 
diagrams, instance cones, type cocones, instance limits and type colimits in SET. 

The Initial Classification 
○ There is a special classification 0000 = 〈1 = {0} , ∅ , ∅〉  (see Figure 18, 

where arrows denote functions) called the initial classification, 
which has only one instance 0, no types, and empty incidence. The 
initial classification has the property that for any classification A = 
〈 inst(A), typ(A), ⊨A〉  there is a counique infomorphism !!!!A : 0000  ⇄ A, 
the unique infomorphism from 0000 to A. The instance function of this 
infomorphism is the unique function from the instance class inst(A) to the terminal (unit) class 1. The 
type function of this infomorphism is the counique function (the empty function) from the initial 
(empty or null) class ∅  to the type class typ(A). The fundamental constraint for the counique infomor-
phism is vacuous. 
(1) (CLS$classification initial) 
    (= (CLS$instance initial) SET.LIM$terminal) 
    (= (CLS$type initial) SET.COL$initial) 
    (= initial (REL$empty [SET.LIM$terminal SET.COL$initial]) 
 
(2) (KIF$function counique) 
    (= (KIF$source counique) CLS$classification) 
    (= (KIF$target counique) CLS.INFO$infomorphism) 
    (forall (?a (CLS$classification ?a)) 
        (and (= (CLS.INFO$source (counique ?a)) initial) 
             (= (CLS.INFO$target (counique ?a)) ?a) 
             (= (CLS.INFO$instance (counique ?a)) (SET.LIM$unique (CLS$instance ?s))) 
             (= (CLS.INFO$type (counique ?a)) (SET.COL$counique (CLS$type ?a))))) 

A 0000 
!!!!A 

Figure 18: Initial Classification 
& Universality 

Figure 17: Fibered Span 
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INST−1(SET) = CLASSIFICATION = TYP−1(SET) 
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Binary Coproducts 
CLS.COL.COPRD 

A binary coproduct (Figure 19) is a finite colimit for a diagram of shape two = • •. Such a diagram (of 
classifications and infomorphisms) is called a pair of classifications. Given a pair of classifications A1 = 
〈 inst(A1), typ(A1), ⊨1〉  and A2 = 〈 inst(A2), typ(A2), ⊨2〉 , the coproduct or sum A1 + A2 (see top of Figure 3, 
where arrows denote functions) is the classification defined as follows: 

− The class of instances is the Cartesian product inst(A1+A2) = 
inst(A1)×inst(A2). So, instances of A1 + A2 are pairs (i1, i2) of in-
stances i1 ∈  inst(A1) and i2 ∈  inst(A2). 

− The class of types is the disjoint union typ(A1+A2) = 
typ(A1)+typ(A2). Concretely, types of A1 + A2 are either pairs 
(1, t1) where t1 ∈  typ(A1) or pairs (2, t2) where t2 ∈  inst(A2). 

− The incidence ⊨1+ 2 of A1 + A2 is defined by 
(i1, i2) ⊨1+ 2 (1, t1) when i1 ⊨1 t1  
(i1, i2) ⊨1+ 2 (2, t2) when i2 ⊨2 t2. 

o A pair (of classifications) is the appropriate base diagram for a binary coproduct. Each pair consists of 
a pair of classifications called classification1 and classification2. We use either the generic term ‘dia-
gram’ or the specific term ‘pair’ to denotes the pair collection. Pairs are determined by their two com-
ponent classifications. 
(1) (KIF$collection diagram) 
    (KIF$collection pair) 
    (= pair diagram) 
 
(2) (KIF$function classification1) 
    (= (KIF$source classification1) diagram) 
    (= (KIF$target classification1) CLS$classification) 
 
(3) (KIF$function classification2) 
    (= (KIF$source classification2) diagram) 
    (= (KIF$target classification2) CLS$classification) 
 
    (forall (?p (diagram ?p) ?q (diagram ?q)) 
        (=> (and (= (classification1 ?p) (classification1 ?q)) 
                 (= (classification2 ?p) (classification2 ?q))) 
            (= ?p ?q))) 

o There is an instance pair or instance diagram function, which maps a pair of classifications to the un-
derlying pair of instance classes. Similarly, there is a type pair function, which maps a pair of classifi-
cations to the underlying pair of type classes. 
(4) (KIF$function instance-diagram) 
    (KIF$function instance-pair) 
    (= instance-pair instance-diagram) 
    (= (KIF$source instance-diagram) diagram) 
    (= (KIF$target instance-diagram) SET.LIM.PRD$diagram) 
    (forall (?p (diagram ?p)) 
        (and (= (SET.LIM.PRD$class1 (instance-diagram ?p)) 
                (CLS$instance (classification1 ?p))) 
             (= (SET.LIM.PRD$class2 (instance-diagram ?p)) 
                (CLS$instance (classification2 ?p))))) 
 
(5) (KIF$function type-diagram) 
    (KIF$function type-pair) 
    (= type-pair type-diagram) 
    (= (KIF$source type-diagram) diagram) 
    (= (KIF$target type-diagram) SET.COLIM.COPRD$diagram) 
    (forall (?p (diagram ?p)) 
        (and (= (SET.COLIM.COPRD$class1 (type-diagram ?p)) 
                (CLS$type (classification1 ?p))) 
             (= (SET.COLIM.COPRD$class2 (type-diagram ?p)) 
                (CLS$type (classification2 ?p))))) 

Figure 19: Binary Coproduct  
& Universality 
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o Every pair has an opposite.  
(6) (KIF$function opposite) 
    (= (KIF$source opposite) pair) 
    (= (KIF$target opposite) pair) 
    (forall (?p (pair ?p)) 
        (and (= (classification1 (opposite ?p)) (classification2 ?p)) 
             (= (classification2 (opposite ?p)) (classification1 ?p)))) 

o The opposite of the opposite is the original pair – the following theorem can be proven. 
    (forall (?p (pair ?p)) 
        (= (opposite (opposite ?p)) ?p)) 

 

o A binary coproduct cocone is the appropriate cocone for a binary coproduct. 
A coproduct cocone (see Figure 20, where arrows denote functions) consists 
of a pair of infomorphisms called opfirst and opsecond. These are required to 
have a common source classification called the opvertex of the cocone. Each 
binary coproduct cocone is under a pair of classifications.  
(7) (KIF$collection cocone) 
 
(8) (KIF$function cocone-diagram) 
    (= (KIF$source cocone-diagram) cocone) 
    (= (KIF$target cocone-diagram) diagram) 
 
(9) (KIF$function opvertex) 
    (= (KIF$source opvertex) cocone) 
    (= (KIF$target opvertex) CLS$classification) 
 
(10) (KIF$function opfirst) 
     (= (KIF$source opfirst) cocone) 
     (= (KIF$target opfirst) CLS.INFO$infomorphism) 
     (forall (?s (cocone ?s)) 
         (and (= (CLS.INFO$source (opfirst ?s)) 
                 (classification1 (cocone-diagram ?s))) 
              (= (CLS.INFO$target (opfirst ?s)) (opvertex ?s)))) 
 
(11) (KIF$function opsecond) 
     (= (KIF$source opsecond) cocone) 
     (= (KIF$target opsecond) CLS.INFO$infomorphism) 
     (forall (?s (cocone ?s)) 
         (and (= (CLS.INFO$source (opsecond ?s)) 
                 (classification2 (cocone-diagram ?s))) 
              (= (CLS.INFO$target (opsecond ?s)) (opvertex ?s)))) 

o There is an instance cone function, which maps a binary coproduct cocone of classifications and info-
morphisms to the underlying binary product cone of instance classes and instance functions. Similarly, 
there is a type cocone function, which maps a binary coproduct cocone of classifications and infomor-
phisms to the underlying binary coproduct cocone of type classes and type functions. 
(12) (KIF$function instance-cone) 
     (= (KIF$source instance-cone) cocone) 
     (= (KIF$target instance-cone) SET.LIM.PRD$cone) 
     (forall (?s (cocone ?s)) 
         (and (= (SET.LIM.PRD$cone-diagram (instance-cone ?s))  
                 (instance-diagram (cocone-diagram ?s))) 
              (= (SET.LIM.PRD$vertex (instance-cone ?s)) 
                 (CLS$instance (opvertex ?s))) 
              (= (SET.LIM.PRD$first (instance-pair ?s)) 
                 (CLS.INFO$instance (opfirst ?s))) 
              (= (SET.LIM.PRD$second (instance-pair ?s)) 
                 (CLS.INFO$instance (opsecond ?s))))) 
 
(13) (KIF$function type-cocone) 
     (= (KIF$source type-cocone) cocone) 
     (= (KIF$target type-cocone) SET.COLIM.COPRD$cocone) 
     (forall (?s (cocone ?s)) 

Figure 20: Binary 
Coproduct Cocone 
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         (and (= (SET.COLIM.COPRD$cocone-diagram (type-cocone ?s))  
                 (type-diagram (cocone-diagram ?s))) 
              (= (SET.COLIM.COPRD$opvertex (type-cocone ?s)) 
                 (CLS$type (opvertex ?s))) 
              (= (SET.COLIM.COPRD$opfirst (type-cocone ?s)) 
                 (CLS.INFO$type (opfirst ?s))) 
              (= (SET.COLIM.COPRD$opsecond (type-cocone ?s)) 
                 (CLS.INFO$type (opsecond ?s))))) 

○ There is a KIF function ‘colimiting-cone’ that maps a pair (of classifications) to its binary coproduct 
(colimiting binary coproduct cocone) (see Figure 21, where arrows denote functions). The totality of 
this function, along with the universality of the comediator infomorphism, implies that a binary copro-
duct exists for any pair of classifications. The opvertex of the colimiting binary coproduct cocone is a 
specific binary coproduct class. It comes equipped with two injection infomorphisms. The binary 
coproduct and injections are expressed both abstractly in the second 
to last axiom and concretely in the last axiom. The last axiom im-
plicitly ensures that both the coproduct and the two injection info-
morphisms are specific – that its instance class is exactly the Carte-
sian product of the instance classes of the pair of classifications and 
that its type class is exactly the disjoint union of the type classes of 
the pair of classifications. 
(14) (KIF$function colimiting-cocone) 
     (= (KIF$source colimiting-cocone) diagram) 
     (= (KIF$target colimiting-cocone) cocone) 
     (forall (?p (diagram ?p)) 
         (= (cocone-diagram (colimiting-cocone ?p)) ?p)) 
 
(15) (KIF$function colimit) 
     (KIF$function binary-coproduct) 
     (= binary-coproduct colimit) 
     (= (KIF$source colimit) diagram) 
     (= (KIF$target colimit) CLS$classification) 
 
(16) (KIF$function injection1) 
     (= (KIF$source injection1) diagram) 
     (= (KIF$target injection1) CLS.INFO$infomorphism) 
 
(17) (KIF$function injection2) 
     (= (KIF$source injection2) diagram) 
     (= (KIF$target injection2) CLS.INFO$infomorphism) 
 
(18) (forall (?p (diagram ?p)) 
         (and (= (colimit ?p) (opvertex (colimiting-cocone ?p))) 
              (= (CLS.INFO$source (injection1 ?p)) (classification1 ?p)) 
              (= (CLS.INFO$target (injection1 ?p)) (colimit ?p)) 
              (= (injection1 ?p) (opfirst (colimiting-cocone ?p))) 
              (= (CLS.INFO$source (injection2 ?p)) (classification2 ?p)) 
              (= (CLS.INFO$target (injection2 ?p)) (colimit ?p)) 
              (= (injection2 ?p) (opsecond (colimiting-cocone ?p))))) 
 
(19) (forall (?p (diagram ?p) 
              ?i ((CLS$instance (colimit ?p)) ?i) 
              ?t ((CLS$type (colimit ?p)) ?t)) 
         (<=> ((colimit ?p) ?i ?t) 
              (and (=> (= (?t 1) 1) ((classification1 ?p) (?i 1) (?t 2))) 
                   (=> (= (?t 1) 2) ((classification2 ?p) (?i 2) (?t 2)))))) 

o The following two axioms are the necessary conditions that the instance and type quasi-functors pre-
serve concrete colimits. These explicitly ensure that this colimit is specific – that its instance class is 
exactly the Cartesian product of the instance classes of the pair of classifications and that its type class 
is exactly the disjoint union of the type classes of the pair of classifications. Also, these explicitly en-
sure that the two coproduct injection infomorphisms are specific – that their instance functions are ex-
actly the Cartesian product projections of the instance classes of the pair of classifications and that 
their type functions are exactly the disjoint union injections of the type classes of the pair of classifica-
tions. 

Figure 21: Colimiting Cocone 
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(20) (forall (?p (diagram ?p)) 
         (and (= (instance-cone (colimiting-cocone ?p)) 
                 (SET.LIM.PRD$limiting-cone (instance-diagram ?p))) 
              (= (CLS$instance (colimit ?p)) 
                 (SET.LIM.PRD$limit (instance-diagram ?p))) 
              (= (CLS.INFO$instance (injection1 ?p)) 
                 (SET.LIM.PRD$projection1 (instance-diagram ?p))) 
              (= (CLS.INFO$instance (injection2 ?p)) 
                 (SET.LIM.PRD$projection2 (instance-diagram ?p))))) 
 
(21) (forall (?p (diagram ?p)) 
         (and (= (type-cocone (colimiting-cocone ?p)) 
                 (SET.COL.COPRD$colimiting-cocone (type-diagram ?p))) 
              (= (CLS$type (colimit ?p)) 
                 (SET.COL.COPRD$colimit (type-diagram ?p))) 
              (= (CLS.INFO$type (injection1 ?p)) 
                 (SET.COL.COPRD$injection1 (type-diagram ?p))) 
              (= (CLS.INFO$type (injection2 ?p)) 
                 (SET.COL.COPRD$injection2 (type-diagram ?p))))) 

o For any binary coproduct cocone, there is a comediator infomorphism 
γ : A1+A2 ⇄ A (see Figure 22, where arrows denote infomorphisms) from 
the binary coproduct of the underlying diagram (pair of classifications) to 
the opvertex of the cocone. This is the unique infomorphism, which com-
mutes with opfirst and opsecond. We define this by using the mediator of 
the underlying instance cone and the comediator of the underlying type co-
cone. Existence and uniqueness represents the universality of the binary 
coproduct operator.  
(22) (KIF$function comediator) 
     (= (KIF$source comediator) cocone) 
     (= (KIF$target comediator) CLS.INFO$infomorphism) 
     (forall (?s (cocone ?s)) 
         (and (= (CLS.INFO$source (comediator ?s)) (colimit (cocone-diagram ?s))) 
              (= (CLS.INFO$target (comediator ?s)) (opvertex ?s)) 
              (= (CLS.INFO$instance (comediator ?s)) 
                 (SET.LIM.PRD$mediator (instance-cone ?s))) 
              (= (CLS.INFO$type (comediator ?s)) 
                 (SET.COL.COPRD$comediator (type-cocone ?s))))) 

○ It can be verified that the comediator is the unique infomorphism that makes the diagram in Figure 6 
commutative. 
     (forall (?s (cocone ?s)) 
         (= (comediator ?s) 
            (the (?f (CLS.INFO$infomorphism ?f)) 
                (and (= (CLS.INFO$composition [(injection1 (cocone-diagram ?s)) ?f]) 
                        (opfirst ?s)) 
                     (= (CLS.INFO$composition [(injection2 (cocone-diagram ?s)) ?f]) 
                        (opsecond ?s)))))) 

Coinvariants and Coquotients 
CLS.COL.COINV 

○ Given a classification A = 〈 inst(A), typ(A), ⊨A〉 , a coinvariant (called a dual invariant in Barwise and 
Seligman, 1997) is a pair J = 〈A, R〉  consisting of a subclass of instances A ⊆  inst(A) and a binary en-
dorelation R on types R ⊆  typ(A)×typ(A) that satisfies the fundamental constraint: 

if (t0, t1) ∈  R then for each i ∈  A,  i ⊨A t0 iff i ⊨A t1. 

The classification A is called the base classification of J – the classification on which J is based. A 
coinvariant is determined by its base, class and endorelation triple. 
(1) (KIF$collection coinvariant) 
 
(2) (KIF$function classification) 
    (KIF$function base) 
    (= base classification) 

Figure 22: Coproduct  
Comediator 
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    (= (KIF$source base) coinvariant) 
    (= (KIF$target base) CLS$classification) 
 
(3) (KIF$function class) 
    (= (KIF$source class) coinvariant) 
    (= (KIF$target class) SET$class) 
 
(4) (KIF$function endorelation) 
    (= (KIF$source endorelation) coinvariant) 
    (= (KIF$target endorelation) REL.ENDO$endorelation) 
 
(5) (forall (?j (coinvariant ?j)) 
        (and (SET$subclass (class ?j) (CLS$instance (base ?j))) 
             (= (REL.ENDO$class (endorelation ?j)) (CLS$type (base ?j))) 
             (forall (?t0 ?t1 ((endorelation ?j) ?t0 ?t1) 
                      ?i ((class ?j) ?i))  
                 (<=> ((base ?j) ?i ?t0) 
                      ((base ?j) ?i ?t1))))) 
 
    (forall (?j1 (coinvariant ?j1) ?j2 (coinvariant ?j2)) 
        (=> (and (= (base ?j1) (base ?j2)) 
                 (= (class ?j1) (class ?j2)) 
                 (= (endorelation ?j1) (endorelation ?j2))) 
            (= ?j1 ?j2))) 

○ Often, the relation R is an equivalence relation on the types. However (Barwise and Seligman, 1997), it 
is convenient not to require this. The endorelation R is contained in a smallest equivalence relation ≡R 
on types called the equivalence relation generated by R. This is the reflexive, symmetric, transitive clo-
sure of R. For any type t ∈  typ(A), write [t]R for the R-equivalence class of t. Then Ĵ = 〈A, ≡R〉  is also a 
coinvariant on A. 

The coquotient A/J of a coinvariant J on a classification A (see Figure 23, where arrows denote func-
tions) (called the dual quotient in Barwise and Seligman, 1997) is the classification defined as follows: 
− The class of instances of A/J is A, the given subset of inst(A).  
− The class of types of A/J is typ(A)/R, the quotient class over typ(A) of R-equivalence classes. 

− The incidence ⊨A/J of A/J is defined by 
i ⊨A/J [t]R when i ⊨A t 

which is well-defined by the fundamental constraint. 
There is a canonical quotient infomorphism ττττJ : A ⇄ A/J, whose instance 
function is the inclusion function inc : A → inst(A), and whose type func-
tion is the canonical quotient function [-]R : typ(A) → typ(A)/R. The fun-
damental property for this infomorphism is trivial, given the definition of 
the coquotient incidence above.  

(6) (KIF$function coquotient) 
    (= (KIF$source coquotient) coinvariant) 
    (= (KIF$target coquotient) CLS$classification) 
    (forall (?j (coinvariant ?j)) 
        (and (= (CLS$instance (coquotient ?j)) (class ?j)) 
             (= (CLS$type (coquotient ?j)) 
                (REL.ENDO$quotient (REL.ENDO$equivalence-closure (endorelation ?j)))) 
             (forall (?i ((class ?j) ?i) 
                      ?t ((CLS$type (base ?j)) ?t)) 
                 (<=> ((coquotient ?j) 
                          ?i 
                          ((REL.ENDO$canon 
                              (REL.ENDO$equivalence-closure (endorelation ?j))) ?t)) 
                      ((base ?j) ?i ?t))))) 
 
(7) (KIF$function canon) 
    (= (KIF$source canon) coinvariant) 
    (= (KIF$target canon) CLS.INFO$infomorphism) 
    (forall (?j (coinvariant ?j)) 

A/J A 

B 

ττττJ 

f 
f  

Figure 23: Universality  
of the Coquotient 
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        (and (= (CLS.INFO$source (canon ?j)) (base ?j)) 
             (= (CLS.INFO$target (canon ?j)) (coquotient ?j)) 
             (= (CLS.INFO$instance (canon ?j)) 
                (SET.FTN$inclusion [(class ?j) (CLS$instance (base ?j))])) 
             (= (CLS.INFO$type (canon ?j)) 
                (REL.ENDO$canon (REL.ENDO$equivalence-closure (endorelation ?j)))))) 

○ Let J = 〈A, R〉  be a coinvariant on a classification A. An infomorphism f : A ⇄ B respects J when: 
− for any instance j ∈  inst(B),  inst(f)(j) ∈  A; and 
− for any two types t0, t1 ∈  typ(A), if (t0, t1) ∈  R then typ(f)(t0) = typ(f)(t1). 
(8) (KIF$relation respects) 
    (= (KIF$collection1 respects) CLS.INFO$infomorphism) 
    (= (KIF$collection2 respects) coinvariant) 
    (forall (?f (CLS.INFO$infomorphism ?f) 
             ?J (coinvariant ?J)) 
        (<=> (respects ?f ?J) 
             (and (= (CLS.INFO$source ?f) (base ?J)) 
                  (forall (?j ((CLS$instance (CLS.INFO$target ?f)) ?j)) 
                      ((class ?J) ((CLS.INFO$instance ?f) ?j))) 
                  (forall (?t0 ((CLS$type (CLS.INFO$source ?f)) ?t0) 
                           ?t1 ((CLS$type (CLS.INFO$source ?f)) ?t1) 
                           ((endorelation ?j) ?t0 ?t1)) 
                      (= ((CLS.INFO$type ?f) ?t0) ((CLS.INFO$type ?f) ?t1)))))) 

Proposition. For every coinvariant J on a classification A and every infomorphism f : A ⇄ B that re-
spects J, there is a unique comediating infomorphism f  : A/J ⇄ B such that  ττττJ ◦ f  = f  (the diagram in 
Figure 7 commutes). 

Based on this proposition, a definite description is used to define a comediator function (Figure 7) that 
maps a pair (f, J) consisting of a coinvariant and a respectful infomorphism to their comediator f .  
(9) (KIF$function comediator) 
    (= (KIF$source comediator) (KIF$extent respects)) 
    (= (KIF$target comediator) CLS.INFO$infomorphism) 
    (forall (?j (coinvariant ?j) 
             ?f (CLS.INFO$infomorphism ?f) (respects ?f ?j)) 
        (= (comediator [?f ?j]) 
           (the (?ft (CLS.INFO$infomorphism ?ft)) 
               (and (= (CLS.INFO$source ?ft) (coquotient ?j)) 
                    (= (CLS.INFO$target ?ft) (CLS.INFO$target ?f)) 
                    (= (CLS.INFO$composition [(canon ?j) ?ft]) ?f))))) 

Coequalizers 
CLS.COL.COEQ 

A coequalizer is a finite colimit in CLASSIFICATION for a diagram of shape parallel-pair = •⇉•. Such 
a diagram (of classes and functions) is called a parallel pair of functions.  

o A parallel pair (see Figure 24, where arrows denote infomorphisms) is the 
appropriate base diagram for a coequalizer. Each parallel pair consists of a 
pair of infomorphisms called infomorphism1 and infomorphism2 that share 
the same source and target classifications. We use either the generic term 
‘diagram’ or the specific term ‘parallel-pair’ to denote the parallel pair 
collection. Parallel pairs are determined by their two component infomor-
phisms. 
(1) (KIF$collection diagram) 
    (KIF$collection parallel-pair) 
    (= parallel-pair diagram) 
 
(2) (KIF$function source) 
    (= (KIF$source source) diagram) 
    (= (KIF$target source) CLS$classification) 
 
(3) (KIF$function target) 

B A 
f1 

f2 

Figure 24: Parallel Pair 
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    (= (KIF$source target) diagram) 
    (= (KIF$target target) CLS$classification) 
 
(4) (KIF$function infomorphism1) 
    (= (KIF$source infomorphism1) diagram) 
    (= (KIF$target infomorphism1) CLS.INFO$infomorphism) 
 
(5) (KIF$function infomorphism2) 
    (= (KIF$source infomorphism2) diagram) 
    (= (KIF$target infomorphism2) CLS.INFO$infomorphism) 
 
(6) (forall (?p (diagram ?p)) 
        (and (= (SET.FTN$source (infomorphism1 ?p)) (source ?p)) 
             (= (SET.FTN$target (infomorphism1 ?p)) (target ?p)) 
             (= (SET.FTN$source (infomorphism2 ?p)) (source ?p)) 
             (= (SET.FTN$target (infomorphism2 ?p)) (target ?p)))) 
 
    (forall (?p (diagram ?p) ?q (diagram ?q)) 
        (=> (and (= (infomorphism1 ?p) (infomorphism1 ?q)) 
                 (= (infomorphism2 ?p) (infomorphism2 ?q))) 
            (= ?p ?q))) 

o There is an instance parallel pair or instance diagram function, which maps a parallel pair of infomor-
phisms to the underlying (SET.LIM.EQU) parallel pair of instance functions. Similarly, there is a type 
parallel pair or type diagram function, which maps a parallel pair of infomorphisms to the underlying 
(SET.COLIM.COEQ) parallel pair of type functions. 
(7) (KIF$function instance-diagram) 
    (KIF$function instance-parallel-pair) 
    (= instance-parallel-pair instance-diagram) 
    (= (KIF$source instance-diagram) diagram) 
    (= (KIF$target instance-diagram) SET.LIM.EQU$diagram) 
    (forall (?p (diagram ?p)) 
        (and (= (SET.LIM.EQU$source (instance-diagram ?p)) 
                (CLS$instance (target ?p))) 
             (= (SET.LIM.EQU$target (instance-diagram ?p)) 
                (CLS$instance (source ?p))) 
             (= (SET.LIM.EQU$function1 (instance-diagram ?p)) 
                (CLS.INFO$instance (infomorphism1 ?p))) 
             (= (SET.LIM.EQU$function2 (instance-diagram ?p)) 
                (CLS.INFO$instance (infomorphism2 ?p))))) 
 
(8) (KIF$function type-diagram) 
    (KIF$function type-parallel-pair) 
    (= type-parallel-pair type-diagram) 
    (= (KIF$source type-diagram) diagram) 
    (= (KIF$target type-diagram) SET.COLIM.COEQ$diagram) 
    (forall (?p (diagram ?p)) 
        (and (= (SET.COLIM.COEQ$source (type-diagram ?p)) 
                (CLS$type (source ?p))) 
             (= (SET.COLIM.COEQ$target (type-diagram ?p)) 
                (CLS$type (target ?p))) 
             (= (SET.COLIM.COEQ$function1 (type-diagram ?p)) 
                (CLS.INFO$type (infomorphism1 ?p))) 
             (= (SET.COLIM.COEQ$function2 (type-diagram ?p)) 
                (CLS.INFO$type (infomorphism2 ?p))))) 

o The information in a coequalizer diagram (parallel pair of infomorphisms) is equivalently expressed as 
a coinvariant based on the target classification of the parallel pair, whose class is the equalizer of in-
stance diagram, and whose endorelation is the coequalizer endorelation of the type diagram.  
(9) (KIF$function coinvariant) 
    (= (KIF$source coinvariant) diagram) 
    (= (KIF$target coinvariant) CLS.COL.COINV$coinvariant) 
    (forall (?p (diagram ?p)) 
        (and (= (CLS.COL.COINV$base (coinvariant ?p)) (target ?p)) 
             (= (CLS.COL.COINV$class (coinvariant ?p)) 
                (SET.LIM.EQU$equalizer (instance-diagram ?p))) 
             (= (CLS.COL.COINV$endorelation (coinvariant ?p)) 
                (SET.COL.COEQ$endorelation (type-diagram ?p))))) 
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o The notion of a coequalizer cocone is used to specify and axiomatize co-
equalizers. Each coequalizer cocone (see Figure 25, where arrows denote 
infomorphisms) has an opvertex classification, and an infomorphism whose 
source classification is the target classification of the infomorphisms in the 
parallel-pair and whose target classification is the opvertex. Since Figure 25 
is commutative, the composite infomorphism is not needed. Each coequal-
izer cocone is situated under a coequalizer diagram (parallel pair of 
infomorphisms). 
(10) (KIF$collection cocone) 
 
(11) (KIF$function cocone-diagram) 
     (= (KIF$source cocone-diagram) cocone) 
     (= (KIF$target cocone-diagram) diagram) 
 
(12) (KIF$function opvertex) 
     (= (KIF$source opvertex) cocone) 
     (= (KIF$target opvertex) CLS$classification) 
 
(13) (KIF$function infomorphism) 
     (= (KIF$source infomorphism) cocone) 
     (= (KIF$target infomorphism) CLS.INFO$infomorphism) 
 
(14) (forall (?s (cocone ?s)) 
        (and (= (CLS.INFO$source (infomorphism ?s)) (target (cocone-diagram ?s))) 
             (= (CLS.INFO$target (infomorphism ?s)) (opvertex ?s)) 
             (= (CLS.INFO$composition 
                    [(infomorphism1 (cocone-diagram ?s)) 
                     (infomorphism ?s)]) 
                (CLS.INFO$composition 
                    [(infomorphism2 (cocone-diagram ?s)) 
                     (infomorphism ?s)])))) 

o The instance equalizer cone function maps a coequalizer cocone of classifications and infomorphisms 
to the underlying equalizer cone of instance classes and instance functions. Dually, the type coequal-
izer cocone function maps a coequalizer cocone of classifications and infomorphisms to the underlying 
coequalizer cocone of type classes and type functions. 
(15) (KIF$function instance-cone) 
     (= (KIF$source instance-cone) cocone) 
     (= (KIF$target instance-cone) SET.LIM.EQU$cone) 
     (forall (?s (cocone ?s)) 
         (and (= (SET.LIM.EQU$cone-diagram (instance-cone ?s))  
                 (instance-diagram (cocone-diagram ?s))) 
              (= (SET.LIM.EQU$vertex (instance-cone ?s)) 
                 (CLS$instance (opvertex ?s))) 
              (= (SET.LIM.EQU$function (instance-pair ?s)) 
                 (CLS.INFO$instance (infomorphism ?s))))) 
 
(16) (KIF$function type-cocone) 
     (= (KIF$source type-cocone) cocone) 
     (= (KIF$target type-cocone) SET.COLIM.COEQ$cocone) 
     (forall (?s (cocone ?s)) 
         (and (= (SET.COLIM.COEQ$cocone-diagram (type-cocone ?s))  
                 (type-diagram (cocone-diagram ?s))) 
              (= (SET.COLIM.COEQ$opvertex (type-cocone ?s)) 
                 (CLS$type (opvertex ?s))) 
              (= (SET.COLIM.COEQ$function (type-cocone ?s)) 
                 (CLS.INFO$type (infomorphism ?s))))) 

o It is important to observe that the infomorphism in a cocone respects the coinvariant of the underlying 
diagram of the cocone. This fact is needed to help define the comediator of a cocone. 
     (forall (?s (cocone ?s)) 
         (CLS.COL.COINV$respects (infomorphism ?s) (coinvariant (cocone-diagram ?s)))) 
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o There is a KIF function ‘limiting-cone’ that maps a parallel pair (of info-
morphisms) to its coequalizer (colimiting coequalizer cocone) (see Figure 
26, where arrows denote infomorphisms). The totality of this function, along 
with the universality of the comediator infomorphism, implies that a co-
equalizer exists for any parallel pair of infomorphisms. The opvertex of the 
colimiting coequalizer cocone is a specific coequalizer class. It comes 
equipped with a canon infomorphism. The coequalizer and canon are ex-
pressed both abstractly, and, in the last axiom, as the coquotient and canon of 
the coinvariant of the diagram. 
(17) (KIF$function colimiting-cocone) 
     (= (KIF$source colimiting-cocone) diagram) 
     (= (KIF$target colimiting-cocone) cocone) 
     (forall (?p (diagram ?p)) 
         (= (cocone-diagram (colimiting-cocone ?p)) ?p)) 
 
(18) (KIF$function colimit) 
     (KIF$function coequalizer) 
     (= coequalizer colimit) 
     (= (KIF$source colimit) diagram) 
     (= (KIF$target colimit) CLS$classification) 
 
(19) (KIF$function canon) 
     (= (KIF$source canon) diagram) 
     (= (KIF$target canon) CLS.INFO$infomorphism) 
 
(20) (forall (?p (diagram ?p)) 
         (and (= (colimit ?p) (opvertex (colimiting-cocone ?p))) 
              (= (CLS.INFO$source (canon ?p)) (target ?p)) 
              (= (CLS.INFO$target (canon ?p)) (colimit ?p)) 
              (= (canon ?p) (infomorphism (colimiting-cocone ?p))))) 
 
(21) (forall (?p (diagram ?p)) 
        (and (= (colimit ?p) (CLS.COL.COINV$coquotient (coinvariant ?p))) 
             (= (canon ?p) (CLS.COL.COINV$canon (coinvariant ?p))))) 

o The following two axioms are the necessary conditions that the instance and type quasi-functors pre-
serve concrete colimits. These ensure that both this coequalizer and its canon infomorphism are spe-
cific.  
(22) (forall (?p (diagram ?p)) 
         (and (= (instance-cone (colimiting-cocone ?p)) 
                 (SET.LIM.EQU$limiting-cone (instance-diagram ?p))) 
              (= (CLS$instance (colimit ?p)) 
                 (SET.LIM.EQU$limit (instance-diagram ?p))) 
              (= (CLS.INFO$instance (canon ?p)) 
                 (SET.LIM.EQU$inclusion (instance-diagram ?p))))) 
 
(23) (forall (?p (diagram ?p)) 
         (and (= (type-cocone (colimiting-cocone ?p)) 
                 (SET.COL.COEQ$colimiting-cocone (type-diagram ?p))) 
              (= (CLS$type (colimit ?p)) 
                 (SET.COL.COEQ$colimit (type-diagram ?p))) 
              (= (CLS.INFO$type (canon ?p)) 
                 (SET.COL.COEQ$canon (type-diagram ?p))))) 

o The comediator infomorphism, from the coequalizer of a parallel pair of 
infomorphisms to the opvertex of a cocone under the parallel pair (see 
Figure 27, where arrows denote infomorphisms), is the unique infomor-
phism that commutes with cocone infomorphisms. This is defined ab-
stractly by using a definite description, and is defined concretely as the 
comediator of the associated coinvariant. 
(24) (KIF$function comediator) 
     (= (KIF$source comediator) cocone) 
     (= (KIF$target comediator) CLS.INFO$infomorphism) 
     (forall (?s (cocone ?s)) 
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         (and (= (CLS.INFO$source (comediator ?s)) (colimit (cocone-diagram ?s))) 
              (= (CLS.INFO$target (comediator ?s)) (opvertex ?s)) 
              (= (comediator ?s) 
                 (the (?m (CLS.INFO$infomorphism ?m)) 
                     (= (composition [(canon (cocone-diagram ?s)) ?m]) 
                        (infomorphism ?s)))))) 
 
(25) (forall (?s (cocone ?s)) 
         (= (comediator ?s) 
            (CLS.COL.COINV$comediator 
                [(infomorphism ?s) (coinvariant (cocone-diagram ?s))]))) 

Pushouts 
CLS.COL.PSH 

A pushout is a finite colimit for a diagram of shape span = •←•→•. 
Such a diagram (of classifications and infomorphisms) is called an span 
(see Figure 28, where arrows denote infomorphisms) 

o A span is the appropriate base diagram for a pushout. Each opspan 
consists of a pair of infomorphisms called first and second. These are 
required to have a common source classification B, denoted as the 
vertex. We use either the generic term ‘diagram’ or the specific term 
‘span’ to denote the span collection. A span is the special case of a 
general diagram whose shape is the graph that is also named span. 
Spans are determined by their pair of component infomorphisms. 
(1) (KIF$collection diagram) 
    (KIF$collection span) 
    (= span diagram) 
 
(2) (KIF$function classification1) 
    (= (KIF$source classification1) diagram) 
    (= (KIF$target classification1) CLS$classification) 
 
(3) (KIF$function classification2) 
    (= (KIF$source classification2) diagram) 
    (= (KIF$target classification2) CLS$classification) 
 
(4) (KIF$function vertex) 
    (= (KIF$source vertex) diagram) 
    (= (KIF$target vertex) CLS$classification) 
 
(5) (KIF$function first) 
    (= (KIF$source first) diagram) 
    (= (KIF$target first) CLS.INFO$infomorphism) 
 
(6) (KIF$function second) 
    (= (KIF$source second) diagram) 
    (= (KIF$target second) CLS.INFO$infomorphism) 
 
(7) (forall (?r (diagram ?r)) 
       (and (= (CLS.INFO$source (first ?r)) (vertex ?r)) 
            (= (CLS.INFO$source (second ?r)) (vertex ?r)) 
            (= (CLS.INFO$target (first ?r)) (classification1 ?r)) 
            (= (CLS.INFO$target (second ?r)) (classification2 ?r)))) 
 
    (forall (?r1 (diagram ?r1) ?r2 (diagram ?r2)) 
       (=> (and (= (first ?r1) (first ?r2)) 
                (= (second ?r1) (second ?r2))) 
           (= ?r1 ?r2))) 

o The pair of target classifications (suffixing discrete diagram) underlying any span is named. This con-
struction is derived from the fact that the pair shape is a subshape of span shape. 
(8) (KIF$function pair) 
    (= (KIF$source pair) diagram) 
    (= (KIF$target pair) CLS.COL.COPRD$diagram) 
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    (forall (?r (diagram ?r)) 
        (and (CLS.COL.COPRD$classification1 (pair ?r)) (classification1 ?r)) 
             (CLS.COL.COPRD$classification2 (pair ?r)) (classification2 ?r)))) 

o Every span has an opposite.  
(9) (KIF$function opposite) 
    (= (KIF$source opposite) span) 
    (= (KIF$target opposite) span) 
    (forall (?r (span ?r)) 
       (and (= (classification1 (opposite ?r)) (classification2 ?r)) 
            (= (classification2 (opposite ?r)) (classification1 ?r)) 
            (= (vertex (opposite ?r)) (vertex ?r)) 
            (= (first (opposite ?r)) (second ?r)) 
            (= (second (opposite ?r)) (first ?r)))) 

o The opposite of the opposite is the original opspan – the following theorem can be proven. 
    (forall (?r (span ?r)) 
       (= (opposite (opposite ?r)) ?r)) 

o The instance opspan or instance diagram function maps a span of infomorphisms to the underlying 
(SET.LIM.PBK) opspan of instance functions. Dually, the type span or type diagram function maps a 
span of infomorphisms to the underlying (SET.COLIM.COEQ) span of type functions. 
(10) (KIF$function instance-diagram) 
     (KIF$function instance-opspan) 
     (= instance-opspan instance-diagram) 
     (= (KIF$source instance-diagram) diagram) 
     (= (KIF$target instance-diagram) SET.LIM.PBK$diagram) 
     (forall (?r (diagram ?r)) 
         (and (= (SET.LIM.PBK$class1 (instance-diagram ?r)) 
                 (CLS$instance (classification1 ?r))) 
              (= (SET.LIM.PBK$class2 (instance-diagram ?r)) 
                 (CLS$instance (classification2 ?r))) 
              (= (SET.LIM.PBK$opvertex (instance-diagram ?r)) 
                 (CLS$instance (vertex ?r))) 
              (= (SET.LIM.PBK$opfirst (instance-diagram ?r)) 
                 (CLS.INFO$instance (first ?r))) 
              (= (SET.LIM.PBK$opsecond (instance-diagram ?r)) 
                 (CLS.INFO$instance (second ?r))))) 
 
(11) (KIF$function type-diagram) 
     (KIF$function type-span) 
     (= type-span type-diagram) 
     (= (KIF$source type-diagram) diagram) 
     (= (KIF$target type-diagram) SET.COL.PSH$diagram) 
     (forall (?r (diagram ?r)) 
         (and (= (SET.COL.PSH$class1 (type-diagram ?r)) 
                 (CLS$type (classification1 ?r))) 
              (= (SET.COL.PSH$class2 (type-diagram ?r)) 
                 (CLS$type (classification2 ?r))) 
              (= (SET.COL.PSH$vertex (type-diagram ?r)) 
                 (CLS$type (vertex ?r))) 
              (= (SET.COL.PSH$first (type-diagram ?r)) 
                 (CLS.INFO$type (first ?r))) 
              (= (SET.COL.PSH$second (type-diagram ?r)) 
                 (CLS.INFO$type (second ?r))))) 

o The parallel pair or coequalizer diagram function maps a span of 
infomorphisms to the associated (CLS.COL.COEQ) parallel pair of 
infomorphisms (see Figure 29, where arrows denote infomor-
phisms), which are the composite of the first and second info-
morphisms of the span with the coproduct injection infomor-
phisms of the binary coproduct of the component classifications 
in the span. The coequalizer and canon of the associated parallel 
pair will be used to define the pushout.   
(12) (KIF$function coequalizer-diagram) 
     (KIF$function parallel-pair) 

Figure 29: Coequalizer Diagram 
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     (= parallel-pair coequalizer-diagram) 
     (= (KIF$source coequalizer-diagram) diagram) 
     (= (KIF$target coequalizer-diagram) CLS.COL.COEQ$diagram) 
     (forall (?r (diagram ?r)) 
         (and (= (CLS.COL.COEQ$source (coequalizer-diagram ?r)) 
                 (vertex ?r)) 
              (= (CLS.COL.COEQ$target (coequalizer-diagram ?r)) 
                 (CLS.COL.COPRD$binary-coproduct (pair ?r))) 
              (= (CLS.COL.COEQ$infomorphism1 (coequalizer-diagram ?r)) 
                 (CLS.INFO$composition 
                     [(first ?r) 
                      (CLS.COL.COPRD$injection1 (pair ?r))])) 
              (= (CLS.COL.COEQ$infomorphism2 (coequalizer-diagram ?r)) 
                 (CLS.INFO$composition 
                     [(second ?r) 
                      (CLS.COL.COPRD$injection2 (pair ?r))])))) 

o There are two important categorical identities (not just isomorphisms) that relate (1) the underlying 
instance limit and (2) the underlying type colimit of the coequalizer of the parallel pair of any span to 
(1′) the limit (equalizer) of the equalizer diagram of the underlying instance opspan and (2′) the colimit 
(coequalizer) of the coequalizer diagram of the underlying type span. These identities are assumed in 
the definition of the colimiting cocone below. 
(13) (forall (?r (diagram ?r)) 
         (and (= (CLS.COL.COEQ$instance-diagram (coequalizer-diagram ?r)) 
                 (SET.LIM.EQU$equalizer-diagram (instance-diagram ?r))) 
              (= (CLS.COL.COEQ$type-diagram (coequalizer-diagram ?r)) 
                 (SET.COL.COEQ$coequalizer-diagram (type-diagram ?r))))) 
 
(14) (forall (?r (diagram ?r)) 
         (and (= (CLS.COL.COEQ$instance-diagram 
                     (CLS.COL.COEQ$colimiting-cocone (coequalizer-diagram ?r))) 
                 (SET.LIM.EQU$limiting-cone 
                     (SET.LIM.EQU$equalizer-diagram (instance-diagram ?r)))) 
              (= (CLS.COL.COEQ$type-diagram 
                     (CLS.COL.COEQ$colimiting-cocone (coequalizer-diagram ?r))) 
                 (SET.LIM.COEQ$colimiting-cocone 
                     (SET.COL.COEQ$coequalizer-diagram (type-diagram ?r)))))) 

o Pushout cocones are used to specify and axiomatize pushouts. Each 
pushout cocone (Figure 30, where arrows denote infomorphisms) has 
an underlying diagram (the shaded part of Figure 30), an opvertex 
classification A, and a pair of infomorphisms called opfirst and op-
second, whose common target classification is the opvertex and whose 
source classifications are the target classifications of the infomor-
phisms in the span. The opfirst and opsecond infomorphisms form a 
commutative diagram with the span. A pushout cocone is the very spe-
cial case of a colimiting cocone under a span. The term ‘cocone’ de-
notes the pushout cocone collection. The term ‘cocone-diagram’ 
represents the underlying diagram. 
(15) (KIF$collection cocone) 
 
(16) (KIF$function cocone-diagram) 
     (= (KIF$source cocone-diagram) cocone) 
     (= (KIF$target cocone-diagram) diagram) 
 
(17) (KIF$function opvertex) 
     (= (KIF$source opvertex) cocone) 
     (= (KIF$target opvertex) CLS$classification) 
 
(19) (KIF$function opfirst) 
     (= (KIF$source opfirst) cocone) 
     (= (KIF$target opfirst) CLS.INFO$infomorphism) 
     (forall (?s (cocone ?s)) 
        (and (= (CLS.INFO$source (opfirst ?s)) (classification1 (cocone-diagram ?s))) 
             (= (CLS.INFO$target (opfirst ?s)) (opvertex ?s)))) 

B 

A1111 A2 

A 

f1 f2 

op1st op2nd 

Figure 30: Pushout Cocone 
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(20) (KIF$function opsecond) 
     (= (KIF$source opsecond) cocone) 
     (= (KIF$target opsecond) CLS.INFO$infomorphism) 
     (forall (?s (cocone ?s)) 
        (and (= (CLS.INFO$source (opsecond ?s)) (classification2 (cocone-diagram ?s))) 
             (= (CLS.INFO$target (opsecond ?s)) (opvertex ?s)))) 
 
(21) (forall (?s (cocone ?s)) 
        (= (CLS.INFO$composition [(first (cocone-diagram ?s)) (opfirst ?s)]) 
           (CLS.INFO$composition [(second (cocone-diagram ?s)) (opsecond ?s)]))) 

o The binary-coproduct cocone underlying any cocone (pushout diagram) is named.  
(22) (KIF$function binary-coproduct-cocone) 
     (= (KIF$source binary-coproduct-cocone) cocone) 
     (= (KIF$target binary-coproduct-cocone) CLS.COL.COPRD$cocone) 
     (forall (?s (cocone ?s)) 
        (and (= (CLS.COL.COPRD$cocone-diagram (binary-coproduct-cocone ?r)) 
                (pair (cocone-diagram ?s))) 
             (= (CLS.COL.COPRD$opvertex (binary-coproduct-cocone ?r)) (opvertex ?s)) 
             (= (CLS.COL.COPRD$opfirst (binary-coproduct-cocone ?r)) (opfirst ?s)) 
             (= (CLS.COL.COPRD$opsecond (binary-coproduct-cocone ?r)) (opsecond ?s)))) 

o The coequalizer cocone function maps a pushout cocone of info-
morphisms to the associated (CLS.COL.COEQ) coequalizer cocone 
of infomorphisms (see Figure 31, where arrows denote infomor-
phisms), which is the binary coproduct comediator of the opfirst 
and opsecond infomorphisms with respect to the coequalizer dia-
gram of a cocone. This is the first step in the definition of the 
pushout comediator infomorphism. The following string of equali-
ties demonstrates that this cocone is well-defined.  

f1 · ι 1 · γ = f1 ·op1st = f2 ·op1st = f2  · ι 2 · γ 

(23) (KIF$function coequalizer-cocone) 
     (= (KIF$source coequalizer-cocone) cocone) 
     (= (KIF$target coequalizer-cocone) CLS.COL.COEQ$cocone) 
     (forall (?s (cocone ?s)) 
         (and (= (CLS.COL.COEQ$cocone-diagram (coequalizer-cocone ?s)) 
                 (coequalizer-diagram (cocone-diagram ?s))) 
              (= (CLS.COL.COEQ$opvertex (coequalizer-cocone ?s)) 
                 (opvertex ?s)) 
              (= (CLS.COL.COEQ$infomorphism (coequalizer-cocone ?s)) 
                 (CLS.COL.COPRD$comediator (binary-coproduct-cocone ?r))))) 

o The KIF function ‘colimiting-cocone’ maps a span to its pushout 
(colimiting pushout cocone) (see Figure 32, where arrows denote in-
fomorphisms). For convenience of reference, we define three terms 
that represent the components of this pushout cocone. The opvertex 
of the pushout cocone is a specific pushout classification, which 
comes equipped with two projection infomorphisms. The last axiom 
expresses concreteness of the colimit – it expresses pushouts in 
terms of coproducts and coequalizers: the colimit of the coequalizer 
diagram is (not just isomorphic but) equal to the pushout; likewise, 
the compositions of the coproduct injections of the pair diagram 
with the canon of the coequalizer diagram are equal to the pushout injections. 
(24) (KIF$function colimiting-cocone) 
     (= (KIF$source colimiting-cocone) diagram) 
     (= (KIF$target colimiting-cocone) cocone) 
     (forall (?r (diagram ?r)) 
         (= (cocone-diagram (colimiting-cocone ?r)) ?r)) 
 
(25) (KIF$function colimit) 
     (KIF$function pushout) 

Figure 32: Colimiting Cocone 
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     (= pushout colimit) 
     (= (KIF$source colimit) diagram) 
     (= (KIF$target colimit) CLS$classification) 
 
(26) (KIF$function injection1) 
     (= (KIF$source injection1) diagram) 
     (= (KIF$target injection1) CLS.INFO$infomorphism) 
 
(27) (KIF$function injection2) 
     (= (KIF$source injection2) diagram) 
     (= (KIF$target injection2) CLS.INFO$infomorphism) 
 
(28) (forall (?r (diagram ?r)) 
         (and (= (colimit ?r) (opvertex (colimiting-cocone ?r))) 
              (= (CLS.INFO$source (injection1 ?r)) (classification1 ?r)) 
              (= (CLS.INFO$target (injection1 ?r)) (colimit ?r)) 
              (= (injection1 ?r) (opfirst (colimiting-cocone ?r))) 
              (= (CLS.INFO$source (injection2 ?r)) (classification2 ?r)) 
              (= (CLS.INFO$target (injection2 ?r)) (colimit ?r)) 
              (= (injection2 ?r) (opsecond (colimiting-cocone ?r))))) 
 
(29) (forall (?r (diagram ?r)) 
         (and (= (colimit ?r) 
                 (CLS.COL.COEQ$coequalizer (coequalizer-diagram ?r))) 
              (= (injection1 ?r) 
                 (CLS.INFO$composition 
                     [(CLS.COL.COPRD$injection1 (pair ?r)) 
                      (CLS.COL.COEQ$canon (coequalizer-diagram ?r))])) 
              (= (injection2 ?r) 
                 (CLS.INFO$composition 
                     [(CLS.COL.COPRD$injection2 (pair ?r)) 
                      (CLS.COL.COEQ$canon (coequalizer-diagram ?r))])))) 

o The following two axioms are the necessary conditions that the instance and type quasi-functors pre-
serve concrete colimits. These ensure that both this pushout and its two pushout injection infomor-
phisms are specific.  
(30) (forall (?r (diagram ?r)) 
         (and (= (instance-cone (colimiting-cocone ?r)) 
                 (SET.LIM.PBK$limiting-cone (instance-diagram ?r))) 
              (= (CLS$instance (colimit ?r)) 
                 (SET.LIM.PBK$limit (instance-diagram ?r))) 
              (= (CLS.INFO$instance (injection1 ?r)) 
                 (SET.LIM.PBK$projection1 (instance-diagram ?r))) 
              (= (CLS.INFO$instance (injection2 ?r)) 
                 (SET.LIM.EQU$projection2 (instance-diagram ?r))))) 
 
(31) (forall (?r (diagram ?r)) 
         (and (= (type-cocone (colimiting-cocone ?r)) 
                 (SET.COL.PSH$colimiting-cocone (type-diagram ?r))) 
              (= (CLS$type (colimit ?r)) 
                 (SET.COL.PSH$colimit (type-diagram ?r))) 
              (= (CLS.INFO$type (injection1 ?r)) 
                 (SET.COL.PSH$injection1 (instance-diagram ?r))) 
              (= (CLS.INFO$type (injection2 ?r)) 
                 (SET.COL.PSH$injection2 (instance-diagram ?r))))) 

o The comediator infomorphism, from the pushout of a span to the opvertex of a cocone over the span 
(see Figure 33, where arrows denote infomorphisms), is the unique infomorphism that commutes with 
opfirst and opsecond. This is defined abstractly by using a definite description, and is defined con-
cretely as the comediator of coequalizer cocone. 
(32) (KIF$function comediator) 
     (= (KIF$source comediator) cocone) 
     (= (KIF$target comediator) CLS.INFO$infomorphism) 
     (forall (?s (cocone ?s)) 
         (and (= (CLS.INFO$source (comediator ?s)) (colimit (cocone-diagram ?s))) 
              (= (CLS.INFO$target (comediator ?s)) (opvertex ?s)) 
              (= (comediator ?s) 
                 (the (?m (CLS.INFO$infomorphism ?m)) 

Figure 33: Comediator 
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                     (and (= (composition [(injection1 (cocone-diagram ?s)) ?m]) 
                             (opfirst ?s)) 
                          (= (composition [(injection2 (cocone-diagram ?s)) ?m]) 
                             (opsecond ?s))))))) 
 
(33) (forall (?s (cocone ?s)) 
         (= (comediator ?s) 
            (CLS.COL.COEQ$comediator (coequalizer-cocone ?s)))) 

Examples 
The Living Classification 
○ The Living Classification is a tiny dataset, which exists within a conceptual universe of living organ-

isms. This classification listed below consists of eight organisms (plants and animals), and nine of their 
properties. The organisms are the instances of the classification, and the properties are the types. The 
classification relation is presented as a Boolean matrix in the lower-right table. The Living Concept 
Lattice, which contains 19 formal concepts, is visualized in the upper-left image. 

Concept Lattice Type Class 

 

0 nw needs water 
1 lw lives in water 
2 ll lives on land 
3 nc needs chlorophyll 
4 2lg 2 leaf germination 
5 1lg 1 leaf germination 
6 mo is motile 
7 lb has limbs 
8 sk suckles young  

  
Instance Class Classification Relation 
  

0 Le Leech 
1 Br Bream 
2 Fr Frog 
3 Dg Dog 
4 SW Spike Weed 
5 Rd Reed 
6 Bn Bean 
7 Ma Maize  

 nw lw ll nc 2lg 1lg mo lb sk 

Le × ×     ×   
Br × ×     × ×  
Fr × × ×    × ×  
Dg ×  ×    × × × 
SW × ×  ×  ×    
Rd × × × ×  ×    
Bn ×  × × ×     
Ma ×  × ×  ×     

The following table lists the formal concepts of the Living concept lattice in terms of their extent, in-
tent, instance generators and type generators. 

Formal Concepts 

  Generators   

Index Objects Attributes Extent Intent 

0   needs water { Leech Bream Frog Dog Spike { needs water }  
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Weed, Reed, Bean, Maize}  

1  is motile { Leech, Bream, Frog, Dog}  { needs water, is motile }  

2  has limbs { Bream, Frog, Dog}  { needs water, is motile, has limbs }  

3  needs chlorophyll { Spike Weed, Reed, Bean, Maize}  { needs water, needs chlorophyll }  

4  1 leaf germination { Spike Weed, Reed, Maize}  { needs water, needs chlorophyll, 1 leaf 
germination }  

5  lives on land { Frog, Dog, Reed, Bean, Maize}  { needs water, lives on land }  

6   { Frog, Dog }  { needs water, lives on land, is motile, 
has limbs }  

7 Dog suckles young { Dog }  { needs water, lives on land, is motile, 
has limbs, suckles young }  

8   { Reed, Bean, Maize }  { needs water, lives on land, needs chlo-
rophyll }  

9 Maize  { Reed, Maize }  { needs water, lives on land, needs chlo-
rophyll, 1 leaf germination }  

10 Bean 2 leaf germination { Bean }  { needs water, lives on land, needs chlo-
rophyll, 2 leaf germination }  

11  lives in water { Leech, Bream, Frog, Spike Weed, 
Reed }  { needs water, lives in water }  

12 Leech  { Leech, Bream, Frog }  { needs water, lives in water, is motile }  

13 Bream  { Bream, Frog }  { needs water, lives in water, is motile, 
has limbs }  

14 Spike Weed  { Spike Weed, Reed }  { needs water, lives in water, needs 
chlorophyll, 1 leaf germination }  

15   { Frog, Reed }  { needs water, lives in water, lives on 
land }  

16 Frog  { Frog}  { needs water, lives in water, lives on 
land, is motile, has limbs }  

17 Reed  { Reed }  
{ needs water, lives in water, lives on 
land, needs chlorophyll, 1 leaf germina-
tion }  

18   {}  = ∅  

{ needs water, lives in water, lives on 
land, needs chlorophyll, 2 leaf germina-
tion, 1 leaf germination, is motile, has 
limbs, suckles young }  

○ The following KIF represents the Living Classification. 
(CLS$Classification Living) 
((CLS$type Living) needs-water) 
((CLS$type Living) lives-in-water) 
((CLS$type Living) lives-on-land) 
((CLS$type Living) needs-chlorophyll) 
((CLS$type Living) 2-leaf-germination) 
((CLS$type Living) 1-leaf-germination) 
((CLS$type Living) is-motile) 
((CLS$type Living) has-limbs) 
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((CLS$type Living) suckles-young) 
((CLS$instance Living) Leech) 
((CLS$instance Living) Bream) 
((CLS$instance Living) Frog) 
((CLS$instance Living) Dog) 
((CLS$instance Living) Spike-Weed) 
((CLS$instance Living) Reed) 
((CLS$instance Living) Bean) 
((CLS$instance Living) Maize) 
... 
(Living Leech needs-water) 
(Living Leech lives-in-water) 
(not (Living Leech lives-on-land)) 
(not (Living Leech needs-chlorophyll)) 
(not (Living Leech 2-leaf-germination)) 
(not (Living Leech 1-leaf-germination)) 
(Living Leech is-motile) 
(not (Living Leech has-limbs)) 
(not (Living Leech suckles-young)) 
... 

○ The Living Lattice is the concept lattice of the Living Classification.  
(CL$concept-lattice Living-Lattice) 
(= Living-Lattice (CLS.CL$concept-lattice Living)) 

The Dictionary Classification 
Here are examples of classifications and infomorphisms taken from the text Information Flow: The Logic 
of Distributed Systems by Barwise and Seligman.  

○ The following KIF represents the Webster 
Classification on page 70 of Barwise and 
Seligman. This classification, which is (a 
small part of) the classification of English 
words according to parts of speech as given 
in Webster’s dictionary, is diagrammed on 
the right. 

(CLS$classification Webster) 
((CLS$type Webster) Noun) 
((CLS$type Webster) Intransitive-Verb) 
((CLS$type Webster) Transitive-Verb) 
((CLS$type Webster) Adjective) 
((CLS$instance Webster) bet) 
((CLS$instance Webster) eat) 
((CLS$instance Webster) fit) 
((CLS$instance Webster) friend) 
((CLS$instance Webster) square) 
... 
(Webster bet Noun) 
(Webster bet Intransitive-Verb) 
(Webster bet Transitive-Verb) 
(not (Webster bet Adjective)) 
(not (Webster eat Noun)) 
(Webster eat Intransitive-Verb) 
(Webster eat Transitive-Verb) 
(not (Webster fit Adjective)) 
(Webster fit Noun) 
(Webster fit Intransitive-Verb) 
(Webster fit Transitive-Verb) 
(Webster fit Adjective) 
(Webster friend Noun) 
(not (Webster friend Intransitive-Verb))
(Webster friend Transitive-Verb) 
(not (Webster friend Adjective)) 
(Webster square Noun) 
(not (Webster square Intransitive-Verb))
(Webster square Transitive-Verb) 
(Webster square Adjective) 
Table 4: Webster Classification 
Webster Noun Int-Vb Tr-Vb Adj 
bet 1 1 1 0 
eat 0 1 1 0 
fit 1 1 1 1 
friend 1 0 1 0 
square 1 0 1 1 
… … 
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(CLS$classification Webster) 
((CLS$type Webster) Noun) 
((CLS$type Webster) Intransitive-Verb) 
((CLS$type Webster) Transitive-Verb) 
((CLS$type Webster) Adjective) 
((CLS$instance Webster) bet) 
((CLS$instance Webster) eat) 
((CLS$instance Webster) fit) 
((CLS$instance Webster) friend) 
((CLS$instance Webster) square) 
... 
(Webster bet Noun) 
(Webster bet Intransitive-Verb) 
(Webster bet Transitive-Verb) 
(not (Webster bet Adjective)) 
(not (Webster eat Noun)) 
(Webster eat Intransitive-Verb) 
(Webster eat Transitive-Verb) 
(not (Webster fit Adjective)) 
(Webster fit Noun) 
(Webster fit Intransitive-Verb) 
(Webster fit Transitive-Verb) 
(Webster fit Adjective) 
(Webster friend Noun) 
(not (Webster friend Intransitive-Verb)) 
(Webster friend Transitive-Verb) 
(not (Webster friend Adjective)) 
(Webster square Noun) 
(not (Webster square Intransitive-Verb)) 
(Webster square Transitive-Verb) 
(Webster square Adjective) 
... 

○ The following KIF represents the infomorphism defined on page 73 of Barwise and Seligman. This 
represents the way that punctuation at the end of a sentence carries information about the type of the 
sentence. The infomorphism is from a Punctuation classification to a Sentence classification. The in-
stances of Punctuation are the inscriptions of the punctuation marks of English. These marks are clas-
sified by the terms ‘Period, ‘Exclamation-Mark’, ‘Question-Mark’, ‘Comma’, etc. The instances of 
Sentence are inscriptions of grammatical sentences of English. There are but three types of Sentence: 
‘Declarative’, ‘Question’, and ‘Other’. The instance function of the infomorphism assigns to each 
sentence its own terminating punctuation mark. The type function of the infomorphism assigns ‘De-
clarative’ to ‘Period’ and ‘Exclamation-Mark’, ‘Question’ to ‘Question-Mark’, and ‘Other’ to 
other types of Punctuation. The fundamental property of this infomorphism is the requirement that a 
sentence be of the type indicated by its punctuation. 

Let ‘yakity-yak’ denote the command “Take out the papers and the trash!” with its punctuation 
symbol ‘yy-punc’ being the exclamation symbol at the end of the sentence. Let ‘gettysburg1’ denote 
the statement that “Fourscore and seven years ago our fathers brought forth on this continent a new na-
tion, conceived in liberty and dedicated to the proposition that all men are created equal.” with its 
punctuation symbol ‘g1-punc’ being the period at the end of the sentence. Let ‘angels’ denote the 
question “How many angels can fit on the head of a pin?” with its punctuation symbol ‘ag-punc’ being 
the question mark at the end of the sentence. 
(CLS$classification Punctuation) 
((CLS$type Punctuation) Period) 
((CLS$type Punctuation) Exclamation-Mark) 
((CLS$type Punctuation) Question-Mark) 
((CLS$type Punctuation) Comma) 
((CLS$instance Punctuation) yy-punc) 
((CLS$instance Punctuation) g1-punc) 
((CLS$instance Punctuation) ag-punc) 
... 
(not (Punctuation yy-punc Period)) 
(Punctuation yy-punc Exclamation-Mark) 
(not (Punctuation yy-punc Question-Mark)) 
... 
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(CLS$classification Sentence) 
((CLS$type Sentence) Declarative) 
((CLS$type Sentence) Question) 
((CLS$type Sentence) Other) 
((CLS$instance Sentence) yakity-yak) 
((CLS$instance Sentence) gettysburg1) 
((CLS$instance Sentence) angels) 
... 
(Sentence gettysburg1 Declarative) 
(not (Sentence gettysburg1 Question)) 
(not (Sentence gettysburg1 Other)) 
... 
(CLS.INFO$infomorphism punct-type) 
(= (CLS.INFO$source punct-type) Punctuation) 
(= (CLS.INFO$target punct-type) Sentence) 
 
(= ((CLS.INFO$instance punct-type) yakity-yak) yy-punc) 
(= ((CLS.INFO$instance punct-type) gettysburg1) g1-punc) 
... 
(= ((CLS.INFO$type punct-type) Period) Declarative) 
(= ((CLS.INFO$type punct-type) Exclamation-Mark) Declarative) 
(= ((CLS.INFO$type punct-type) Question-Mark) Question) 
(= ((CLS.INFO$type punct-type) Comma) Other) 
... 

The Truth Classification 
o The truth classification of a first-order language L is the large classification, whose instances are L-

structures, whose types are L-sentences, and whose classification relation is satisfaction. Here we rep-
resent the truth classification in an external namespace. Note that the source is a class, whereas the tar-
get is a collection – rather unusual. The image should then be just a class. 
(KIF$function truth-classification) 
(= (KIF$source truth-classification) lang$language) 
(= (KIF$target truth-classification) CLS$classification) 
(forall (?l (lang$language ?l)) 
    (and (= (CLS$instance (truth-classification ?l))  (MOD$fiber ?l)) 
         (= (CLS$type (truth-classification ?l))      (lang$sentence ?l)) 
         (= (truth-classification ?l) (MOD$satisfaction ?l)))) 

○ The truth concept lattice is the concept lattice of the truth classification. This large complete lattice can 
function as the appropriate “lattice of ontological theories” for a modular SUO architecture. A formal 
concept in this lattice has an intent that is a closed theory (set of sentences) and an extent that is the 
class of all models for that theory. The intent (theory) of the join of two formal concepts is the intersec-
tion of the intents (theories) of the formal concepts. The intent (theory) of the meet of two formal con-
cepts is the type-closure of the union of the intents (theories) of the formal concepts, or the theory of 
the common models. 
(KIF$function truth-concept-lattice) 
(= (KIF$source truth-concept-lattice) lang$language) 
(= (KIF$target truth-concept-lattice) CL$concept-lattice) 
(forall (?l (lang$language ?l)) 
    (= (truth-concept-lattice ?l) 
       (CLS.CL$concept-lattice (truth-classification ?l)))) 
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