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This document declares and axiomatizes the IFF Classification Ontology. The IFF Classification Ontology
provides a formalism for the theory of Distributed Conceptual Structures (Kent 2001). This theory is con-
cerned with the distribution and conception of knowledge. It rests upon two related theories, Information
Flow and Formal Concept Analysis, which it seeks to unify. Information Flow (IF) (Barwise and Seligman
1997) is concerned with the distribution of knowledge. The foundations of Information Flow is explicitly
based upon a mathematical theory known as the Chu Construction in *-autonomous categories (Barr 1991).
Formal Concept Analysis (FCA) (Ganter and Wille 1999) is concerned with the conception and analysis of
knowledge. The theory of distributed conceptual structures merges these two studies by categorizing the
basic theorem of Formal Concept Analysis, thus extending it to the distributed realm of Information Flow.
The main result of the merged theory is the representation of the basic theorem of Formal Concept Analysis
as the categorical equivalence between classifications and concept lattices at the level of functions, and the
categorical equivalence between bonds and the opposite of complete adjoints and between bonding pairs
and complete homomorphisms at the level of relations. This accomplishes a rapprochement between In-
formation Flow and Formal Concept Analysis. The IFF Classification Ontology currently contains 286
non-identical terms (288 terms with 2 synonyms), partitioned into 32 terms for large concept lattices (CL,
CL. MOR), 41 terms for large complete lattices (LAT, LAT. ADJ, LAT. MOR), and 213 terms for large classifica-
tions (CLS, CLS.CL, CLS. FIB, CLS.COL, CLS.INFO, CLS REL, CLS.BND, CLS.BNDPR, CLS.COL,
CLS. COL. COPRD, CLS. COL. CO NV, CLS. COL. COEQ CLS. COL. PSH).
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The Namespace of Large Concept Lattices

This namespace will represent large concept lattices and their morphisms. The terms introduced in this
namespace are listed in Table 1.

Table 1: Terms introduced into the large concept lattice namespace

Collection Function Other
CL concept - conpl ete-lattice = underlying
lattice i nstance type

i nst ance- enbeddi ng type- enbeddi ng
partial -order class
classification

opposi te instance- power

CL concept - source target adjoint-pair conposabl e-
. MOR nmor phi sm i nstance type opspan
i nf onor phi sm conposabl e

i nstance-join type-neet right-representation
extent intent left-representation
representation

opposite conposition identity

i nst ance- power

/ extent(Composable) \

instance

power

oppostte O instanc :
Concept Morphism —§ Function )

. type
representatipn | instance |7
identity imbeddin

ourde target /{ soufce | target
begdding
; instange
opposite O =y
C

oncept Lattice ~pd > Class

instance
power

Diagram 1: Core Collections and Functions for Concept Lattices

composition
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Concept Lattices
o}

o  An (abstract) concept lattice L = Tat(L), inst(L), typ(L), 1z, T L(Figure 1) consists of a complete lattice
lat(L), two classes inst(L) and typ(L) called the instance class and the type class of L, respectively;
along with two functions, an instance embedding function 1, : inst(L) — lat(L) and a type embedding
function T, : typ(L) — lat(L), which satisfying the following conditions.

—  The image 1.(inst(L)) is join-dense in lat(L).
—  The image T;(typ(L)) is meet-dense in lat(L).

(1) (KIF$collection concept-lattice)

typ(L
(2) (KIF$function conplete-lattice) yp(L)
(KI F$f unction underlying) l T
(= underlying conplete-lattice)
(= (KIF$source conplete-lattice) concept-lattice) lat(L)
(= (KIF$target conplete-lattice) LAT$conplete-lattice) |
<L
(3) (KIF$function instance)
(= (KIF$source instance) concept-lattice) lat(L)
(= (KIF$target instance) SET$cl ass) T
V3
(4) )
Kl F$sour ce type) concept-lattice) inst(L)

Kl F$functi on type)
=(
= (KIF$target type) SET$cl ass)

Figure 1:

Kl Concenpt Lattice

(5) $f uncti on instance- enbeddi ng)

KI F$sour ce i nstance-enbeddi ng) concept-lattice)

Kl F$t ar get i nst ance- enbeddi ng) SET. FTN$f uncti on)

all (?1 (concept-lattice ?1))

(and (= (SET. FTN$source (instance-enbedding ?1)) (instance ?1))
(= (SET. FTN$t arget (instance-enbedding ?1))

(ORD$cl ass (LAT$partial -order (conplete-lattice ?1))))))

S~

fo

(5) (K

$f uncti on type- enbeddi ng)
KI F$sour ce type- enbeddi ng) concept-lattice)
KI F$t ar get type- enbeddi ng) SET. FTN$f uncti on)
all (?1 (concept-lattice ?1))
(and (= (SET. FTN$source (type-enbedding ?1)) (type ?1))
(= (SET. FTN$t arget (type-enbedding ?l))
(ORD$cl ass (LAT$partial -order (conplete-lattice ?1))))))

S~

(6) (forall (?a (CLS$classification ?a))
(and ((ORD$j oi n-dense (LAT$partial -order (conplete-lattice ?1)))
( SET. FTN$i mage (i nstance-enbedding ?1)))
((ORD$neet - dense (LAT$partial -order (conplete-lattice ?1)))
( SET. FTN$i mage (type-enbedding ?1)))))

0 Here we define two convenience terms — the partial order underlying a concept lattice and the class of
elements in the concept lattice. These facilitate the expression of some of the axioms below.

(7) (KIF$function partial -order)
(= (KIF$source partial-order) concept-lattice)
(= (KIF$target partial-order) ORD$partial -order)
(forall (? (concept-lattice ?1))
(= (partial -order ?l) (LAT$partial-order (conplete-lattice ?1))))

(8)
(KI F$source cl ass) concept-lattice)
(KI F$t arget class) SET$cl ass)
rall (?1 (concept-lattice ?1))
(= (class ?1) (ORD$class (partial-order ?1))))

(KI F$function cl ass)
(:
(:
(f

(o]
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Any concept lattice L = at(L), inst(L), typ(L), 1z, 1,0 has an associated classification A =
(inst(4), typ(4), =4O0whose incidence relation is defined by i =4 ¢ iff 1(2) <4 1(2).

The classification associated with a concept lattice is the image of the object function of the clas-
sification functor applied to the concept lattice:

C : CONCEPT LATTICE - CLASSIFICATION.

(9) (KIF$function classification)
(= (KIF$source classification) concept-lattice)
(= (KIF$target classification) CLS$classification)
(forall (?1 (concept-lattice ?1))
(and (= (CLSS$instance (classification ?1)) (instance ?1))
(= (CLS$type (classification ?1)) (type ?1))
(forall (?i ((instance ?1) ?i) ?t ((type ?l) ?t))
(<=> ((classification ?l) ?2i ?t)
((partial-order ?I)
((instance-enbedding ?1) ?i) ((type-enbedding ?1) ?t))))))

From properties discussed above, it can be immediately proven that the composition of ‘concept -
lattice’ and ‘cl assification’ is the identity on the ‘cl assification’ col | ecti on. We state this in
an external namespace.

(forall (?c (CLS$classification ?c))
(= (CL$cl assification (CLS. CL$concept-lattice ?c)) ?c))

Also, from properties discussed above, it can be immediately proven that for any complete lattice L,
the complete lattice of the concept lattice of L is L itself; that is, that the composition of ‘concept -
lattice’ and ‘conplete-lattice’ is the identity on the ‘conpl ete-lattice’ collection. We state
this in an external namespace.

(forall (?1 (LAT$conplete-lattice ?1))
(= (CL$conplete-lattice (LAT$concept-lattice ?1)) ?1))

For any concept lattice L = at(L), inst(L), typ(L), 11, T.[J) the opposite or dual of L is the concept lat-
tice L = Mat(L)", typ(L), inst(L), T,, 1,[] whose instances are the types of L, whose types are the in-
stances of L, whose instance embedding function is the type embedding function of L, whose type em-
bedding function is the instance embedding function of L, and whose complete lattice is the opposite
of the complete lattice of L (turn it upside down). Axiom (7) specifies the opposite operator on concept
lattices.

(10) (KIF$function opposite)

(= (KI F$source opposite) concept-lattice)

(= (KIF$target opposite) concept-lattice)

(forall (? (concept-lattice ?1))

(and (= (conplete-lattice (opposite ?1))

(LAT$opposite (conplete-lattice ?1)))
(instance (opposite ?1)) (type ?1))
(type (opposite ?1)) (instance ?1))
(i nstance-enbeddi ng (opposite ?1)) (type-enbedding ?1))
(type-enbeddi ng (opposite ?1)) (instance-enbedding ?1))))

~e~~

For any class 4 the instance power concept lattice 1 A = 4, Oy, Ny, U0A4, O A, {-}4, idg 4Oover
A is defined as follows: the complete lattice is the power lattice generated by A4, the instance class is 4;
the type class is the power class [1 4 (so that a type is a subclass of 4), the instance embedding func-
tion is the singleton function for 4, and the type-embedding function is the identity. Axiom (8) speci-
fies the instance power operator from classes to concept lattices.

(11) (KIF$function instance-power)
(= (KI F$source instance-power) SET$cl ass)
(= (KIF$target instance-power) concept-lattice)
(forall (?c (SET$class ?c))
(and (= (conplete-lattice (instance-power ?c)) (LAT$power ?c))
(= (instance (instance-power ?c)) ?c)
(= (type (instance-power ?c)) (SET$power ?c))
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(= (instance-enbeddi ng (instance-power ?c)) (SET. FTN$singleton ?c))
(= (type-enbeddi ng (instance-power ?c))
(SET. FTN$i dentity (SET$power ?c)))))
Concept Morphisms typ(f)
CL. MOR typ(L) —> typ(K)

0 Concept lattices are related through concept morphisms. An (abstract) Tk

T l
. . i right(adj(f))
concept morphism f: L = K from (abstract) concept lattice L to (abstract) L — K
concept lattice K (Figure 2) consists of a pair of oppositely directed func-

tions, inst(f) : inst(K) — inst(L) and typ(f) : typ(L) — typ(K), between
instance classes and type classes, and an adjoint pair of monotonic func- L m) K
tions adj(f) : K = L, where the right adjoint right(f) : L - K is a mono- T I : T
tonic function in the forward direction (for the concept lattice morphism,
not the adjoint pair) that preserves types (in the sense that the upper rec-
tangle in Figure 5 is commutative)

| <L <k

Ik

inst(L) <—— inst(K)
inst(f)

. . Figure 2: Concept
T, - right(adj(f)) = typ(f) - Tk Lagttice Morphis?‘n

and the left adjoint left(f) : K - L is a monotonic function in the reverse
direction that preserves instances (in the sense that the lower rectangle in Figure 2 is commutative)

Ik - left(adj(f)) = inst(f) - 1 .

Note the contravariance between the concept morphism and the adjoint pair — the concept morphism is
oriented in the same direction as the type function, whereas the adjoint pair is oriented in the same di-
rection as the left adjoint. Let CONCEPT LATTICE denote the quasi-category of concept lattices and
concept morphism.

(1) (KIFS$collection concept-norphism

(2) (KIF$function source)
(= (KI'F$source source) concept-norphism
(= (KIF$target source) CL$concept-lattice)
(3) (KIF$function target)
(= (KIF$source target) concept-norphism
(= (KIF$target target) CL$concept-lattice)
(4) (KIF$function adjoint-pair)
= (KI'F$source adjoi nt-pair concept-norphi sm
= (KIF$target adjoint-pair) LAT. ADJ$adjoi nt-pair)
forall (?f (concept-norphism ?f))
(and (= (LAT. ADJ$source (adjoint-pair ?f))
(CL$conpl ete-lattice (target ?f)))
(= (LAT. ADJ$target (adjoint-pair ?f))
(CL$conpl ete-lattice (source ?f)))))

(5) (K

$f uncti on instance)
KI F$source instance) concept-nor phism
Kl F$t arget i nstance) SET. FTN$functi on)
all (?f (concept-norphism ?f))
(and (= (SET.FTN$source (instance ?f)) (CL$instance (target ?f)))
(= (SET. FTN$t arget (instance ?f)) (CLS$instance (source ?f)))
(= (SET. FTN$conposi tion
[ (CL$i nst ance- enbeddi ng (target ?f))
(ORD. FTN$f uncti on (LAT. ADJ$l eft (adjoint-pair ?f)))])
( SET. FTN$conposi ti on
[ (i nstance ?f)
(CLS$i nst ance- enbeddi ng (source ?f))]))))

~ T

fo

(6) (KIF$function type)

(= (KI F$source type) concept-norphism
(= (KIF$target type) SET. FTN$function)
(for

all (?f (concept-norphism ?f))
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(and (= (SET.FTN$source (type ?f)) (CL$type (source ?f)))
(= (SET. FTN$t arget (type ?f)) (CL$type (target ?f)))
(= (SET. FTN$conposi tion

[ (CL$t ype- enbeddi ng (source ?f))

(ORD. FTN$f unction (LAT. ADJ$right (adjoint-pair ?f)))])
( SET. FTN$conposi ti on

[(type ?f)
(CL$type-enbedding (target ?f))]))))
0 Any concept morphism f: L = K has an associated infomorphism info(f) : cls(L) = cls(K) whose
fundamental property, expressed as

inst(info(/))(7) Fasw) t iff 7 Fasu typ(info(£))(?)

for all instances i U inst(K) and all types ¢ U typ(L), is an easy translation of the adjointness condition
for the adjoint pair adj(f) and the commutativity of the instance/type functions with the left/right
monotonic functions.

The infomorphism associated with a concept morphism is the image of the morphism function of
the classification functor applied to the concept morphism:

C : CONCEPT LATTICE — CLASSIFICATION.

(7) (KIF$function infonorphism
(= (KI F$source infonorphism concept-norphism
(= (KIF$target infonorphisn CLS.|NFGsi nfonorphi sm
(forall (?f (concept-norphism?l))
(and (= (CLS. | NFG#i nstance (infonorphism ?f)) (instance ?f))
(= (CLS. I NFC#type (infonorphism?f)) (type ?f))))

0 From properties discussed above, it can be immediately proven that the composition of ‘concept -
mor phi smi and ‘i nf onor phi sni is the identity on the ‘i nf onmor phi st col | ecti on. We state this in an
external namespace.

(forall (?f (CLS.INFG8i nfonorphism ?f))
(= (CL. MORS$i nf onor phi sm (CLS. CL$concept - nor phi sm ?f)) 2f))

o In section 3.1 of the paper (Kent 2001), which is concerned with functional equivalence, the following
ideas are introduced and developed in order to demonstrate the categorical equivalence CLASSIFI-
CATION = CONCEPT LATTICE. For any concept lattice L, the instance-join function lat(cls(L)) -
L maps a formal concept (4, IN) in the complete lattice of the classification of L to the join of the in-
stance-embedding image of its extent. Dually, the type-meet function lat(cls(L)) - L maps a formal
concept (4, IN) in the complete lattice of the classification of L to the meet of the type-embedding im-
age of its intent. These two mappings are the same.

(8) (KIF$function instance-join)

(= (KIF$source instance-join) CL$concept-lattice)

(= (KIF$target instance-join) ORD. FTN$function)

(forall (?I (CL$concept-lattice ?1))

(and (= (ORD. FTN$source (instance-join ?1))

(CL$partial -order (CLS$concept-lattice (CL$classification ?1))))
(ORD. FTN$t arget (instance-join ?1)) (CL$partial-order ?1))
(ORD. FTN$f unction (instance-join ?1))
( SET. FTN$conposi ti on

[ (SET. FTN$conposi tion

[(CLS. CL$extent (CL$classification ?1))
( SET. FTN$power ( CL$i nst ance-enbedding ?1))])
(LATS$j oi n (CL$conplete-lattice ?1))]))))

(9) (KIF$function type-neet)

(= (KIF$source type-neet) CL$concept-lattice)

(= (KIF$target type-neet) ORD. FTN$function)

(forall (?1 (CL$concept-lattice ?1))

(and (= (ORD. FTN$source (type-neet ?l))

(CL$partial -order (CLS$concept-lattice (CL$classification ?1))))
(ORD. FTN$t arget (type-neet ?1)) (CL$partial-order ?1))
(ORD. FTN$f unction (type-neet ?1))

(
(
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( SET. FTN$conposi ti on
[ (SET. FTN$conposi ti on
[(CLS.CL$intent (CL$classification ?1))
( SET. FTN$power (CL$type-enbedding ?1))])
(LAT$nmeet (CL$conplete-lattice ?1))]))))

0 The previous two functions can be shown to be identical monotonic functions.

(forall (?I (CL$concept-lattice ?1))
(= (instance-join ?1) (type-nmeet ?1)))

0 Let us call this common function the right representation of L.

(10) (KIF$function right-representation)
(= (KIF$source right-representation) CL$concept-lattice)
(= (KIF$target right-representation) ORD. FTN$functi on)
(= right-representation instance-join)

0 Any concept lattice L is indirectly related to the concept lattice of the classification of L through the
following two functions. The extent of an element / J L, considered as a concept, is the class of all in-
stances whose generated concept is at or below the concept, extent(/) = {a Oinst(L) | 1 (a) < [}.
Since the extent of an element / 0 L, considered as a type in the classification of L, is the class ex-
tentgse) (/) = {kOL| k<, [}, the conceptual extent can expressed as extent(/) =1 L'l(extentds(L)(l)).
The intent is the dual notion: intent(/) = {a O typ(L) | [ <, T,(0)}. As indicated above, and as we shall
axiomatize, both the extent and intent represent concepts of L.

(11) (KIF$function extent)
(= (KIF$source extent) CL$concept-lattice)
(= (KIF$target extent) SET. FTN$function)
(forall (?I (CL$concept-lattice ?1))
(and (= (source (extent ?1)) (CL$class ?I))
(= (target (extent ?1)) (SET$power (CLS$instance ?1)))
(= (extent ?1)
( SET. FTN$conposi ti on
[ (CLS$extent (CL$classification ?1))
( SET. FTN$i nver se-i mage (CL$i nstance-enbedding ?1))]))))

(12) (KIF$function intent)
(= (KIF$source intent) CL$concept-lattice)
(= (KIF$target intent) SET. FTN$function)
(forall (?I (CL$concept-lattice ?1))
(and (= (source (intent ?1)) (CL$class ?I))
(= (target (intent ?1)) (SET$power (CL$type ?1)))
(= (intent ?1)
( SET. FTN$conposi ti on
[ (CLS$i ntent (CL$classification ?1))
( SET. FTN$i nver se-i mage (CL$type-enbedding ?1))]))))

0 The following fact can be proven: there is a unique function, whose source class is the source of the
extent and intent functions, whose target is the class underlying the concept lattice of the classification
of L, whose composition with the extent function of the concept lattice of the classification of L is the
above extent function, and whose composition with the intent function of the concept lattice of the
classification of L is the above intent function. Moreover, this function preserves order; that is , it is a
monotonic function. Let us call this function the left representation of L. We use a definite description
to define this.

(13) (KIF$function left-representation)
(= (KIF$source left-representation) CL$concept-lattice)
(= (KIF$target left-representati on) ORD. FTN$functi on)
(forall (?I (CL$concept-lattice ?1))
(= (left-representation ?1)
(the (?f (ORD. FTN$function ?f))
(and (= (source ?f) (CL$partial-order ?1))
(= (target ?f)
(CL$partial -order (CLS$concept-lattice (CL$classification ?1))))
(= (SET. FTN$conposi tion
[ (ORD. FTN$f uncti on ?f)
(CLS$extent (CLS$concept-lattice (CL$classification ?1)))])
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(extent ?1))
(= (SET. FTN$conposi tion
[ (ORD. FTN$f uncti on ?f)
(CLS$i ntent (CLS$concept-lattice (CL$classification ?1)))])
(intent ?1))))))

0 For any concept lattice L, it can be proven that the left and right representation monotonic functions
are inverse to each other. This demonstrates that the concept lattice of the classification of L represents

L via left representation (extent and intent functions).

(forall (?I (CL$concept-lattice ?1))

(and (= (ORD. FTN$conposition [(left-representation ?1) (right-representation ?1)])

(ORD. FTN$i dentity (CL$class ?1)))
(= (ORD. FTN$conposition [(right-representation ?1) (left-representation ?1)])

(ORD. FTN$i dentity
(CL$cl ass (CLS$concept-lattice (CL$classification ?1)))))))

o Since two inverse monotonic functions form an adjoint pair, we can rephrase this in terms of concept

morphisms: for any concept lattice L, there is a representation concept morphism L = clat(cls(L))
from L to the concept lattice of the classification of L.

For any concept lattice L the representation concept morphism at L is the L™ component of a natu-
ral isomorphism L OL(C(L)), demonstrating that the quasi-category of concept lattices is cate-
gorically equivalent to the quasi-category of classifications:

CINCEPT LATTICE = CLASSIFICATION.

(14) (KIF$function representation)
(= (KIF$source representation) CL$concept-lattice)
(= (KIF$target representation) concept-norphism
(forall (?1 (CL$concept-lattice ?1))
(and (= (source (representation ?1)) ?I)
(= (target (representation ?l))
(CLS$concept-lattice (CL$classification ?1)))
(= (LAT. ADJ$l eft (adjoint-pair (representation ?1)))
(left-representation ?1))
(= (LAT. ADJ$right (adjoint-pair (representation ?)))
(right-representation ?1))
(= (instance (representation ?l))
(SET. FTN$i dentity (CLS$i nstance ?1)))
(= (type (representation ?1))
(SET. FTN$i dentity (CL$instance ?1)))))

0 In addition, from properties discussed above, it can be immediately proven that for any (complete lat-
tice) adjoint pair £, the adjoint pair of the concept morphism of f'is f'itself; that is, that the composition
of ‘ORD. LAT$concept - mor phi sni and ‘adj oi nt - pai r’ is the identity on the ‘adj oi nt-pair’ col | ec-
ti on. We state this in an external namespace.

(forall (?f (LAT.ADJ$adjoint-pair ?f))
(= (CL. MOR$adj oi nt - pai r (LAT. ADJ$concept - nor phi sm ?f)) ?f))

Duality can be extended to concept morphisms. For any concept morphism f: L = K, the opposite or

dual of f is the concept morphism f Y. K" = L, whose source concept lattice is the opposite of the
target of f, whose target concept lattice is the opposite of the source of f, whose adjoint pair is the op-
posite of the adjoint pair of f, whose instance function is the type function of f, whose type function is
the instance function of £, and whose preservation conditions have been dualized.

(15) (KIF$function opposite)

(= (KIF$source opposite) concept-norphismn

(= (KIF$target opposite) concept-norphisn

(forall (?f (concept-norphism ?f))

(and (= (source (opposite ?f)) (CL$opposite (target ?f)))

(target (opposite ?f)) (CL$opposite (source ?f)))
(adjoint-pair (opposite ?f)) (LAT. ADJ$opposite (adjoint-pair ?f)))
(instance (opposite ?f)) (type ?f))
(type (opposite ?f)) (instance ?f))))

(
(
(
(
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The function ‘conposi ti on’ operates on any two concept morphisms that are composable in the sense
that the target concept lattice of the first is equal to the source concept lattice of the second. Composi-
tion produces a concept morphism, whose components are constructed using composition.

(16) (KI F$opspan conposabl e- opspan)
(= conposabl e- opspan [target source])
(17) (KIF$rel ation conposabl e)
(= (KIF$col | ecti onl conposabl e) concept - nor phi sn)
(= (KIF$col | ecti on2 conposabl e) concept - nor phi sn)
(= (KI F$extent conposable) (KIF$pullback conposabl e-opspan))

(18) (KIF$function conposition)
(KI F$source conposition) (KIF$pul |l back conposabl e- opspan))
(KI F$t arget conposi tion) concept - nor phi sm
rall (?f1 (concept-norphism ?f1)
?f2 (concept - nmor phi sm ?f2) (conposable ?f1 ?f2))
(and (= (source (composition [?f1 ?f2])) (source ?f1l))
(= (target (conposition [?f1 ?f2])) (target ?f2))
(= (adjoint-pair (conposition [?f1 ?f2]))
(LAT. ADJ$conposi tion [(adjoint-pair ?f2) (adjoint-pair ?f1)]))
(= (instance (conposition [?f1 ?2f2]))
( SET. FTN$conposition [(instance ?f2) (instance ?f1)]))
(= (type (conposition [?f1 ?f2]))
( SET. FTN$conposition [(type ?f1) (type ?f2)]))))

(
(
(
(

fo

The function ‘i dentity’ associates a well-defined (identity) concept morphism with any concept lat-
tice — its components are identities.

(19) (KIF$function identity)
(= (KIF$source identity) CL$concept-lattice)
(= (KIF$target identity) concept-norphism
(forall (?I (CL$concept-lattice ?1))
(and (= (source (identity ?1)) ?I)
(= (target (identity ?1)) ?I)
(= (adjoint-pair (identity ?1))
(LAT. ADJ$i dentity (conplete-lattice ?1)))
(= (instance (identity ?I)) (SET.FTN$identity (CL$instance ?1)))
(= (type (identity ?c)) (SET.FTN$identity (CL$type ?1)))))

A very useful generic concept morphism represents the instance power concept morphism construc-
tion. For any class function f: B — A the components of the instance power concept morphism

Of=00f/0ff' k04 =0B
over f are defined as follows: the source concept lattice is the instance power concept lattice 0 4 =
Mo 4, Oy Ny, U404, OA, {-},, ido Jover A4, the target concept lattice is the instance power concept

lattice 0 B = [ B, g, Ng, U} B, O B, {-} s, idn g0over B, the adjoint pair is the (complete lattice)
power adjoint pair over f, the instance function is f, and the type function is the inverse image function
/7t 04 - O B from the power-class of 4 to the power-class of B. Note the contravariance.

(20) (KIF$function instance-power)

(= (KIF$source instance-power) SET. FTN$functi on)

(= (KIF$target instance-power) concept-norphism

(forall (?f (SET.FTN$function ?f))

(and (= (source (instance-power ?f)) (CL$instance-power (SET.FTN$target ?f)))

target (instance-power ?f)) (CL$instance-power (SET. FTN$source ?f)))
adj oi nt-pair (instance-power ?f)) (LAT. ADI$power ?f))
instance (instance-power ?f)) ?f)

(= (
(-
(= (type (instance-power ?f)) (SET.FTN$i nverse-image ?f))))
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The Namespace of Large Complete Lattices

This namespace will represent large complete lattices, their adjoint pairs and their complete homomor-
phisms. The terms introduced in this namespace are listed in Table 1.

Table 1: Terms introduced into the large complete lattice namespace

Collection Function Other
LAT conpl et e- partial -order = underlying
lattice class nmeet join
classification
cut
opposi te power concept-lattice
LAT adj oi nt-pair source target underlying left right conposabl e- opspan
. ADJ i nf omor phi sm bond conposabl e

cut-forward cut-reverse
opposite conposition identity
power concept - nor phi sm

LAT homonor phi sm source target function forward reverse conposabl e- opspan
. VOR bondi ng-pai r cut conposabl e
opposite conposition identity

Complete Lattices
LAT

o A partial order L = [L, <;, M, U, Uis a complete lattice when the meet and join exist for all classes
O O L. The underlying partial order is represented by |L| = [L, <[] We define a convenience term —the
class of elements in the complete lattice. These facilitate the expression of some of the axioms below.

(1) (KIF$collection conplete-lattice)

(2) (KIF$function partial-order)
(KI F$f unction underlying)

(= underlying partial -order)
(= (KIF$source partial-order) conplete-lattice)
(= (KIF$target partial-order) ORD$partial -order)
(3) (KIF$function class)
(= (KIF$source class) conplete-lattice)
(= (KIF$target class) SET$cl ass)
(forall (?1 (conplete-lattice ?1))
(= (class ?1) (ORD$class (partial-order ?1))))
(4) (KIF$function neet)
(= (KIF$source neet) conplete-lattice)
(= (KIF$target neet) SET. FTN$functi on)
(forall (?I (conplete-lattice ?1))
(and (= (SET.FTN$source (neet ?l)) (SET$power (class ?1)))
(= (SET. FTN$target (nmeet ?1)) (class ?1))
(forall (?g ((SET$power (class ?1)) ?q))
(((greatest (partial-order ?l))
((l ower-bound (partial-order ?1)) ?q))
((meet 21) 20)))))
(5) F$function join)

(Kl
(= (KIF$source join) conplete-lattice)
(= (KIF$target join) SET. FTN$functi on)
(forall (?I (conplete-lattice ?1))
(and (= (SET.FTN$source (join ?1)) (SET$power (class ?1)))
(= (SET.FTN$target (join ?l)) (class ?l))
(forall (?q ((SET$power (class ?1)) ?q))
(((least (partial-order ?1))
((upper-bound (partial-order ?1)) ?q))
((join 21) 20)))))
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Associated with any complete lattice L = [L, <;, M,;, U Ois the classification cls(L) = cls(|L]) =
(L, L, <;0Jwhich has L-elements as its instances and types, and the lattice order as its incidence.

The classification associated with a complete lattice is

— the image of the object function of the bond functor applied to the complete lattice:
B : COMPLETE ADJOINT - BOND.

— the image of the object function of the bonding pair functor applied to the complete lattice:
B?: COMPLETE LATTICE . BONDING PAIR.

(6) (KIF$function classification)
(= (KIF$source classification) conplete-lattice)
(= (KIF$target classification) CLS$classification)
(forall (?1 (conplete-lattice ?1))
(= (classification ?I)
(ORD$cl assification (partial-order ?1))))

For any complete lattice L = [L, <;, M;, LI;Cand for every element / (J L, the pair {,(/) = (1 (1)) isa
formal concept in the concept lattice of the classification of L. Hence, there is a special cut function
cut(L)=171;: L - lat(cls(L)).

(7) (KIF$function cut)
(= (KIF$source cut) conplete-lattice)
(= (KIF$target cut) SET. FTN$f uncti on)
(forall (?I (conplete-lattice ?1))
(and ( SET. FTN$source (cut ?1)) (class ?l1))
(SET. FTN$t arget (cut ?1)) (CLS. CL$concept (classification ?1)))
(= (SET. FTN$conposition [(cut ?l) (CLS CL$extent (classification ?1))])
( ORD$down- enbeddi ng (partial -order ?1)))
(= (SET. FTN$conposition [(cut ?I) (CLS.CL$intent (classification ?1))])
(ORD$up- enbeddi ng (partial-order ?1)))))

Here are some preliminary observations that pertain to this cut function.

On the underlying partial-order of a complete lattice, the composition of the down-embedding and join
is the identity on the underlying class. Dually, the composition of the up-embedding and meet is the
identity on the underlying class.
(forall (?I (conplete-lattice ?1))
(and (= (SET. FTN$conpositi on [ ( ORD$down- enbeddi ng (partial-order ?1)) (join ?1)])
(SET. FTN$i dentity (class ?1)))

(= (SET. FTN$conposi ti on [ (ORD$up- enbeddi ng (partial-order ?1)) (nmeet ?1)])
(SET. FTN$i dentity (class ?1)))))

On the classification of a complete lattice, the instance generation function factors as the composition
of join and the above cut function. Dually, the type generation function is the composition of meet fol-
lowed by cut.
(forall (?1 (conplete-lattice ?1))
(and (= (CLS. CL$i nstance-generation (classification ?1))
(SET. FTN$conposition [(join ?1) (cut ?1)]))
(= (CLS. CL$type-generation (classification ?1))
( SET. FTN$conposition [(meet ?1) (cut ?1)]))))

On the classification of a complete lattice, the instance embedding and type embedding functions are
both equal to the above cut function.
(forall (?I (conplete-lattice ?1))
(and (= (CLS. CL$i nstance-enbeddi ng (classification ?1))
(cut ?1))
(= (CLS. CL$type-enbedding (classification ?1))
(cut ?1))))

It is important to observe that any concept in lat(cls(L)) is of the form (! ,x,1,x) for some element
x O L. In fact, the cut function is a bijection, and its inverse function has two expressions — it is the
composition of conceptual extent and join, and it is the composition of conceptual intent and meet.
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(forall (?1 (conplete-lattice ?1))
(and (= (SET. FTN$conposi tion
[(cut ?1)
( SET. FTN$conposi ti on
[ (CLS. CL$extent (classification ?1)) (join ?1)])])
(SET. FTN$i dentity (class ?1)))
(= (SET. FTN$conposi tion
[ (SET. FTN$conposi tion
[ (CLS. CL$extent (classification ?1)) (join ?1)])
(cut ?1)])
(SET. FTN$i dentity (CLS. CL$concept (classification ?1))))
(= (SET. FTN$conposi tion
[(cut ?1)
( SET. FTN$conposi ti on
[(CLS. CL$intent (classification ?1)) (rmeet ?1)])])
(SET. FTN$i dentity (class ?1)))
(= (SET. FTN$conposi tion
[ (SET. FTN$conposi tion
[(CLS. CL$intent (classification ?1)) (nmeet ?1)])
(cut ?1)])
(SET. FTN$i dentity (CLS. CL$concept (classification ?1))))))

For any complete lattice L = [L, <;, M, U, the opposite or dual of L is the complete lattice L” =

(L, >2;, L;, M, whose underlying partial order is the opposite of the underlying partial order of L,
whose meet is the join of L, and whose join is the meet of L.

(8) (KIF$function opposite)
(= (KI F$source opposite) conplete-lattice)
(= (KIF$target opposite) conplete-lattice)
(forall (?1 (conplete-lattice ?1))
(and (= (partial-order (opposite ?1)) (ORD$opposite (partial-order ?1)))
(= (neet (opposite ?1)) (join ?1))
(= (join (opposite ?1)) (meet ?1))))

For any class C, the power complete lattice [[ C) = C, O¢, N¢, ULis the power class with subclass
ordering, intersection as meet and union as join. There is a KIF power function that maps a class to its
power lattice.

(9) (KIF$function power)
(= (KI F$source power) SET$cl ass)
(= (KIF$target power) conplete-lattice)
(forall (?c (SET$class ?c))
(and (= (partial-order (power ?c)) (ORD$power ?c))
(= (meet (power ?c)) (SET.FTNS$i ntersection ?c))
(= (join (power ?c)) (SET.FTN$union ?c))))

Any complete lattice L = [L, <;, M, LI;[has an associated concept lattice L = [L, L, L, idy, id;[)where
the instance and type classes are the underlying class of the lattice and the instance and type embed-
dings are the identity function.

(10) (KIF$function concept-lattice)
(= (KIF$source concept-lattice) conplete-lattice)
(= (KIF$target concept-lattice) CL$concept-lattice)
(forall (?I (conplete-lattice ?1))
(and (= (CL$conplete-lattice (concept-lattice ?1)) ?I)

(= (CLS$instance (concept-lattice ?1)) (class ?1))

(= (CL$type (concept-lattice ?1)) (class ?1))

(= (CL%$i nstance-enbeddi ng (concept-lattice ?l))
(SET. FTN$i dentity (class ?1)))

(= (CL$type-enbeddi ng (concept-lattice ?1))

(SET. FTN$i dentity (class ?1)))))

An easy check shows that the classification of the concept lattice of a complete lattice L is the same as
the classification associated with L.
(forall (?I (conplete-lattice ?1))

(= (CL$classification (concept-lattice ?1))
(classification ?1)))
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Complete Adjoint
LAT. ADJ Y = right(f)

o Complete lattices are related through adjoint pairs. This is a restric-

tion to complete lattices of the adjoint pair notion for preorders. Foran — _ .
<K <L

adjoint pair [@, Y L = K between complete lattices L =

|1, <z, Mg, |—|LD and K = IJ(, <k, Nk, |—|KD the left adjoint ¢ L - Kis K P L

join-preserving and the right-adjoint (/: K — L is meet-preserving. ¢ = lefi(f)

The two functions determine each other as follows. Figure 1: Complete Adjoint

¢()) = NMx{k UK |1 < Y(k)} as an Infomorphism
k) =L {1 O L | k<x ¢(1)}

For example, suppose (/: K — L is a meet-preserving monotonic function, and define the function
¢:L - Kasabove.

- Ifl] <L lz then {k OK | l] <L (,U(k)} O {k OK | 12 <L w(k)} . HCI’ICG, ¢(ll) <k ¢(lz)

If I <; (k) then k O {k O K |l <, Y(k)}. Hence, §(I) <gk.

W) = YMx{k OK [ 1<, @k)}) = M { k) OL | 1<y Yk} 2 1.
If ¢(/) <gk then YW(@(1)) < Y(k). Hence, [ <; Y(k).

Let COMPLETE ADJOINT denote the quasi-category of complete lattices and adjoint pairs.

(1) (KIF$collection adjoint-pair)

(2) (KIF$function source)
(= (KI F$source source) adjoint-pair)
(= (KIF$target source) LATSconplete-lattice)

(3) (KIF$function target)
(= (KIF$source target) adjoint-pair)
(= (KIF$target target) LAT$conplete-lattice)
(4) (KIF$function underlying)
(= (KI F$source underlying) adjoint-pair)
(= (KIF$target underlying) ORD. ADJ$adj oi nt-pair)
(forall (?a (adjoint-pair ?a))

(and (= (ORD. ADJ$source (underlying ?a)) (LATSunderlying (source ?a)))
(= (ORD. ADJ$t arget (underlying ?a)) (LATSunderlying (target ?a)))))

0 We define the following two terms for convenience of reference.

(5) (KIF$function left)

(= (KIF$source left) adjoint-pair)

(= (KIF$target |eft) ORD. FTN$nonotonic-function)

(forall (?a (adjoint-pair ?a))

(= (left ?a) (ORD. ADJ$left (underlying ?a))))

(6) (KIF$function right)
(KI F$source right) adjoint-pair)
(KI F$target right) ORD. FTN$npnot oni c-functi on)
rall (?a (adjoint-pair ?a))
(= (right ?a) (ORD. ADJ$right (underlying ?a))))

(
(
(
(

fo

0 Any adjoint pair has an associated infomorphism (Figure 1).

(7) (KIF$function infonorphism
(= (KI'F$source infonorphisn adjoint-pair)
(= (KIF$target infonorphisn CLS.|NFGsi nfonorphi sm
(forall (?a (adjoint-pair ?a))
(= (i nfonorphi sm ?a)
( ORD. ADJ$i nf onor phi sm (underlying ?a))))
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Associated with any adjoint pair f= [eft(f), right(f)C= [, Y[t L = K, from complete lattice L to com-

plete lattice K, is the bond bnd(f) : cls(K) — cls(L) (whose classification relation is) defined by the
adjointness property: lbnd(f)k iff ¢(/) <k k iff [ <; (k) for all elements / 0 L and £ O K. The closure
property of bonds is obvious, since /bnd(f) = 1 x #(/) for all elements / O L and bnd(f)k = | ; (k) for
all elements k& O K. This can equivalently be defined in terms of either the left or the right monotonic
function. Here we use the left monotonic function. In particular, we define the classification of the
bond via the right operator that maps the left function to a classification relation in the presence of the
underlying partial order of the target complete lattice.

The bond associated with an adjoint pair is the image of the morphism function of the bond func-
tor applied to the adjoint pair:

B : COMPLETE ADJOINT - BOND.

(8) (KIF$function bond)
(= (KI'F$source bond) adjoint-pair)
(= (KIF$target bond) CLS. BND$bond)
(forall (?a (adjoint-pair ?a))
(and (= (CLS.BND$source (bond ?a)) (LAT$classification (target ?a)))
(= (CLS. BND$t arget (bond ?a)) (LATS$classification (source ?a)))
(= (CLS. BND$cl assification (bond ?a))
( SET. FTN$ri ght
[ (ORD. FTN$f unction (left ?a))
(LAT$partial -order (target ?a))]))))

This bond is the bond of the underlying adjoint pair. This fact could be used as a definition.

(forall (?a (adjoint-pair ?a))
(= (bond ?a)
( ORD. ADJ$bond (underlying ?a))))

The composition of two composable adjoint pairs F: A — B and G : B - C is the composition of the
underlying adjoint pairs.

(9) (KIF$opspan conposabl e- opspan)
(= conposabl e- opspan [target source])

(= (KI'F$col | ecti onl conposabl e) adj oi nt-pair)
(= (KIF$col | ection2 conposabl e) adjoint-pair)
(=(

(10) (KIF$relation conposabl e)
= (KI'F$extent conposabl e) (KIF$pullback conposabl e-opspan))

(11) (KIF$function conposition)
(= (KI'F$source conposition) (KIF$pullback conposabl e- opspan))
(= (KIF$target conposition) adjoint-pair)
(forall (?f1 (adjoint-pair ?f1)

?f2 (adjoint-pair ?f2) (conposable ?f1 ?f2))
(and (= (source (composition [?f1 ?f2])) (source ?f1l))
(= (target (conposition [?f1 ?f2])) (target ?f2))
(= (underlying (conposition [?f1 ?f2]))
( ORD. ADJ$conposi tion [(underlying ?f1) (underlying ?f2)]))))

The identity adjoint pair at a complete lattice L is the identity adjoint pair of the underlying order.

(12) (KIF$function identity)
(= (KIF$source identity) LAT$conplete-lattice)
(= (KIF$target identity) adjoint-pair)
(forall (?I (LAT$conplete-lattice ?1))
(and (= (source (identity ?1)) ?I)
(= (target (identity ?1)) ?I)
(= (underlying (identity ?1))
(ORD. ADJ$i dentity (LAT$underlying ?1)))))

In section 3.2 of the paper (Kent 2001), which is concerned with relational equivalence, the following
ideas are introduced and developed in order to demonstrate the categorical equivalence BOND =
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COMPLETE ADJOINT. The cut monotonic function L — A(B(L)) was defined in the complete lat-
tice namespace.

(e]

The cut-forward adjoint pair [éxtent(cls(L)) - join(L), cut(L)[: lat(cls(L)) = L has the cut func-
tion as its right monotonic function and the composition of extent and join (or the composition of
intent and meet) as its left monotonic function. This adjoint pair is a pair of inverse functions, and
hence is an isomorphism from the complete lattice of its associated classification A(B(L)) to a
complete lattice L.

The cut-reverse adjoint pair [Cut(L), extent(cls(L)) - join(L): L = lat(cls(L)) flips the inverses —
it has the cut function as its left monotonic function and the composition of extent and join as its
right monotonic function.

This adjoint pair is a pair of inverse functions, and hence is an isomorphism from a complete lattice L
to the complete lattice of its associated classification lat(cls(L)).

(13) (KIF$function cut-forward)

(14)

(= (KIF$source cut-forward) LAT$conplete-lattice)
(= (KIF$target cut-forward) adjoint-pair)
(forall (?1 (LAT$conplete-lattice ?1))
(and (= (source (cut-forward ?1))
(CLS. CL$conpl ete-lattice (LAT$classification ?1)))
(target (cut-forward ?1)) ?I)
(ORD. FTN$function (left (cut-forward ?1)))
( SET. FTN$conposi ti on
[ (CLS. CL$extent (LATS$classification ?1))
(LAT$join ?1)]))
(= (ORD. FTN$function (right (cut-forward ?1))) (LAT$Scut ?1))))

(:
(:

(KI F$f unction cut-reverse)
(= (KIF$source cut-reverse) LAT$conplete-lattice)
(= (KIF$target cut-reverse) adjoint-pair)
(forall (?I (conplete-lattice ?1))

(and (= (source (cut-reverse ?l)) ?I1)

(= (target (cut-reverse ?1))

(CLS. CL$conpl ete-lattice (LAT$classification ?1)))
(ORD. FTN$f unction (left (cut-reverse ?1))) (LATScut ?1))
(ORD. FTN$function (right (cut-reverse ?1)))
( SET. FTN$conposi ti on

[ (CLS. CL$extent (LATS$classification ?1))

(LAT$join ?1)]1))))

(:
(:

Let f= [, YO L = K be a complete adjoint, an adjoint pair of cut-reverse(L)
monotonic  functions, between complete lattices L =

—
[, <, 0, 00 and K = [K, <, Ok, CkOwith associated bond L <= lat(cls(L))
bnd(f) : cls(L) - cls(K). Then, the right adjoint of 1 T\L T\L adj(bnd(f)
adj(bnd(f) maps (! ;x,1;x) = (I xW(x),1 x(x)) and the left ad-
. —>

joint of adj(bnd(f) maps (! w1 k) — (4 .6(),1 (). This is K == lat(cls(K))
equivalent to the natural isomorphism (commuting Diagram 1): cut-reverse(K)

cut-reverse(L) - adj(bnd(f))=f - cut-reverse(K). Diagram 1: Natural Isomorphism

So, up to isomorphism, adj(bnd(f) is the same as f.

categorically equivalent to the quasi-category of bonds:

COMPLETE ADJOINT = BOND.

For any complete lattice L the cut-reverse adjoint pair cut-reverse(L) is the L" component of a
natural isomorphism L OA(B(L)), demonstrating that the quasi-category of complete adjoints is

(forall (?a (adjoint-pair ?a))
(= (conposition (cut-reverse (source ?a)) (adjoint-pair (bond ?a)))
(conposition ?a (cut-reverse (target ?a)))))
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0 Duality can be extended to adjoint pairs. For any adjoint pair f: L = K, the opposite or dual of fis the

adjoint pair f Y. K" = L", whose source complete lattice is the opposite of the target of f, whose target
complete lattice is the opposite of the source of f, whose underlying adjoint pair is the opposite of the
adjoint pair of f.

(15) (KIF$function opposite)
(= (KI'F$source opposite) adjoint-pair)
(= (KIF$target opposite) adjoint-pair)
(forall (?f (adjoint-pair ?f))
(and (= (source (opposite ?f)) (CL$opposite (target ?f)))
(= (target (opposite ?f)) (CL$opposite (source ?f)))
(= (underlying (opposite ?f)) (ORD. ADJ$opposite (underlying ?f)))))

0 For any class function f: 4 — B there is a power adjoint pair 0 f: 0 A = [ B over f defined as fol-
lows: the source is the complete lattice [ A) = I 4, O0,,N4U4Ll the target is the complete lattice

[0 B) = [ B, Og,Np,UglLl the left monotonic function is the direct image function O f:0 4 - OB,
whose right monotonic function is the inverse image function f 0 B -0 4 , and whose fundamental
property holds, since the following equivalence holds

OAX) Op Yiff X O,/ 7%(Y)
for all subclasses X 14 and Y [0 B.

(16) (KIF$function power)

(= (KIF$source power) SET. FTN$functi on)

(= (KIF$target power) adjoint-pair)

(forall (?f (SET.FTN$function ?f))

(and (= (source (power ?f)) (LAT$power (SET.FTN$source ?f)))

(= (target (power ?f)) (LAT$power (SET.FTN$target ?f)))
(= (left (power ?f)) (SET.FTN$direct-image ?f))
(= (right (power ?f)) (SET.FTN$i nverse-imge ?f))))

o For any adjoint pair f: L = [L, <;, M, U, 0= K= [K, <, Mg, Lix[between complete lattices there is a

associated concept morphism f: [K, K, K, idy, idgU= [L, L, L, id;, id; U(in the reverse direction) be-
tween the concept lattices associated with the target and source complete lattices.

(17) (KIF$function concept - norphism
(= (KI F$source concept-norphisnm) adjoint-pair)
(= (KIF$target concept-norphi sn) CL. MORSconcept - nor phi sn)
(forall (?f (adjoint-pair ?f))
(and (= (CL. MOR$source (concept-norphism ?f))
(LAT$concept-lattice (target ?f)))

(= (CL. MOR$t arget (concept - nor phism ?f))
(LAT$concept-lattice (source ?f)))

(= (CL. MOR$adj oi nt - pai r (concept-norphism ?f)) 2f)

(= (CL. MORS$i nstance (concept - nor phism ?f))

(ORD. ADJ$l eft (underlying ?f)))
(= (CL. MOR$t ype (concept - norphism ?f))
(ORD. ADJ$ri ght (underlying ?f)))))

0 An easy check shows that the infomorphism of the concept morphism of an adjoint pair f is the same
as the infomorphism associated with f.
(forall (?f (adjoint-pair ?f))

(= (CL. MOR$i nf onor phi sm (concept - nor phi sm ?f))
(i nfonor phism ?f)))
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0
Complete Lattice Homomorphism K ——> L
LAT. MOR ~
Unfortunately, adjoint pairs are not the best morphisms for making struc- =K reverse SL
tural comparisons between complete lattices. Another morphism between ™~
complete lattices called complete homomorphisms are best for this. K <«—— L
o A homomorphism Y :L - K between complete lattices L and K is a v
monotonic function that preserves both joins and meets (Figure 2). Be- Y
ing meet-preserving, (¥ has a left adjoint ¢ : K — L, and being join- L > K
preserving ( has a right adjoint €: K — L. Therefore, a complete N
homomorphism is the middle monotonic function in two adjunctions =t forward <k
¢ — - 0. Since it is more algebraic, we use the latter adjoint pair

N
characterization in the definition of a complete lattice homomorphism. L <«—— K
Let COMPLETE LATTICE denote the quasi-category of complete lat- ¢

tices and complete homomorphisms. Figure 2: Complete

Homomorphism
(1) (KIF$collection honoror phism

(2) (KIF$function source)
(= (KIF$source source) hononor phisn
(= (KIF$target source) LATSconplete-lattice)

(3)
KI F$source target) hononor phism

Kl F$function target)
=(
= (KIF$target target) LAT$conplete-lattice)

(
(
(
(4) $function function)

F
(KI F$source function) hormonor phisn
(

Kl
= (KIF$target function) ORD. FTN$nonot oni c-functi on)

(

(

(

(5) | F$f uncti on forwar d)

(KI F$sour ce forward) hononor phism

(KI F$target forward) LAT. ADJ$adj oi nt-pair)

orall (?h (honmonor phi sm ?h))

(and (= (LAT. ADJ$source (forward ?h)) (target ?h))

(= (LAT. ADJ$target (forward ?h)) (source ?h))
(= (LAT. ADJ$right (forward ?h)) (function ?h))))

(
(
(
(fo

Tnhnx

(6) F$function reverse)

(KI F$source reverse) hononor phism

(KI F$t arget reverse) LAT. ADJ$adj oi nt-pair)

orall (?h (homororphi sm ?h))

(and (= (LAT. ADJ$source (reverse ?h)) (source ?h))
(= (LAT. ADJ$target (reverse ?h)) (target ?h))
(= (LAT. ADJ$l eft (reverse ?h)) (function ?h))))

(K
(:
(:
(fo

o For each complete lattice homomorphism /: L — K there is an associated bonding pair.

The bonding pair associated with a complete lattice homomorphism is the image of the morphism
function of the bonding pair functor applied to the complete lattice homomorphism:

B> : COMPLETE LATTICE - BONDING PAIR.

(7) (KIF$function bonding-pair)

(= (KI'F$source bondi ng-pair) honmonorphisn

(= (KIF$target bondi ng-pair) CLS. BNDPR$bondi ng- pair)

(forall (?h (honmonorphi sm ?h))

(and (= (CLS. BND$source (bonding-pair ?h)) (LAT$classification (source ?a)))

(= (CLS. BND$t arget (bondi ng-pair ?h)) (LAT$cl assification (target ?a)))
(= (CLS. BND$f orward (bondi ng-pair ?h)) (LAT. ADIJ$bond (forward ?h)))
(= (CLS. BND$reverse (bondi ng-pair ?h)) (LAT. ADIJ$bond (reverse ?h)))))
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0 The composition of two composable homomorphisms ¢ : L — K and (), : K - M is the composition
of the underlying function and forward and reverse adjoint pairs.

(8) (KI F$opspan conposabl e- opspan)

(= conposabl e- opspan [target source])
(9) F$rel ati on conposabl e)
(KI F$col | ectionl conposabl e) hononor phi sm
(KI F$col | ection2 conposabl e) hononor phi sn)
(

Kl
= (KIF$ext ent conposabl e) (KIF$pul | back conposabl e- opspan))

(
(
(
(

(10) (KIF$function conposition)
(= (KI'F$source conposition) (KIF$pullback conposabl e- opspan))
(= (KIF$target conposition) adjoint-pair)
(forall (?h1l (hononorphi sm ?hl)
?h2 (hononor phi sm ?h2) (conposabl e ?hl ?h2))
(and (= (source (composition [?hl ?h2])) (source ?hl))
(= (target (composition [?hl ?h2])) (target ?h2))
(= (function (conposition [?hl ?h2]))
(ORD. FTN$conposi tion [(function ?hl) (function ?h2)]))
(= (forward (conposition [?hl ?h2]))
(LAT. ADJ$conposition [(forward ?h2) (forward ?hl1)]))
(= (reverse (conposition [?hl ?h2]))
(LAT. ADJ$conposition [(reverse ?hl) (reverse ?h2)]))))

0 The identity homomorphism at a complete lattice L is the identity monotonic function of the underly-
ing order.

(11) (KIF$function identity)

(= (KIF$source identity) LAT$conplete-lattice)

(= (KIF$target identity) hononorphism

(forall (?1 (LAT$conplete-lattice ?1))

(and (= (source (identity ?1)) ?I)

(target (identity ?1)) ?I)
(function (identity ?1)) (ORD. FTN$identity (LATSunderlying ?1)))
(forward (identity ?1)) (LAT.ADI$identity ?1))
(reverese (identity ?1)) (LAT.ADJ$identity ?1))))

(
(
(
(

0 Duality can be extended to complete homomorphisms. For any homomorphism ¢: L - K, the oppo-

site or dual of () is the complete homomorphism 7. K” = L", whose source complete lattice is the
opposite of the target of f, whose target complete lattice is the opposite of the source of f, whose for-
ward adjoint pair is the opposite of the reverse adjoint pair of f, and whose reverse adjoint pair is the
opposite of the forward adjoint pair of f.
(12) (KIF$function opposite)

(= (KI F$source opposite) adjoint-pair)

(= (KIF$target opposite) adjoint-pair)

(forall (?f (adjoint-pair ?f))

(and (= (source (opposite ?f)) (CL$opposite (target ?f)))

(= (target (opposite ?f)) (CL$opposite (source ?f)))
(= (function (opposite ?f)) (ORD. FTN$opposite (function ?f)))
(= (forward (opposite ?f)) (ORD. ADJ$opposite (reverse ?f)))
(= (reverse (opposite ?f)) (ORD. ADJ$opposite (forward ?f)))))
o In section 3.3 of the paper (Kent 2001), which is concerned cut(L)
with complete relational equivalence, the following ideas are in- L -~ lat(cls(L))
troduced and developed in order to demonstrate the categorical )
equivalence BONDING PAIR = COMPLETE LATTICE. The ¥ 1 1 adj(bndpr(y))

cut complete lattice homomorphism ¢ : L — lat(cls(L)) is a bi-

jection from a complete lattice L to the complete lattice of its K - lat(cls(K)
classification lat(cls(L)). Its forward adjoint pair is the cut- cut(K)

forward adjoint pair and its reverse adjoint pair is the cut-
reverse adjoint pair.

(13) (KIF$function cut)

(= (KIF$source cut) LAT$conplete-lattice)
(= (KIF$target cut) hononorphism

Diagram 2: Natural Isomorphism
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(forall (
(and

?l (conplete-lattice ?1))

(= (source (cut ?1)) ?1)

(= (target (cut ?l)) (CLS.CL$conplete-lattice (LAT$classification ?1)))
(= (forward (cut ?1)) (LAT.ADJ$cut-forward ?1))

(= (reverse (cut ?1)) (LAT.ADJ$cut-reverse ?1))))

o Now consider any complete lattice homomorphism  : L — K between complete lattices L and K with
associated adjunctions ¢ — ( 4 6. The bonding pair functor maps this to the bonding pair bndpr(y) =
(B(0¢, YO, B(tp, 60), and the complete lattice functor maps this to the complete homomorphism
adj(bndpr(y)) = @:L(, L, <0 - L(IK, K, <x[J with associated adjunctions ¢ — (J ~ 6, where

P k1 k) = CLdO),108(0), P(4rx,11x)) = (LxAx),1 kY(x)) and é((lkyaTKY)) = (1L0(»),1L0(»)).
Clearly, the naturality condition holds (commuting Diagram 2) between ( and adj(bndpr(y)).

For any complete lattice L the cut complete lattice homomorphism cut(L) is the L™ component of
a natural isomorphism L OJA%(B%(L)), demonstrating that the quasi-category of complete lattices
is categorically equivalent to the quasi-category of bonding pairs:

COMPLETE LATTICE = BONDING PAIR.

(forall (?h (homonorphism ?h))

(= (conposition [(cut (source ?h)) (CLS. BNDPR$hononor phi sm (bonding-pair ?h))])
(composition [?h (cut (target ?h))])))
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BONDING —)E COMPLETE
PAIR (—2 LATTICE
i B !
9 airin \ % \
)4 g BOND® COMPLETE
constraints ADJOINT
A
— » COMPLETE pullback
BOND < - ADJOINT®? A
B
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PREORDER

A
——» COMPLETE
BOND =

= ADJOINT®?
bond T

CLASSIFICATIONyel
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L

——> CONCEPT
CLASSIFICATION = LATTICE
C

forget

Figure 1: Architectural Diagram of Distributed Conceptual Structures
(functors and natural isomorphisms)

1/2/2002
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Table 1: Mathematical-Ontological Correspondences in the Architectural Diagram

Mathematical Notation

Ontological Terminology

A2 object part: | ‘CLS. CL$conpl ete-lattice’
Complete Lattice Functor morphism part: | ‘CLS. BNDPR$hononor phi sn?
B2 object part: | ‘L AT$cl assification’
Bonding Pair Functor morphism part: | ‘LAT. MOR$bondi ng- pai r’
Id =B%- A’
COMPLETE LATTICE _ component: [ ‘LAT. MOR$cut ’
Cut Natural Isomorphism
2. R2—
A’ ° B” = ldgonpine PAIR component: | ‘CLS. BNDPR$i ot a-t au’
Iota-Tau Natural Isomorphism
A object part: | ‘CLS. CL$conpl ete-lattice’
Complete Adjoint Functor morphism part: | ‘CLS. BND$bond’
B object part: | ‘LATS$cl assi fi cation’
Bond Functor morphism part: | ‘L AT. ADIJ$bond’
IdcompLere ApsoinT =B © A component: | ‘LAT. ADJ$cut - r ever se’
Cut-Reverse Natural Isomorphism
A B = ldsonp ) component: | ‘CLS. BND$i ot a’ (and ‘CLS. BNDSt au’)
lota Natural Isomorphism
L object part: | ‘CLS. CL$concept -l attice’
Concept Lattice Functor morphism part: [ ‘CLS. | NFGconcept - nor phi sni
C object part: | ‘CL$cl assification’
Classification Functor morphism part: [ ‘CL. MORS$i nf onor phi sni
ldconcepriarmce =C e L - component: | ‘CL. MORSr epr esent at i on’
Representation Natural Isomorphism
L ° C = IdcLassIFicaTION
equality
9o object part: | implicit identity function
0" Bond Projection Functor morphism part: | ‘CLS. BNDPR$f or war d’
0, object part: | implicit identity function
I’ Bond Projection Functor morphism part: | ‘CLS. BNDPR$r ever se’
d object part: | implicit identity function
0™ Adjoint Pair Projection Functor morphism part: | ‘LAT. MOR$f or war d’
0 object part: | implicit identity function
I* Adjoint Pair Projection Functor morphism part: | ‘L AT. MOR$r ever se’
A object part: [ ‘LAT$under|yi ng’
Left Projection Functor morphism part: | ‘L AT. ADI$l ef t ’
object part: [ ‘LAT$under | yi ng’
Right Projection Functor morphism part: [ ‘LAT. ADI$ri ght’

The complete lattice functor A* : BONDING PAIR —. COMPLETE LATTICE is the operator that
maps a classification A4 to its concept lattice A*(4) & L(A) regarded as a complete lattice only, and

maps a bonding pair [F, GL: A = B to its complete lattice homomorphism

AX(TF, GO 2 Yr= g : L(A) - L(B).

The bonding pair functor B* : COMPLETE LATTICE — BONDING PAIR is the operator that maps

a complete lattice L to its classification [L, L, <;Uand maps a complete lattice homomorphism to its
bonding pair as above. Since the bond functor B is functorial, so is B>,
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bond
Bond <—  Adjoint Pair
/ adjoint-
bond info | | par | ]
/f source target adjoint source target
) pair concepti/ i/
Classificatione morph|sm
classifi atleh

Classification omplete Lattice
fn2rel complete

mfomorphlsm

Infomorphism <—_ Concept Morph|sm
concept complete
| | morphism | | lattice concept

lattice
source target source target

ST L

Classification < Concept Lattice

;/ \—/
concept

lattice

ideptity

Diagram 1: Core Collections and Functions in the Architectural Diagram
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The Namespace of Large Classifications

This is the namespace for large classification and their morphisms: functional/relational infomorphisms,
bonds and bonding pairs. In addition to strict classification terminology and axioms, this namespace will
provide a bridge from classifications and their morphisms to complete/concept lattices and their mor-
phisms. The terms introduced in this namespace are listed in Table 1.

Table 1: Terms introduced into the large classification namespace

1/2/2002

Collection

Function

Other

separ at ed
ext ensi onal

CLS cl assification

i nstance type i nci dence

extent i ntent

i ndi sti ngui shabl e coext ensi ve
opposi te i nstance- power

| eft-derivationright-derivation
i nstance-cl osure type-cl osure
concept extent intent

i nst ance-generationtype-generation
concept - order neet join
conplete-lattice
coreflectionreflection

i nst ance- enbeddi ng t ype- enbeddi ng
i nst ance- concept type-concept

i nst ance- order type-order
concept-lattice

truth-classification
trut h-concept -
lattice

type-cl osed

i nst ance- cl osed

CLS
.FIB

i nstance i nstance-i ndex typetype-index
| eft-derivationright-derivation

i nst ance-cl osure type-cl osure

concept extent intent i ndex

i nst ance- generati ontype-generation

CLS concept
. COLL

classificationindex

extent i ntent

opposite

2-cel | sourcetarget i ndex-function

term nal

nedi at or - functi on nedi at or

i nverse-image i nver se-i mage- nedi at or

i nstance-di stribution type-distribution

i nver se-i nage- opspan
invertible

CLS i nf onor phi sm
. I NFO

source target i nstance type

bond

nonot oni c-i nst ance nonot oni c-type
rel ational -instance rel ati onal -type
rel ational -i nf oror phi smf n2r el
opposi te conpositionidentity

i nst ance- power eta

adj oi nt - pai r concept - nor phi sm

conposabl e-i mage-
opspan conposabl e

CLS i nf onor phi sm
. REL

source target i nstance type
bond
opposi te conpositionidentity

conposabl e-i mage-
opspan conposabl e

CLS bond
. BND

source target classification

bi nodul e i nf onor phi smadj oi nt-pair
opposite conpositionidentity
iotatau

conposabl e- i mage-
opspan conposabl e

CLS bondi ng- pai r
. BNDPR

source target forwardreverse
concept ual -i mage

opposite conpositionidentity
tau-iotaiota-tau

hononor phi sm

conposabl e- i mage-
opspan conposabl e

couni que

initial
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i nst ance- di agr ami nst ance- opspan

t ype- di agr amt ype- span

coequal i zer-di agramparal | el -pai r
cocone- di agramopvert ex opfirst opsecond
bi nary- coproduct - cocone

coequal i zer - cocone
colimting-coconecolimt pushout injec-
tionlinjection2 conediator

CLS di agram classificationlclassification2
. COL pair i nst ance- di agr ami nst ance- pai r
. COPRD | cocone t ype- di agr amt ype- pai r
opposite
cocone- di agramopvert ex opfirst opsecond
i nst ance-cone t ype- cocone
colimting-cocone colimt binary-coproduct
injectionlinjection2
conedi at or
CLS coi nvari ant classificationbase class endorel ation respects
. COL coquot i ent canon conedi at or
. CO NV
CLS di agram source tar get
. COL paral l el -pair i nf onor phi sni i nf onor phi sn?2
. COEQ cocone i nst ance- di agr ami nst ance-paral |l el -pair
type-di agramt ype-paral | el -pair
coi nvari ant
cocone- di agramopvert ex i nf onor phi sm
i nst ance- cone t ype- cocone
colimting-coconecolimt coequalizer canon
CLS di agram classificationlclassification2vertex
. COL span first second
. PSH cocone pair opposite
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Table 2 lists the correspondence between standard mathematical notation and the ontological terminology
in the namespace for classifications and functional/relation infomorphisms and bonds.

Table 2: Correspondence between Mathematical Notation and Ontological Terminology

Mathematical Ontological Natural Language
Notation Terminology Description
CLS

A = [Hok(4), typ(4), =40

‘classification’

a classification — identified with a binary relation; it is de-
termined by its three components

tok(4) ‘i nst ance’ the instance (token) class of a classification — identified with
the source class of a binary relation
typ(4) ‘type’ the #ype class of a classification — identified with the target
class of a binary relation
e ‘i nci dence’ the incidence (or classification) class of a classification —
identified with the extent class of a binary relation
0 ‘i nst ance- power’ the instance power operator on classes — this maps classes to
classifications
i1y do ‘i ndi sti ngui shabl e’ the information flow indistinguishable relation on instances
ulhit ‘coext ensi ve’ the information flow coextensive relation on types
“separated” ‘separ at ed’ the separated subcollection of classifications
“extensional” ‘ext ensi onal ’ the extensional subcollection of classifications
(\)%r (-)%r (-)*® ‘opposite’ the involution (or transpose or opposite or dual) operator on
classifications
CLS. CL
(-) or (-)* ‘ eft-derivation’, left/right derivation operations for a classification
‘right-derivation’
()" or (-)* ‘i nst ance-cl osure’ instance/type closure operations for a classification
‘type-cl osure’
c=(XY) ‘concept’ a formal concept for a classification
146 ‘concept - or der”’ the concept order of a classification — this is the partial order
underlying the concept lattice of a classification
BA ‘concept -l attice’ the concept lattice of a classification — the German word for

“formal concepts” is die begriffe

Vi : tok(B) - BA

‘i nst ance- enbeddi ng’

the instance embedding function — maps an instance to the
concept that it generates

M4 :typ(B) - BA

‘t ype- enbeddi ng’

the type embedding function — maps a type to the concept
that it generates

CLS. I NFO

S=U, fta=8B

‘i nf oror phi sn?

an infomorphism from classification A4 to classification B —
determined by its instance and type functions

1" typ(d) — typ(B) ‘type’ the type function of an infomorphism
[ tok(B) — tok(A) ‘i nstance’ the instance (or token) function of an infomorphism
g:A=C ‘conposi tion’ the composition of two composable infomorphisms
fiA=Bandg:B=C
1 A=A ‘identity’ the identity infomorphism on classification A
(-)”or (-)%%r (-)® ‘opposite’ the involution (or transpose or opposite or dual) operator on
infomorphisms
u ‘i nst ance- power’ the instance power operator on functions — this maps func-

tions to infomorphisms
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extent(Composable)

complosition

identity

opposite
Separated Classification

indistinguishable

inciden
coextensjve

power

. <
opposneO inst
Infomorphism Mé Function |

type

eta ourge t rget%
ihte

>
7
vz

soufce
nt

instance

Extensional Q_J

power
ce

class
ass2
Relation

target

/

Diagram 1: Core Collections and Functions for
Classifications and Infomorphisms

Classifications

(o]

CLS

A (large) classification A = linst(A), typ(A4), 4(Figure 1) is identical to a typ(A)

context of classifications is very different from the context of relations,

(large) binary relation. However, from a category-theoretic standpoint, the T
A

since their morphisms are very different. A large classification consists of
a class of instances inst(4) identified with the first or source class of a bi-

nary relation, a class of types typ(A4) identified with the second or target

inst(A4)

class of a binary relation, and a class of incidence or classification = 4 iden- Figure 1: Classification
tified with the extent class of a binary relation.

The following is a KIF representation for the elements of a classification. The elements in the KIF

representation are useful for the specification of a classification by declaration and population. The
term ‘cl assi fi cation’ allows one to declare classifications. The terms ‘i nst ance’, ‘t ype’ and ‘i nci -
dence’ resolve classifications into their parts, thus allowing one to populate classifications.

(1)

(2)

(3)

(4

(KI F$col I ection classification)
(= classification REL$rel ati on)

KI F$f uncti on i nstance)

= (KI F$source instance) classification)
= (KIF$target instance) SET$cl ass)

= instance RELS$cl assl)

$f uncti on type)

Kl F$source type) classification)

KI F$t arget type) SET$cl ass)

Kl
= type RELS$cl ass?2)

—~~—~T

$f uncti on i nci dence)
Kl F$sour ce incidence) classification)
Kl F$t ar get i nci dence) SET$cl ass)

Kl
= inci dence REL$extent)

-~~~
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Associated with any classification is a function that produces the intent of an instance and a function
that produces the extent of a type, both within the context of the classification. Dually, the intent of an

instance i [J inst(A) in a classification A = [ihst(A4), typ(A4), & 4lis defined by
intent4(i) = {t D typ(A) | i E4 t}.
The extent of a type ¢ U typ(A4) in a classification 4 defined by
extent () = {i 0 inst(A) | i =4 t}.
Intent and extent are synonymous with relational fibers (12 and 21, respectively). The following axi-
oms specify the intent and extent functions.

(5) (KIF$function intent)
(= (KIF$source intent) classification)
(= (KIF$target intent) SET. FTN$function)

(= intent REL$fiber12)

(6) (KIF$function extent)
(= (KIF$source extent) classification)
(= (KIFS$target extent) SET. FTN$function)
(= extent RELS$fi ber21)

These axioms demonstrate that the relative instantiation-predication represented by the incidence rela-
tion is compatible with, generalizes and relativizes the absolute KIF instantiation-predication — an in-
stance is a member of the extent of a type (or dually, a type is a member of the intent of an instance) iff
the instance is classified by the type.

(forall (?a (classification ?a))

(and (= (SET. FTN$source (extent ?a)) (type ?a))

(= (SET. FTN$t ar get (extent
(forall (?i ((instance ?a)
(<=> (((extent ?a) ?t)
SET. FTN$sour ce (intent

?a)) (SET$power (instance ?a)))
?i) ?t ((type ?a) ?t))

?i) (?a?i ?t)))

?a)) (instance ?a))

?a)) (SET$power (type ?a)))

(

(SET. FTN$t arget (i ntent
rall (?i ((instance ?a)
(<=> (((intent ?a) ?i)

(:
(:
(fo ?i) ?t ((type ?a) ?t))
?t) (?a ?i ?t)))))

For any classification A = Ohst(4), typ(A4), =40 two instances i1, iz O inst(A4) are indistinguishable in
A (Barwise and Seligman, 1997), written symbolically as i3 [y ip, when intent4(i1) = intent4(iz). Two
types 1, t; U typ(A) are coextensive in A, written symbolically as #; [y to, when extent(t;) = extent ().
A classification A is separated when there are no two distinct but indistinguishable instances, and ex-
tensional when there are no distinct coextensive types.

The terms ‘(i ndi stingui shable ?a)’ and ‘(coextensive ?a)’ represent the Information Flow
notions of instance indistinguishability and type coextension, respectively. The terms ‘separ at ed’ and
‘ext ensi onal ’ represent the Information Flow notions of classification separateness and extensional-
ity, respectively.

(7) (KIF$function indistinguishable)
(= (KIF$source indistingui shable) classification)
(= (KIF$target indistinguishable) REL. ENDCBrel ation)
(forall (?a (classification ?a))
(and (= (RELS$cl ass (indistinguishable ?a)) (instance ?a))
(forall (?il ((instance ?a) ?il)
?i2 ((instance ?a) ?i2))
(<=> ((indistinguishable ?a) ?il ?i2)
(= ((intent ?a) ?2il) ((intent ?a) 2i2))))))

(8) (KIF$function coextensive)
(= (KI F$source coextensive) classification)
(= (KIFS$target coextensive) REL. ENDCSrel ation)
(forall (?a (classification ?a))
(and (= (RELS$cl ass (coextensive ?a)) (type ?a))
(forall (?tl1 ((type ?a) ?t1)
?t2 ((type ?a) ?t2))
(<=> ((coextensive ?a) ?t1 ?t2)
(= ((extent ?a) ?tl1l) ((extent ?a) ?t2))))))
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(9) (KIF$collection separated)
(KI F$subcol | ection separated cl assification)
(forall (?a (classification ?a))
(<=> (separated ?a)
( REL. ENDO$subendor el ati on
(i ndi stingui shabl e ?a)
(REL. ENDC®i dentity (instance ?a)))))

(10) (KIF$collection extensional)
(KI F$subcol | ection extensional classification)
(forall (?a (classification ?a))
(<=> (extensional ?a)
( REL. ENDO$subendor el ati on
(coext ensi ve ?a)
(REL. ENDC®i dentity (type ?a)))))

0 To quote (Barwise and Seligman, 1997), “in any classification, we think of the types as classifying the
instances, but it is often useful to think of the instances as classifying the types.” For any classification

A = [ihst(A), typ(A), =40 the opposite or dual of A is the opposite binary relation; that is, the classifi-
cation A” = [yp(4), inst(4), =,"[ whose instances are types of A, and whose types are instances of A4,
and whose incidence is: # =" i when i &= ¢.

(11) (KIF$function opposite)
(= (KI'F$source opposite) classification)
(= (KIF$target opposite) classification)
(= opposite REL$opposite)

0 For any class 4 the instance power classification 0 A = 4, O A, O,0over A4 is defined as follows: the
instance class is 4; the type class is the power class 0 4 (so that a type is a subclass of 4), and inci-
dence is the membership relation U,,.

(12) (KIF$function instance-power)

(= (KI F$source instance-power) SET$cl ass)

(= (KIF$target instance-power) classification)

(forall (?a (SET$class ?a))

(and (= (instance (instance-power ?a)) ?a)
(= (type (instance-power ?a)) (SET$power ?a))
(forall (?x (?a ?x) ?y ((SET$power ?a) ?y))
(<=> ((instance-power ?a) ?x ?y) (?y ?Xx)))))

Concept Lattices
as. a concept(A)

The central notions that are axiomatized in inst-geV \ntentA
this section, are illustrated as an integrated inst/Glsr) exltefrt‘tfé typ-g typelsr,
framework in the partially commutative . elr-aeriva

—
Diagram 2. U (inst(4)) <« ° U (typ(4))
right-deriv 4

o For any large classification 4 = Di e | functi for C t Latti
[hst(A), typ(4), =40 there are two iagram 2: Core classes/functions for Concept Lattices

senses of derivation corresponding to the two senses of relational residuation. Left derivation maps a
subset of instances to the types on which they are all incident, and dually right derivation maps a sub-
set of types to the instances, which are incident on all of them. For all X [ inst(4) and Y U typ(A4)

X=X =X ={t0typ(A) |i =4t forall i 0 X}
Y ¥V =A/Y={i0inst(4) |i =4 ¢ forall ¢ O 1}.

(1) (KIF$function |eft-derivation)

(= (KIF$source |left-derivation) CLS$classification)

(= (KIF$target |eft-derivation) SET. FTN$functi on)

(forall (?a (CLS$classification ?a))

(and (= (SET.FTN$source (left-derivation ?a)) (SET$power (CLSS$instance ?a)))
(= (SET. FTN$target (left-derivation ?a)) (SET$power (CLS$type ?a)))
(forall (?x (SET$subclass ?x (CLS$i nstance ?a)))
?t ((CLS$type ?a) ?t))
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(<=> (((left-derivation ?a) ?x) ?t)
(forall (?i (?x 2i)) (?a?i ?t))))))

(2) (KIF$function right-derivation)
(= (KIF$source right-derivation) CLS$classification)
(= (KIF$target right-derivation) SET.FTN$function)
(forall (?a (CLS$classification ?a))
(and (= (SET. FTN$source (right-derivation ?a)) (SET$power (CLS$type ?a)))
(= (SET. FTN$target (right-derivation ?a)) (SET$power (CLSS$instance ?a)))
(forall (?y (SET$subclass ?y (CLS$type ?a)))
?i ((CLS$instance ?a) ?i))
(<=> (((right-derivation ?a) ?y) ?i)
(forall (2?2t (?y ?t)) (?a ?l ?t))))))

o A simple fundamental result is the following equivalence. For all X U inst(A4) and Y O typ(4)
YO X in O (typ(A)? iff XXY O =4 iff X 0 4/Y in O (inst(A)).
This describes a Galois connection (preorder adjunction) between the left derivation
() : O (inst(4)) - O (typ(4))™
and the right derivation
A/(-) : O (typ(A))* - O (inst(A4)).

The first two facts assert (contravariant) monotonicity of derivation. The last fact asserts the adjoint-
ness condition.

(forall (?x1 (SET$subclass ?x1 (CLS$i nstance ?a))
?x2 (SET$subcl ass ?x2 (CLS$i nstance ?a)))
(=> (SET$subcl ass ?x1 ?x2)
(SET$subcl ass ((left-derivation ?a) ?x2) ((left-derivation ?a) ?x1))))

(forall (?yl (SET$subclass ?yl (CLS$type ?a))
?y2 (SET$subcl ass ?y2 (CLS$type ?a)))
(=> (SET$subcl ass ?y2 ?y1l)
(SET$subcl ass ((right-derivation ?a) ?yl) ((right-derivation ?a) ?y2))))

(forall (?x (SET$subclass ?x (CLS$i nstance ?a))
?y (SET$subcl ass ?y (CLS$type ?a)))
(<=> (SET$subcl ass ?y ((left-derivation ?a) ?x))
(SET$subcl ass ?x ((right-derivation ?a) ?y))))

o  The composition of derivations gives two senses of closure operator.

(3) (KIF$function instance-closure)
(= (KIF$source instance-cl osure) CLS$cl assification)
(= (KIFS$target instance-closure) SET. FTN$function)
(forall (?a (CLS$classification ?a))
(and (= (SET.FTN$source (instance-closure ?a)) (SET$power (CLSS$i nstance ?a)))
(= (SET. FTN$t arget (instance-closure ?a)) (SET$power (CLSS$instance ?a)))
(= (instance-cl osure ?a)
( SET. FTN$conposition [(left-derivation ?a) (right-derivation ?a)]))))

(4) (KIF$function type-closure)
(= (KIF$source type-closure) CLS$classification)
(= (KIF$target type-closure) SET. FTN$function)
(forall (?a (CLS$classification ?a))
(and (= (SET.FTN$source (type-closure ?a)) (SET$power (CLS$type ?a)))
(= (SET. FTN$t arget (type-closure ?a)) (SET$power (CLS$type ?a)))
(= (type-closure ?a)
( SET. FTN$conposi tion [(right-derivation ?a) (left-derivation ?a)]))))

o  The following (easily proven) results confirm that these are closure operators.
XOX" and X' = X" for all X 0 inst(A4).
YOY' and Y =Y" forall Y U typ(A).

(forall (?a (CLS$classification ?a))



IFF Foundation Ontology
Robert E. Kent Page 30 1/2/2002

(and (= (left-derivation ?a)
( SET. FTN$conposi tion [(instance-closure ?a) (left-derivation ?a)]))
(forall (?x (SET$subclass ?x (CLS$i nstance ?a))
(SET$subcl ass ?x ((instance-closure ?a) ?x)))))

(forall (?a (CLS$classification ?a))
(and (= (right-derivation ?a)
( SET. FTN$conposition [(type-closure ?a) (right-derivation ?a)]))
(forall (?y (SET$subclass ?y (CLS$type ?a))
(SET$subcl ass ?y ((type-closure ?a) ?y)))))

o Further properties of Galois connection relate to continuity — the closure of a union of a family of
classes is the intersection of the closures.

(Yw Xp)' = Ny X for any family of subsets X; O inst(A4) for jOJ.

(Ui Y)' = Ny Yy for any family of subsets Y, O typ(4) for k0K.

o By embedding the subsets of instances and types above as relations, we can connect derivation to
residuation. We can prove the following simple identities: the embedding of the left-derivation of a
subset of instances is the left-residuation of the classification along the opposite of the embedding of
the subset, and dually for the right notions.

(forall (?a (CLS$classification ?a))
?x (SET$subcl ass ?x (CLS$i nstance ?a)))

(= ((REL$enbed (CLS$type ?a)) ((left-derivation ?a) ?x))
(RELS$! eft-residuation [ (REL$opposite ((REL$enbed (CLS$i nstance ?a)) ?x)) ?al])))

(forall (?a (CLS$classification ?a))
?y (SET$subcl ass ?y (CLS$type ?a)))
(= (REL$opposite ((REL$enbed (CLSS$i nstance ?a)) ((right-derivation ?a) ?y)))
(RELS$right-residuation [((REL$enbed (CLS$type ?a)) ?y) ?a])))

o For any classification 4 = [ihst(4), typ(A4), =40 the closed elements of the derivation Galois connec-
tion are called formal concepts. There are several ways to define this notion, but traditionally it has
been given the following (slightly redundant) definition. A (large) formal concept ¢ = [&Xx-
tent,(c), intent4(c)Uis a pair of classes, extent,(c) O inst(4) and intent,(c) 0 typ(A), that satisfy the
equivalent conditions that extent,(c) = intent,(c)' and intent,(c) = extent,(c)'. Let concept(4) de-
note the class of all formal concepts of a classification A. There are two functions,

extent, : concept(4) — U (inst(A4)) and intent, : concept(4) - O (typ(4)),

that map concepts to their component extent and intent.

(5) (KIF$function concept)

(= (KIF$source concept) CLS$cl assification)

(= (KIF$target concept) SETS$cl ass)
(6) (KIF$function extent)
= (KI F$source extent) CLS$classification)
= (KIF$target extent) SET. FTN$functi on)
forall (?a (CLS$classification ?a))

(and (= (SET.FTN$source (extent ?a)) (concept ?a))
(= (SET. FTN$t arget (extent ?a)) (SET$power (CLSS$instance ?a)))))

(
(
(
(

(7
(KI F$source intent) CLS$classification)
(KIF$target intent) SET. FTN$function)
orall (?a (CLS$classification ?a))
(and (= (SET.FTN$source (intent ?a)) (concept ?a))
(= (SET. FTN$target (intent ?a)) (SET$power (CLSS$type ?a)))))

KI F$f unction intent)
f

(
(
(
(

(8) (forall (?a (CLS$classification ?a))
(and SET. FTN$conposition [(intent ?a) (right-derivation ?a)]) (extent ?a))

(=«(
(= (SET. FTN$conposition [(extent ?a) (left-derivation ?a)]) (intent ?a))))
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(o]

There are surjective generator functions, called instance-generation and type-generation, that map sub-
sets of instances and types to their generated concepts. For all X [ inst(4) and Y U typ(A4)

X~ X", XO  “instance-generation”

Y10, Y0 “type-generation”.

See diagram 4 for a visualization of the following conditions.

— The composition of instance-generation and intent equals left-derivation, and the composition of
type-generation and extent equals right-derivation.

— The composition of instance-generation and extent equals instance-closure, and the composition of
type-generation and intent equals type-closure.

— The composition of extent and instance-generation is identity, and the composition of intent and
type-generation is identity.

These conditions define generation, and also insure that all concepts are captured in the class ‘( con-

cept ?a)’. Concepts are determined by either their extents or their intents — this is represented by the

fact that the extent and intent functions are injective.

(9) (KIF$function instance-generation)
(= (KI F$source instance-generation) CLS$cl assification)
(= (KIF$target instance-generation) SET. FTN$functi on)
(forall (?a (CLS$classification ?a))
(and (= (SET. FTN$source (instance-generation ?a))
(SET$power (CLS$i nstance ?a)))
(= (SET. FTN$t arget (i nstance-generation ?a))
(concept ?a))
(= (SET. FTN$conposition [(instance-generation ?a) (intent ?a)])
(left-derivation ?a))
(= (SET. FTN$conposi tion [(instance-generation ?a) (extent ?a)])
(i nstance-closure ?a))
(= (SET. FTN$conposition [(extent ?a) (instance-generation ?a)])
(SET. FTN$i dentity (concept ?a)))))

(10) (KIF$function type-generation)
(= (KIF$source type-generation) CLS$classification)
(= (KIF$target type-generation) SET. FTN$functi on)
(forall (?a (CLS$classification ?a))
(and (= (SET. FTN$source (type-generation ?a))
(SET$power (CLS$type ?a)))
(= (SET. FTN$t arget (type-generation ?a))
(concept ?a))
(= (SET. FTN$conposi tion [(type-generation ?a) (extent ?a)])
(right-derivation ?a))
(= (SET. FTN$conposition [(type-generation ?a) (intent ?a)])
(type-cl osure ?a))
(= (SET. FTN$conposition [(intent ?a) (type-generation ?a)])
(SET. FTN$i dentity (concept ?a)))))

A concept ¢; = [éxtent,(c1), intent(c1)Uis a subconcept of a concept c; = [éxtent,(cy), intent,(c2)0)
denoted ¢ <4 ¢, when extent,(c1) O extent,(cz) or equivalently when intent,(c1) O intent,(c,). Other
language used for this notion is that c; is “more specific” than ¢, and ¢, is “more generic” than c;. For

any classification 4 = [Ihst(A4), typ(A4), =40) the class of concepts together with the subconcept relation
form a partial order ord(4) = [¢oncept(A4), <40

(11) (KIF$function concept-order)

(= (KIF$source concept-order) CLS$cl assification)

(= (KIF$target concept-order) ORD$partial -order)

(forall (?a (CLS$classification ?a))

(and (= (ORD$cl ass (concept-order ?a)) (concept ?a))
(forall (?cl ((concept ?a) ?cl)
?c2 ((concept ?a) ?c2))
(<=> ((concept-order ?a) ?cl ?c2)

(SET$subcl ass ((extent ?a) ?cl) ((extent ?a) ?c2))))))

There are both a meet and a join operations defined on subclasses of concepts

meet, : [ (concept(4)) — concept(A)
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joiny : O (concept(4)) — concept(A4)

defined as follows:
M.(C) = M.oc [extent,(c), intent,(c) = [ g extent(c), (U.oc intent(c))"'O

U (C) = U.gc extenty(c), intent4(c) = QU .oc extent,(c))", N.oc intent,(c)O

for any subclass C [J concept(A4).

(12) (KIF$function neet)
(= (KIF$source neet) CLS$classification)
(= (KIF$target neet) SET. FTN$function)
(forall (?a (CLS$classification ?a))
(and (= (SET. FTN$source (neet ?a)) (SET$power (concept ?a)))
(= (SET. FTN$t arget (nmeet ?a)) (concept ?a))
(forall (?c (SET$subclass ?c (concept ?a)))
(and (= (SET. FTN$conposition [(nmeet ?a) (extent ?a)])
( SET. FTN$conposi ti on
[ (SET. FTN$power (extent ?a))
(SET$i ntersection (instance ?a))])])
(= (SET. FTN$conposition [(nmeet ?a) (intent ?a)])
( SET. FTN$conposi ti on
[ (SET. FTN$conposi tion
[ (SET. FTN$power (intent ?a))
(SET$union (type ?a))])
(type-closure ?a)]1))))))

(13) (KIF$function join)
(= (KIF$source join) CLS$classification)
(= (KIF$target join) SET. FTN$functi on)
(forall (?a (CLS$classification ?a))
(and (= (SET.FTN$source (join ?a)) (SET$power (concept ?a)))
(= (SET. FTN$target (join ?a)) (concept ?a))
(forall (?c (SET$subclass ?c (concept ?a)))
(and (= (SET. FTN$conposition [(join ?a) (extent ?a)])
( SET. FTN$conposi ti on
[ (SET. FTN$conposi ti on
[ (SET. FTN$power (extent ?a))
(SET$uni on (instance ?a))])
(instance-closure ?a)]))
(= (SET. FTN$conposition [(join ?a) (intent ?a)])
( SET. FTN$conposi ti on
[ (SET. FTN$power (intent ?a))
(SET$i ntersection (type ?a))]1))))))

o  For any classification 4 = [inst(4), typ(A4), =40} the partial order order(4) = [oncept(A4), <4Uof con-
cepts together with the conceptual join and meet operators form a complete lattice lat(4) = [dr-
der(A4), join(A4), meet(A)L

The complete lattice associated with a classification is

— the image of the object function of the complete adjoint functor applied to the classification:
A : BOND - COMPLETE ADJOINT.

— the image of the object function of the complete lattice functor applied to the classification:
A?: BONDING PAIR . COMPLETE LATTICE.

(14) (KIF$function conplete-lattice)
(= (KIF$source conplete-lattice) CLS$cl assification)
(= (KIF$target conplete-lattice) LAT$conplete-lattice)
(forall (?a (CLS$classification ?a))
(and (= (LAT$partial -order (conplete-lattice ?a)) (concept-order ?a))
(= (LAT$join (conplete-lattice ?a)) (join ?a))
(= (LAT$neet (conplete-lattice ?a)) (nmeet ?a))))
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50 a1
lat(4) >—— lat(C) lat(C) = lat(B)
<4 \ = = \ N
lat(4) <— lat(C) lat(€) «<—— lat(B)
00 a1
Figure 2: Type-closed coreflection Figure 3: Instance-closed reflection

0 For any two classifications 4 = lihst(4), typ, =40and C = lhst(C), typ, =c[that have the same class of
types and where the classification (binary relation) C is type-closed (A/C)\A = C with respect to 4

(Figure 2), there is an associated coreflection (adjoint pair) inte4 = [@o, do: lat(C) = lat(4) between
their complete lattices, where g:lat(4) - lat(C) is right adjoint right inverse (rari) to
0o : lat(C) - lat(4). Hence, 0o embeds lat(C) as an internal part of lat(4). These functions are defined
as follows.

Oo(LX, YOI = (¥, YD) for any concept LX, YOO lat(C)
do(LX, YOI = (LY, Y "I} for any concept X, YTIO lat(4)

0 Dually, for any two classifications C = [ihst, typ(C), =cland B = Ohst, typ(B), =zlthat have the same
class of instances and where the classification (binary relation) C is instance-closed B/(C\B) = C with

respect to B (Figure 3), there is an associated reflection (adjoint pair) extg = @1, 0;(: lat(B) = lat(C)
between their complete lattices, where 0;: lat(B) — lat(C) is left adjoint right inverse (lari) to
01 : lat(C) - lat(B). Hence, d; embeds lat(C) as an external part of lat(4). These functions are defined
as follows.

01(CX, YOy = (CX, X '[} for any concept [X, YOI lat(C)
01(CX, YOI = (X", X ') for any concept [X, YOI lat(B).

(15) (KIF$relation type-closed)
(= (KIF$col | ectionl type-cl osed) CLS$cl assification)
(= (KIF$col | ection2 type-cl osed) CLS$cl assification)
(forall (?c (CLS$classification ?c)
?a (CLS$cl assification ?a))
(<=> (type-cl osed ?c ?a)
(and (= (CLS$type ?c) (CLS$type ?a))
(= (RELS$l eft-residuation [ (REL$right-residuation [?c ?a]) ?a]) ?c))))

(16) (KIF$function coreflection)
(= (KIF$source coreflection) (KIF$extent type-closed))
(= (KIF$target coreflection) LAT. ADJ$adjoint-pair)
(forall (?c (CLS$classification ?c)
?a (CLS$cl assification ?a) (type-closed ?c ?a))
(and (= (LAT. ADJ$source (coreflection [?c ?a])) (conplete-lattice c?))
(= (LAT. ADJ$target (coreflection [?c ?a])) (conplete-lattice ?a))
(= (SET. FTN$conposition [ (LAT. ADJ$l eft (coreflection [?c ?a])) (extent ?a)])
( SET. FTN$conposition [(intent ?c) (right-derivation ?c)]))
(= (SET. FTN$conposi tion [ (LAT. ADJ$l eft (coreflection [?c ?a])) (intent ?a)])
(intent ?c))
(= (SET. FTN$conposition [ (LAT. ADJ$right (coreflection [?c ?a])) (extent ?c)])
( SET. FTN$conposition [(intent ?a) (right-derivation ?a)]))
(= (SET. FTN$conposition [ (LAT. ADJ$right (coreflection [?c ?a])) (intent ?c)])
( SET. FTN$conposition [(intent ?a) (type-closure ?a)]))))
(17) $rel ati on instance-cl osed)

Kl F$col | ecti on2 i nstance-cl osed) CLS$cl assification)

(KIF
(= (KIF$col l ectionl instance-cl osed) CLS$cl assification)
(=«
(forall (?b (CLS$classification ?b)
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?c (CLS$cl assification ?c))
(<=> (instance-cl osed ?c ?b)
(and (= (CLSS$i nstance ?b) (CLSS$i nstance ?c))
(= (REL$right-residuation [(REL$l eft-residuation [?c ?b]) ?b]) ?c))))

(18) (KIF$function reflection)
(= (KIF$source reflection (Kl F$extent instance-closed))
(= (KIF$target reflection) LAT. ADJ$adj oi nt-pair)
(forall (?c (CLS$classification ?c)
?b (CLS$cl assification ?b) (instance-closed ?c ?b))
(LAT. ADJ$source (reflection [?b ?c])) (conplete-lattice b?))
(LAT. ADJ$target (reflection [?b ?c])) (conplete-lattice c?))
(REL. FTN$conposi tion [ (LAT. ADJ$right (reflection [?b ?c])) (extent ?b)])
(extent ?2c))
(= (REL. FTN$conposi tion [ (LAT. ADJ$right (reflection [?b ?c])) (intent ?b)])
(REL. FTN$conposition [(extent ?c) (left-derivation c?)]))
(= (REL. FTN$conposition [ (LAT. ADJ$l eft (reflection [?b ?c])) (extent ?c)])
[(
[(
[(

(and (
(
(

(REL. FTN$conposi ti on extent ?b) (instance-closure ?b)]))
(= (REL. FTN$conposi tion [ (LAT. ADJ$l eft (reflection [?b ?c])) (intent ?c)])
(REL. FTN$conposi ti on extent ?b) (left-derivation ?b)]))))

0 For any classification A = [hst(A), typ(4), =40 we can restrict the instance-generation and type-
generation to elements, thus defining an instance embedding function 14 : inst(4) — lat(4) and a type
embedding function T4 : typ(4) — lat(A4).

(19) (KIF$function instance-enbeddi ng)
(= (KIF$source instance-enbeddi ng) CLS$cl assification)
(= (KIFS$target instance-enbeddi ng) SET. FTN$f uncti on)
(forall (?a (CLS$classification ?a))
(and (= (SET. FTN$source (instance-enbedding ?a)) (CLS$i nstance ?a))
(= (SET. FTN$t arget (instance-enbedding ?a)) (concept ?a))
(= (instance-enbeddi ng ?a)
( SET. FTN$conposi ti on
[ (SET. FTN$si ngl et on (CLSS$i nstance ?a))
(i nstance-generation ?a)]))))

(20) (KIF$function type-enbeddi ng)

(= (KIF$source type-enbeddi ng) CLS$cl assification)

(= (KIF$target type-enbeddi ng) SET. FTN$functi on)

(forall (?a (CLS$classification ?a))

(and (= (SET. FTN$source (type-enbedding ?a)) (CLS$type ?a))
(= (SET. FTN$t arget (type-enbeddi ng ?a)) (concept ?a))
(= (type-enbeddi ng ?a)
( SET. FTN$conposi ti on
[ (SET. FTN$si ngl eton (CLS$type ?a))
(type-generation ?a)]))))

o By means of these two embedding functions, we can prove that the notions of extent and intent for
classifications extends to the notions of extent and intent for concept lattices.

extenty (for classifications) = T4 - extent, (for concept lattices)
intent (for classifications) = 1 4 - intent, (for concept lattices)

For clarity, we state these identities in an external namespace.

(forall (?a (CLS$classification ?a))
(and (= (CLS$extent ?a)
( SET. FTN$conposi tion [ (CLS. CL$t ype- enbeddi ng ?a) (CLS. CL$extent ?a)]))
(= (CLS$i ntent ?a)
( SET. FTN$conposi ti on [ (CLS. CL$i nstance- enbeddi ng ?a) (CLS.CL$intent ?a)]))))

0 Concepts in 14(inst(4)) are called instance concepts, whereas concepts in T4(typ(4)) are called fpe
concepts.

(21) (KIF$function instance-concept)
(= (KIF$source instance-concept) CLS$cl assification)
(= (KIF$target instance-concept) CLS$cl ass)
(forall (?a (CLS$classification ?a))
(and (SET$subcl ass (instance-concept ?a) (concept ?a))
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(= (instance-concept ?a)
( SET. FTN$i mage (i nstance-enbedding ?a)))))

(22) (KIF$function type-concept)
(= (KIF$source type-concept) CLS$cl assification)
(= (KIF$target type-concept) CLS$cl ass)
(forall (?a (CLS$classification ?a))
(and (SET$subcl ass (type-concept ?a) (concept ?a))
(= (type-concept ?a)
( SET. FTN$i mage (type-enbedding ?a)))))

o Because of the resolutions

¢ = LJ; mextent4(c) lA(i) = " DintentA(d) TA(t)
for any concept ¢ [J concept(A), these functions satisfy the following conditions.

—  The image 1 4(inst(4)) is join-dense in ord(A4).
—  The image T4(typ(A4)) is meet-dense in ord(A4).
— The classification incidence can be expressed in terms of embeddings and lattice order:

I Eql lfflA(l) <4 TA(I).

(forall (?a (CLS$classification ?a))
(and ((ORD$j oi n-dense (concept-order ?a)) (instance-concept ?a))
((ORD$neet - dense (concept-order ?a)) (type-concept ?a))
(forall (? ((instance ?a) ?i) ?t ((type ?a) ?t))
(<=> (?a ?i ?t)
((concept - order ?a)
((instance-enbedding ?a) ?i) ((type-enbedding ?a) ?t))))))

0 For any classification 4 = [hst(A4), typ(A4), =40 there are two classifications (binary relations) that
correspond to the instance and type embedding functions.

The instance embedding classification | 4 = [Inst(A4), concept(4), | 4L Figure 4) T, typ(4)

is defined as follows: for every instance a [J inst(4) and every formal concept

a [0 concept(A), the incidence relationship ala holds when a is in the extent concept(A4) T A
of a; that is, a O ext,(a). As a relation, this classification is closed on the right

with respect to lattice order. The instance embedding classification can be de- L4 inst(B)

fined in terms of the instance embedding function as follows: ]
Figure 4: iota & tau
al 4a when 1 4(a) <4 a, for a O inst(4) and a [0 concept(A).

This is an application of the right operator for a preorder that maps functions to binary relations.

The type embedding classification 14 = [toncept(A), typ(A4), T,L(Figure 4) is defined as follows: for
every formal concept a [ concept(A4) and every type o U typ(A4), the incidence relationship at,a
holds when @ is in the intent of a; that is, o [ int4(a). As a relation, this classification is closed on the
left with respect to lattice order. The type embedding classification can be defined in terms of the type
embedding function as follows:

at,40 when a <, 1,(0), for a 0 concept(A4) and a 0 typ(A).

This is an application of the left operator for a preorder that maps functions to binary relations.

(23) (KIF$function iota)
(= (KIF$source iota) CLS$classification)
(= (KIF$target iota) CLS$classification)
(forall (?a (CLS$classification ?a))
(and (= (CLSS$i nstance (iota ?a)) (CLSS$instance ?a))
(= (CLS$type (iota ?a)) (concept ?a))
(= (iota ?a)
(SET. FTN$ri ght [ (i nstance-enbeddi ng ?a) (concept-order ?a)]))))

(24) (KIF$function tau)
(= (KIF$source tau) CLS$cl assification)
(= (KIF$target tau) CLS$classification)
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(forall (?a (CLS$classification ?a))
(and (= (CLS$instance (tau ?a)) (concept ?a))
(= (CLS$type (tau ?a)) (CLS$type ?a))
(= (tau ?a)
(SET. FTN$l eft [ (type-enbeddi ng ?a) (concept-order ?a)]))))

0 Conversely, the instance embedding function can be defined in terms of the instant embedding relation
1L4(2) = M4(ry), for i O inst(A), and
the type embedding function can be defined in terms of the type embedding relation
T4(2) = U4(T40), for ¢ O typ(A).

Since we have already defined these functions by other means, these facts are expressed as theorems in
an external namespace.

(forall (?a (CLS$classification ?a)) ?i ((CLS$instance ?a) ?i))
(= ((CLS. CLS$i nstance- enbeddi ng ?a) ?i)
((CLS. CL$neet ?a) ((CLS$intent (CLS. CL$iota ?a)) ?i))))

(forall (?a (CLS$classification ?a)) ?t ((CLS$type ?a) ?t))
(= ((CLS. CL$type-enbeddi ng ?a) ?t)
((CLS.CL$join ?a) ((CLS$extent (CLS. CL$tau ?a)) ?t))))

o Intent induces a preorder on the instance class inst(4) defined by iy <4i> when 14(i1) <414(i2) or

iy’ 0 ip'. Dually, extent induces a preorder on the type class typ(4) defined by # <4f when
Ty(t1) SaTy(tx) or ' O 5.

(25) (KIF$function instance-order)
(= (KIF$source instance-order) CLS$cl assification)
(= (KIF$target instance-order) ORD$preorder)
(forall (?a (CLS$classification ?a))
(and (= (ORD$cl ass (instance-order ?a)) (instance ?a))
(forall (?il ((instance ?a) ?il)
?i2 ((instance ?a) ?i2))
(<=> ((instance-order ?a) ?il ?i2)
((concept - order ?a)
((instance-enbeddi ng ?a) ?i1)
((instance-enbedding ?a) ?i2)))))

(26) (KIF$function type-order)
(= (KIF$source type-order) CLS$cl assification)
(= (KIF$target type-order) ORDSpreorder)
(forall (?a (CLS$classification ?a))
(and (= (ORD$cl ass (type-order ?a)) (type ?a))
(forall (?tl1l ((type ?a) ?t1)
?t2 ((type ?a) ?t2))
(<=> ((type-order ?a) ?tl1 ?t2)
((concept - order ?a)
((type-enbeddi ng ?a) ?t1)
((type-enbedding ?a) ?t2)))))

o Part of the fundamental theorem of Formal Concept Analysis states that every classification A =
fihst(4), typ(4), =4Lhas an associated concept lattice cl(4) = at(4), inst(4), typ(4), 4, T4

The concept lattice associated with a classification is the image of the object function of the con-
cept lattice functor applied to the classification:

L : CLASSIFICATION — CONCEPT LATTICE.

(27) (KIF$function concept-lattice)
(= (KIF$source concept-lattice) CLS$cl assification)
(= (KIF$target concept-lattice) CL$concept-lattice)
(forall (?a (CLS$classification ?a))
(and (= (CL$conplete-lattice (concept-lattice ?a)) (conplete-lattice ?a))
(= (CLS$i nstance (concept-lattice ?a)) (CLSS$instance ?a))
(= (CL$type (concept-lattice ?a)) (CLS$type ?a))
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(= (CLS$i nstance-enbeddi ng (concept-lattice ?a)) (instance-enbedding ?a))
(= (CLS$type-enbeddi ng (concept-lattice ?a)) (type-enbedding ?a))))

0 The following fact of abstract Formal Concept Analysis, stated in terms of the embedding relations
above, is straightforward to prove:

A= ly° SA"TAOP.
This says that any classification 4 = [inst(A4), typ(4), = 40(viewed as a binary relation) is identical to

the composition of the instance-embedding relation followed by the lattice order of the classification
followed by the type embedding relation.

(forall (?a (CLS$classification ?a))
(= 7a

(REL$conposition [ (REL$conposition [(iota ?a) (concept-order ?a)]) (tau ?a)])))

Concept,

inst-concy intent,
extént, indexAtyp on
inst@ left-der{vation @clsu

Instance,  _]| = Type,

right-defivation 4
instance-ind% Ae-indexA

Class

Diagram 3: Core Collections and Functions for Fibers

Conceptual Fibers

CLS. FIB
y P
This section defines fibers along the function
classification : Concept — CLASSIFICATION 4 y
or compositions with this function (see Diagram 4). \
0 For any classification A = 0Ohst(A), typ(A4), £40) a (collective) A-instance X inst(B)

(Figure 5) indexed by a class 4 is a binary relation X [J inst(4)xA4. For a fixed __ .
classification A, the collection of all A-instances is denoted ‘(i nst ance ?a)’. Figure 5: 4-instances
Dually, a (collective) A-type indexed by a class 4 is a binary relation and A-tvpes

Y O Axtyp(A). For a fixed classification A, the collection of all A-types is denoted ‘(type ?a)’.

(1) (KIF$function instance)

(= (KIF$source instance) CLS$cl assification)

(= (KIF$target instance) KlF$collection)

(forall (?a (CLS$classification ?a)

(and (KI F$subcol |l ection (instance ?a) REL$rel ation)
(forall (?x (REL$relation ?x))
(<=> ((instance ?a) ?x)
(= (REL$source ?x) (CLSS$instance ?a))))))

(2) (KIF$function instance-index)

(= (KIF$source instance-index) CLS$classification)

(= (KIF$target instance-index) KlIF$function)

(forall (?a (CLS$classification ?a))

(and (= (KIF$source (instance-index ?a)) (instance ?a))
(= (KIF$target (instance-index ?a)) SET$cl ass)
(forall (?x ((instance ?a) ?x))
(= ((instance-index ?a) ?x) (REL$target ?x)))))

(3) (KIF$function type)
(= (KIF$source type) CLS$classification)
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(= (KIF$target type) KlF$collection)
(forall (?a (CLS$classification ?a)
(and (KI F$subcol | ection (type ?a) RELS$rel ation)
(forall (?y (REL$relation ?y))
(<=> ((type ?a) ?y)
(= (REL$target ?y) (CLS$type ?a))))))

(4) (KIF$function type-index)

(= (KIF$source type-index) CLS$classification)

(= (KIF$target type-index) KIF$function)

(forall (?a (CLS$classification ?a))

(and (= (KIF$source (type-index ?a)) (type ?a))
(= (KIF$target (type-index ?a)) SETS$cl ass)
(forall (?y ((type ?a) ?y))
(= ((type-index ?a) ?y) (REL$source ?y)))))

o Two derivation operators in this fibered setting correspond to the two relational residuation operators.
For any large classification A4 there are two senses of derivation corresponding to the two senses of re-
lational residuation. Derivation preserves indices. Left derivation maps an instance to the type on
which it is “universally incident,” and dually, right derivation maps a type to the instance which is
“universally incident” on it: for all instances X U inst(4)x4 and all types Y [J Axtyp(A4),

X~ X=XAand Y~ Y =A/Y.

(5) (KIF$function |eft-derivation)
(= (KIF$source left-derivation) CLS$classification)
(= (KIF$target |eft-derivation) KIF$function)
(forall (?a (CLS$classification ?a))
(and (= (KIF$source (left-derivation ?a)) (instance ?a))
(= (KIF$target (left-derivation ?a)) (type ?a))
(forall (?x ((instance ?a) ?x))
(= ((left-derivation ?a) ?x)
(REL$l eft-residuation [?x ?a])))))

(6) (KIF$function right-derivation)

(= (KIF$source right-derivation) CLS$classification)

(= (KIF$target right-derivation) SET.FTN$function)

(forall (?a (CLS$classification ?a))

(and (= (KIF$source (right-derivation ?a)) (type ?a))
(= (KIF$target (right-derivation ?a)) (instance ?a))
(forall (?y ((type ?a) ?y))
(= ((right-derivation ?a) ?y)
(REL$right-residuation [?y ?a])))))

o A simple result is the following equivalence. For all instances X [J inst(4)x4 and types Y 0 Axtyp(4)
YO X\ in REL[A4, typ(A)] iff X o Y O A4 iff X U A/Y in REL[inst(A4), A].
This describes a Galois connection between left derivation
()1 : REL[inst(A4), A] - (REL[4, typ(4A)])™
and right derivation
A/(-) : (REL[A, typ(A)])* - REL[inst(A4), 4].

The first two facts assert (contravariant) monotonicity of derivation. The last fact asserts the adjoint-
ness condition.

(forall (?x1 ((instance ?a) ?x1) ?x2 ((instance ?a) ?x2)
(= ((instance-index ?a) ?x1) ((instance-index ?a) ?x2)))
(=> (REL$subrel ation ?x1 ?x2)
(REL$subrelation ((left-derivation ?a) ?x2) ((left-derivation ?a) ?x1))))

(forall (?yl ((type ?a) ?yl) ?y2 ((type ?a) ?y2)
(= ((type-index ?a) ?yl) ((type-index ?a) ?y2)))
(=> (REL$subrel ation ?y2 ?y1l)
(REL$subrel ation ((right-derivation ?a) ?yl) ((right-derivation ?a) ?y2))))

(forall (?x ((instance ?a) ?x) ?y ((type ?a) ?y)



IFF Foundation Ontology
Robert E. Kent Page 39

(= ((instance-index ?a) ?x) ((type-index ?a) ?y)))
(<=> (RELS$subrelation ?y ((left-derivation ?a) ?x))
(REL$subrel ation ?x ((right-derivation ?a) ?y))))

o The composition of derivations gives two senses of closure operator.

(7) (KIF$function instance-closure)
(= (KIF$source instance-closure) CLS$cl assification)
(= (KIF$target instance-closure) KlIF$function)
(forall (?a (CLS$classification ?a))
(and (= (KIF$source (instance-closure ?a)) (instance ?a))
(= (KIF$target (instance-closure ?a)) (instance ?a))
(forall (?x ((instance ?a) ?x))

1/2/2002

(and (= (instance-index ((instance-closure ?a) ?x))

(i nstance-index ?x))
(= ((instance-cl osure ?a) ?x)

((right-derivation ?a) ((left-derivation ?a) ?x)))))))

(8) (KIF$function type-closure)
(= (KIF$source type-closure) CLS$classification)
(= (KIF$target type-closure) KIF$function)
(forall (?a (CLS$classification ?a))
(and (= (KIF$source (type-closure ?a)) (type ?a))
(= (KIF$target (type-closure ?a)) (type ?a))
(forall (?y ((type ?a) ?y))
(and (= (type-index ((type-closure ?a) ?y))
(type-index ?y))
(= ((type-closure ?a) ?y)

((left-derivation ?a) ((right-derivation ?a) ?y)))))))

o  The following (easily proven) results confirm that these are closure operators.
XOX" and X' = X" for all instances X [] inst(A4)x4.
YOY'" and Y =Y" for all types ¥ U Axtyp(A).

(forall (?x ((instance ?a) ?x))
(and (REL$subrel ation ?x ((instance-closure ?a) ?x))
(= ((left-derivation ?a) ?x)

((left-derivation ?a) ((instance-closure ?a) ?x)))))

(forall (?y ((type ?a) ?y))
(and (REL$subrelation ?y ((type-closure ?a) ?y))
(= ((right-derivation ?a) ?y)
((right-derivation ?a) ((type-closure ?a) ?y)))))

0 For any classification A = Ohst(A), typ(A4), =40 a (collective) A-concept C =
Ohd(C), ext(C), int(C)O (Figure 6), consists of an extent A-instance
ext(C) : inst(4) - ind(4) indexed by ind(A4), and an intent A-type
int(C) : ind(A4) - typ(4) indexed by ind(A4), which satisfy the following
closure conditions:

ext(C) = A/int(C) and int(C) = ext(C)\A.

(9) (KIF$function concept)
(= (KIF$source concept) CLS$cl assification)
(= (KIF$target concept) KlIF$collection)

(10) (KIF$function extent)
(= (KIF$source extent) CLS$cl assification)
(= (KIFS$target extent) KIF$function)
(forall (?a (CLS$classification ?a))
(and (= (KIF$source (extent ?a)) (concept ?a))
(= (KIF$target (extent ?a)) (instance ?a))))

(11) (KIF$function intent)
(= (KIF$source intent) CLS$classification)
(= (KIF$target intent) KIF$function)
(forall (?a (CLS$classification ?a))

(and (= (KIF$source (intent ?a)) (concept ?a))

int(c) -, YPA)

ind(C) A
ext(C) inst(A)

Figure 6: A-Concept
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(= (KIF$target (intent ?a)) (type ?a))))

(12) (KIF$function index)
(= (KI F$source index) CLS$classification)
(= (KIFS$target index) KIFS$function)
(forall (?a (CLS$classification ?a))
(and (= (KIF$source (index ?a)) (concept ?a))
(= (KIF$target (index ?a)) SET$cl ass)
(forall (?c ((concept ?a) ?c))
(and (= ((index ?a) ?c) ((instance-index ?a) ((extent ?a) ?c)))
(= ((index ?a) ?c) ((type-index ?a) ((intent ?a) ?c)))
(= ((left-derivation ?a) ((extent ?a) ?c)) ((intent ?a) ?c))
(= ((right-derivation ?a) ((intent ?a) ?c)) ((extent ?a) ?c))))))

o There are surjective generator functions, called instance-generation and type-generation, that map in-
stances and types to their generated concepts. For all instances X [ inst(4)x4 and types ¥ O Axtyp(A4)

X~ X", XD “instance-generation”
Y~0,y'd “type-generation”.

— The composition of instance-generation and intent equals left-derivation, and the composition of
type-generation and extent equals right-derivation.

— The composition of instance-generation and extent equals instance-closure, and the composition of
type-generation and intent equals type-closure.

— The composition of extent and instance-generation is identity, and the composition of intent and
type-generation is identity.

These conditions define generation, and also insure that all concepts are captured in the collection

‘(concept ?a)’. Concepts are determined by either their extents or their intents — this is represented by

the fact that the extent and intent functions are injective.

(13) (KIF$function instance-generation)
(= (KIF$source instance-generation) CLS$cl assification)
(= (KIF$target instance-generation) Kl F$function)
(forall (?a (CLS$classification ?a))
(and (= (KIF$source (instance-generation ?a)) (instance ?a))
(= (KIF$target (instance-generation ?a)) (concept ?a))
(forall (?x ((instance ?a) ?x))
(and (= ((index ?a) ((instance-generation ?a) ?x))
((instance-index ?a) ?x))
(= ((intent ?a) ((instance-generation ?a) ?x))
((left-derivation ?a) ?x))
(= ((extent ?a) ((instance-generation ?a) ?x))
((instance-closure ?a) ?x))))
(forall (?c ((concept ?a) ?c))
(= ((instance-generation ?a) ((extent ?a) ?c)) ?c))))

(14) (KIF$function type-generation)
(= (KIF$source type-generation) CLS$classification)
(= (KIF$target type-generation) Kl F$function)
(forall (?a (CLS$classification ?a))
(and (= (KIF$source (type-generation ?a)) (type ?a))
(= (KIF$target (type-generation ?a)) (concept ?a))
(forall (?y ((type ?a) ?y))
(and (= ((index ?a) ((type-generation ?a) ?y))
((type-index ?a) ?y))
(= ((extent ?a) ((type-generation ?a) ?y))
((right-derivation ?a) ?y))
(= ((intent ?a) ((type-generation ?a) ?y))
((type-closure ?a) ?y))))
(forall (?c ((concept ?a) ?c))
(= ((type-generation ?a) ((intent ?a) ?c)) ?c))))
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Diagram 4: Core Collections and Functions for Concepts

Collective Concepts

CLS. CONC
. cls

Here we define concepts that internally include their underlying classifications. int(C) YR(els(©)

0 A formal (collective) concept C = [¢ls(C), ind(C), ext(C), int(C)1(Fig- ind(C) cls(0)
ure 7) consists of an underlying classification cls(C), an indexing class
ind(C), an extent relation ext(C) and an intent relation int(C). These com- ext(C) inst(cls(C))
ponents satisfy the equivalent closure conditions:

ext(C) = cIs(C)/int(C) and int(C) = ext(C)\cls(C). Figure 7: Collective Concept

The underlying classification function is part of a fibration. When the index function maps to unity (the
unit class), the concept is a point. The collection of all concepts is the disjoint union of all the concep-
tual fibers concept(4) as A ranges over the collection of all large classifications. The last axiom ex-
presses this.

(1) (KIF$collection concept)

(2) (KIF$function classification)
(= (KIF$source classification) concept)
(= (KIF$target classification) CLS$classification)
(3) | F$f uncti on i ndex)
(KI F$source index) concept)
(KI F$t arget index) SET$cl ass)

X

(4) (KIF$function extent)

KI F$source extent) concept)

KI F$t arget extent) RELS$rel ation)

all (?c (concept ?c))

(and (= (REL$source (extent ?c)) (CLSS$instance (classification ?c)))

(= (REL$target (extent ?c)) (index ?c))))

S~

fo

(5) (KIF$function intent)
= (KI F$source intent) concept)
= (KIF$target intent) REL$rel ation)
forall (?c (concept ?c))
(and (= (REL$source (intent ?c)) (index ?c))
(= (REL$target (intent ?c)) (CLS$type (classification ?c)))))

(
(
(
(

(6) (forall (?c (concept ?c))
(and (= (extent ?c) (REL$right-residuation [(intent ?c) (classification ?c)]))
(= (intent ?c) (REL$left-residuation [(extent ?c) (classification ?c)]))))

(7) (forall (?c)
(<=> (concept ?c)
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(o]

(exists (?cf ((CLS. FIB$concept (classfication ?c)) ?cf))
(and (= (index ?c) ((CLS.FIBS$index (classfication ?c)) ?cf))
(= (extent ?c) ((CLS. FIBs$extent (classfication ?c)) ?cf))
(= (intent ?c) ((CLS.FIB$intent (classfication ?c)) ?cf))))))

For any concept C = [&ls(C), ind(C), ext(C), int(C)0J) the opposite or dual of C is the concept C- =
[Els(C)", ind(C), int(C), ext(C)[] whose classification is the opposite of the classification of C, whose
index is the same as the index of C, whose extent is the intent of C, and whose intent is the extent of C.

(8) (KIF$function opposite)

(= (KI'F$source opposite) concept)

(= (KIF$target opposite) concept)

(forall (?c (concept ?c))

(and (= (classification (opposite ?c)) (CLS$opposite (classification ?c)))

(= (index (opposite ?c)) (index ?c))
(= (extent (opposite ?c)) (intent ?c))
(= (intent (opposite ?c)) (extent ?c))))

For any two collective concepts C; and C; over the same

classification CIS(Cy) = A = CIs(C3), a two cell £ €10 Gy ey typ(4)
from C; to C, (Figure 8) consists of an index function W

: S
/:ind(Cy) - ind(C,) between index classes, which satis- Nd(C1) ——> ind(C,) A
fies the following conditions: ext
ext(Cy) = ext(Cy) = £ = ext(Cy) / f ext(Cy) Inst(4)
Figure 8: 2-cell

int(Cl) =fo int(Cz) :f0p \ int(Cz)
(9) (KIF$collection two-cell)

(10) (KIF$function source)
(= (KI F$source source) two-cell)
(= (KIF$target source) concept)

(11)
(KI F$source target) two-cell)

KI F$f unction target)
= (KIF$target target) concept)

(
(
(
(12) (KIF$function index-function)
(= (KI'F$source index-function) two-cell)
(= (KIF$target index-function) SET. FTN$functi on)
(forall (?f (two-cell ?2f))
(and (= (classification (source ?f)) (classification (target ?f)))
(= (index (source ?f)) (SET.FTN$source (index-function ?f)))
(= (index (target ?f)) (SET.FTN$target (index-function ?f)))
(= (REL$conposition
[(extent (target ?f))
(REL$opposi te (SET. FTN$fn2rel (index-function ?f)))])
(extent (source ?f)))
(= (REL$conposition
[ (SET. FTN$f n2rel (index-function ?f))
(intent (target ?f))])
(intent (source ?f)))))

Any classification 4 determines a ferminal collective concept terminal(4) = L4, concept(A4), 14, T4
Its extent relation 14 [0 inst(A4) x concept(A4) is the instance embedding relation, its intent relation
T4 U concept(A4) x typ(4) is the type embedding relation, and its index is the concept class con-
cept(A). The closure conditions 14 = A/T4 and T4 = 14\ that hold between the instance embedding re-
lation 14 : inst(4) — concept(4) and the type embedding relation T4 : concept(4) — typ(4) ensure
that this is well-defined.
(13) (KIF$function term nal)

(= (KIF$source ternminal) CLS$classification)

(= (KIF$target termnal) concept)

(forall (?a (CLS$classification ?a))
(and (= (classification (termnal ?a)) ?a)
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(index (termnal ?a)) (CLS. CL$concept ?a))
(extent (ternminal ?a)) (CLS.CL$iota ?a))
(intent (termnal ?a)) (CLS.CL$tau ?a))))

(
(
(

o Any collective concept C = [A, 4, X, YU= [¢ls(C), ind(C), ext(C), int(C)Uinduces a unique mediating
function Y¢ : ind(C) - concept(cls(C)) define pointwise by Uc(a) = Xa, aYlas a ranges over the in-
dex class. This definition is well-defined, since the collective closure conditions X =Y and Y = X' are
equivalent to the (pointwise) closure conditions Xa = (aY)' and aY = (Xa)', as a ranges over the index
class; that is, Xa, aYUJ concept(A4).

(14) (KIF$function nmediator-function)
(= (KI F$source nedi ator-function) concept)
(= (KIF$target nediator-function) SET. FTN$f uncti on)
(forall (?c (concept ?c))
(and (= (SET. FTN$source (nedi ator-function ?c))
(index ?c))
(= (SET. FTN$t arget (medi ator-function ?c))
(CLS. CL$concept (classification ?c)))
(= (SET. FTN$conposi tion
[ (medi ator-function ?c)
(CLS. CL$extent (classification ?c))])
(RELS$fiber21 (extent ?c)))
(= (SET. FTN$conposi tion
[ (medi ator-function ?c)
(CLS.CL$intent (classification ?c))])
(REL$fiber12 (intent ?c)))))

0 Any collective concept C = [, 4,X, Y0 = int(C) typ(cls(C))
[Els(C), ind(C), ext(C), int(C)Uinduces a unique mediator //gﬂ

2-cel'l He': ct FerminaI(A') = tgrminal(cls(C))'(Figure ind( llg concept(cls(C)) | cls(C)
9), since its mediator function satisfies the following con- \‘\
straints: Leis()

ext(C) inst(cls(C))

BXI(C) = o) * M = lasier/ Ue Figure 9: Mediating 2-cell
int(C) = Hc ° Tasio) = K™ \ Tas(o)-

(15) (KIF$function nediator)
(= (KI'F$source nedi ator) concept)
(= (KIF$target nediator) 2-cell)
(forall (?c (concept ?c))
(and (= (source (nediator ?c)) ?c)
(= (target (mediator ?c)) (termnal (classification ?c)))
(= (index-function (nmediator ?c)) (nediator-function ?2c))))

o For any collective concept C and any class function f: 4 — index(C) whose target is the index class of
C, the quadruple £ ~{(C) = [&ls(C), src(f), ext(C) ° £, f= int(C)Uis also a collective concept, and the
function f'is the index function of a 2-cell with source f~(C) and target C. The closure conditions for
the inverse image concept follow from basic properties of functions and residuation. Hence, for a fixed
classification A4 the function index : CLASSIFICATION - Class is part of a fibration.

(16) (KI F$opspan inverse-inmage-opspan)
(= 2-cell-opspan [ SET. FTN$t arget CLS$concept])

(17) (KIF$relation invertible)

(= (KIFS$col l ectionl invertible) SET. FTN$f uncti on)

(= (KIF$col l ection2 invertible) CLS$classification)

(= (KIF$extent invertible) (Kl F$pullback inverse-inage-opspan))
(18) (KIF$function inverse-inmage)

(= (KI F$source inverse-image) (KIF$pullback inverse-inmage-opspan))

(= (KIF$target inverse-inmage) concept)

(forall (?f (SET.FTN$function ?f)

?a (CLS$classification ?a) (invertible ?f ?a))

(and (= (classification (inverse-image [?f ?a])) ?a)
(= (index (inverse-image [?f ?a])) (SET.FTN$source ?f))
(= (extent (inverse-image [?f ?a]))
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(REL$conposition [(extent ?a) (REL$opposite (SET. FTN$fn2rel ?f))]))
(= (intent (inverse-image [?f ?a]))
(REL$conposition [?f (intent ?a)]))))

(19) (KIF$function inverse-inmage-nedi ator)

(= (KI'F$source inverse-imge-nedi ator) (KI F$pul | back inverse-inage-opspan))

(= (KIF$target inverse-inmage-nediator) 2-cell)

(forall (?f (SET.FTN$function ?f)
?a (CLS$classification ?a) (invertible ?f ?a))

(and (= (source (inverse-image-nediator [?f ?a])) (inverse-image [?f ?a]))

(= (target (inverse-image-nediator [?f ?a])) ?a)
(= (index-function (inverse-inmage-nediator [?f ?a])) ?f)))

o A collective concept (4, 4, X, Y= [¢ls(C), ind(C), ext(C), int(C)Uis also called a concept space. The
indexed or named formal concepts in a concept space are also called conceptual views. Conceptual
knowledge is represented by the following components of a concept space.

—  The three preorders on instances, types and conceptual views.
— The membership or instantiation relation between instances and conceptual views, whose col-
umns, when regarded as a Boolean matrix, record the extent of all the conceptual views.

y typ() A classification
/ / inst(4) | instance preorder
U T typ(4) | type preorder
4 —> L) A A4 index preorder
NA X extent
\ Y intent
X inst(4) L(A) | concept lattice

— The abstraction relation between conceptual views and types, whose rows, when regarded as a
Boolean matrix, record the infent of all the conceptual views.
— The classification relation between instances and types.

The constraining relationships between the extent and intent of a concept space can be expressed in
three different forms: residuation, inclusion and derivation.

incidence constraints

residuation inclusion derivation

Y=X4 DQDA,,Dtyp(A)aYt lﬁ“Xa 0 At O,o4 aY:(Xa)'
X=AlY Ui Dinstea).a 04 iXa iff iA U aY Usn4 Xa = (aY)

In order to construct a concept space, we start out by specifying the class 4 to be a collection of names,
with each all4 representing a subset of types a¥oU typ(4). We use the two residuation operators,
which are a generalized form of the derivation operators of Formal Concept Analysis, in order to de-
fine the notion of a collective formal concept. We define the extent X to be the right residuation of A
along Yo:

X=A/Yo={(i, a) | Ui nwypu (a¥ot O ide)}.
so that X ° Y, 0 A. We define Y to be the left residuation of 4 along X:
Y=X={(a, H) | U;ninsiay (IXa O idr)}.

From these definitions it is straightforward to show that X is the right residuation, X = A/Y, of 4 along
Y: First of all, since Yo X\4 = 7, by contravariance of residuation X = 4/Yy [0 A/Y; and secondly,
since X V'=X° (X\4) O A4, we have X [0 A/Y.
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Table 3: KIF Functions used to define the Concept Lattice Functor

left derivation : Classification — Function

right derivation : Classification - Function

instance closure : Classification — Function

type closure : Classification — Function

concept : Classification - Class

extent : Classification — Function

intent : Classification —» Function

instance concept : Classification - Function

type concept : Classification — Function

concept order : Classification — Partial Order

meet : Classification -~ Function

join : Classification -~ Function

complete lattice : Classification -~ Complete Lattice
adjoint pair : Infomorphism - Adjoint Pair

instance embedding : Classification — Function

type embedding : Classification —» Function

concept lattice : Classification —» Concept Lattice
concept morphism : Infomorphism - Concept Morphism

instance embedding relation : Classification - Relation
type embedding relation : Classification - Relation

Table 4: Functors and Natural Isomorphisms

CLS. CL$concept-lattice . ClL$classification = Id
L ° C = IdcLassiFicaTiON CLS. | NFOG&concept - nor phi sm . CL. MOR$i nf onor phi sm = 1d

CoL0Old CL$cl assification . CLS. CL$concept-lattice OId
CLASSIFICATION CL. MOR$i nf onor phi sm . CLS. | NFOsconcept - nor phism U I d

Functional Infomorphisms
CLS. I NFO

0 Classifications are related through (functional) infomorphisms. A typ()

(functional) infomorphism f: A = B from classification 4 to typ(4) typ(B)

classification B (Figure 10) consists of a pair f'= [hst(f), typ(f)T!
of oppositely directed functions, A B
— a function between instances inst(f) : inst(B) — inst(A4) and

— a function between types typ(f) : typ(4) — typ(B), inst(4) Tt(f) inst(B)

which satisfy the fundamental property:

iNst(f)(i) =4t iff i =ptyp(f)(?)

for all instances i [J inst(B) and all types ¢ O typ(A4). The relation expressed on the either side of this
equivalence is the bond of the relational infomorphism generated by this functional infomorphism.
This relational infomorphism is defined below in terms of the left relation of the instance monotonic
function and the right relation of the type monotonic function.

The following is a KIF representation for the elements of an infomorphism. Such elements are
useful for the definition of an infomorphism. In the same fashion as classifications, infomorphisms are
specified by declaration and population. The term infomorphism allows one to declare infomorphisms
themselves, and the two terms source and target allow one to declare their associated source (domain)
and target (codomain) classifications, respectively. The terms instance and type resolve infomorphisms
into their parts, thus allowing one to populate infomorphisms. Let CLASSIFICATION denote the
quasi-category of classifications and infomorphisms.

(1) (KIF$collection infonorphism

Figure 10: Functional Infomorphism

(2) (KIF$function source)
(= (KI'F$source source) infonorphisn
(= (KIF$target source) CLS$classification)
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(3) (KIF$function target)
(= (KIF$source target) infonorphisn
(= (KIF$target target) CLS$classification)

KI F$f uncti on i nstance)
= (KI'F$source instance) infonorphism
= (KIF$target instance) SET. FTN$function)
forall (?f (infonorphism?f))
(and (= (SET.FTN$source (instance ?f)) (CLS$instance (target ?f)))
(= (SET. FTN$target (instance ?f)) (CLS$instance (source ?f)))))

(4 (
(
(
(

(5)
(KI F$source type) infonorphism
(KI F$t arget type) SET. FTN$functi on)
orall (?f (infonorphism?f))
(and (= (SET.FTN$source (type ?f)) (CLS$type (source ?f)))
(= (SET. FTN$target (type ?f)) (CLS$type (target ?f)))))

(KI F$function type)
(:
(:
(f

(6) (forall (?f (infonorphism ?f)
?i ((CLSS$instance (target ?f)) ?i)
?t ((CLS$type (source ?f)) ?t))
(<=> ((source ?f) ((instance ?f) ?i) ?t)
((target 2f) ?2i ((type ?f) ?t))))

0 The fundamental property of an infomorphism f: A4 = B expresses the bonding classification of

bond(f) : 4 = B, the bond associated with the infomorphism. This can be equivalently define in terms
of either the instance or the type function. Here we use the instance function. For comparison, see the
right operator that maps a function to a relation in the presence of a preorder.

(7) (KIF$function bond)
(= (KI'F$source bond) i nfonorphism
(= (KIF$target bond) CLS. BND$bond)
(forall (?f (infonorphism?f))
(and (= (CLS. BND$source (bond ?f)) (source ?f))
(= (CLS. BND$t arget (bond ?f)) (target ?f))
(forall (?i ((CLS$instance (target ?f)) ?2i)
?t ((CLS$type (source ?f)) ?t))
(<=> ((CLS. BND$cl assification (bond ?f)) ?2i ?t)
((source ?f) ((instance ?f) ?i) ?t))))

0 The instance monotonic function is the instance function regarded as a monotonic function between
instance orders. Dually, the type monotonic function is the type function regarded as a monotonic func-
tion between type orders.

(8) (KIF$function nonotonic-instance)
(= (KI F$source nonotoni c-instance) infonorphism
(= (KIF$target nonotonic-instance) ORD. FTN$nonot oni c-functi on)
(forall (?f (infonorphism?f))
(and (= (ORD. FTN$source (nonotonic-instance ?f))
(CLS. CL$i nstance-order (target ?f)))
(= (ORD. FTN$t arget (nonotoni c-instance ?f))
(CLS. CL$i nstance-order (source ?f)))
(= (ORD. FTN$f uncti on (nonotonic-instance ?f)) (instance ?f))))

(9) (KIF$function nonotonic-type)
(= (KI F$source nonotonic-type) infonorphism
(= (KIF$target nonotonic-type) ORD. FTN$Snonot oni c-functi on)
(forall (?f (infonorphism?f))
(and (= (ORD. FTN$source (nonotonic-type ?f)) (CLS. CL$type-order (source ?f)))
(= (ORD. FTN$t arget (nonotonic-type ?f)) (CLS.CL$type-order (target ?f)))
(= (ORD. FTN$f uncti on (nonotonic-type ?f)) (type ?f))))

0 The instance relation is the left relation of the instance monotonic function. The #ype relation is the
right relation of the type monotonic function.
(10) (KIF$function relational-instance)

(= (KIF$source rel ational -instance) infonorphism
(= (KIF$target relational-instance) REL$rel ation)
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(11)

(forall (?f (infonorphism?f))
(and (= (REL$source (relational-instance ?f)) (instance (source ?f)))
(= (REL$target (relational-instance ?f)) (instance (target ?f)))
(= (relational -instance ?f)
(SET. FTN$l eft [(instance ?f) (source ?f)]))))

(KI'F$function rel ational -type)

(= (KIF$source rel ational -type) infonorphism

(= (KIF$target relational -type) REL$rel ation)

(forall (?f (infonorphism?f))

(and (= (REL$source (relational-type ?f)) (type (source ?f)))
(= (REL$target (relational-type ?f)) (type (target ?f)))
(= (relational-type ?f)
(SET. FTN$right [(type ?f) (target ?f)]))))

0 Any functional infomorphism can be transformed into a relational infomorphism.

(12)

(KI F$function rel ational -infonorphism
(KI F$function fn2rel)
(= fn2rel relational-infonorphism
(= (KIF$source rel ational -i nfonor phi sm i nfonorphism
(= (KIF$target relational-infonorphism CLS. REL$iI nfonor phism
(forall (?f (infonorphism?f))
(and (= (CLS. REL$source (relational-infonorphism?f)) (source ?f))
(= (CLS. REL$target (relational-infonorphism?f)) (target ?f))
(= (CLS. RELS$i nstance (rel ational -infonorphi sm ?f))
(relational -instance ?f))
(= (CLS. REL$type (relational-infonorphism?f))
(relational-type ?f))))

1/2/2002

0 It can be shown that the bond of the relational infomorphism of a functional infomorphism f is the
bond associated with f.

(forall (?f (infonorphism?f))
(= (CLS. REL$bond (rel ational -infonorphism ?f)) (bond ?f)))

0 The composition function operates on any two infomorphisms that are composable in the sense that the
target classification of the first is equal to the source classification of the second. Composition pro-
duces an infomorphism, whose instance function is the composition of the instance functions of the
components and whose type function is the composition of the type functions of the components.

(13)

(14)

(15)

(KI F$opspan conposabl e- opspan)
(= conposabl e- opspan [target source])

(KI F$rel ati on conposabl e)

(= (KI'F$col | ecti onl conposabl e) i nfonorphism

(= (KI'F$col | ecti on2 conposabl e) i nfonorphism

(= (KI F$extent conposabl e) (KIF$pullback conposabl e-opspan))

KI F$f uncti on conposition)
= (KI'F$source conposition) (KIF$pullback conposabl e- opspan))
= (KI F$target conposition) infonorphism
for
(and (= (source (composition [?f1 ?f2])) (source ?f1l))
(= (target (conposition [?f1 ?2f2])) (target ?f2))
(= (instance (conposition [?f1 ?f2]))
( SET. FTN$conposition [(instance ?f2) (instance ?f1)]))
(= (type (composition [?f1 ?f2]))
(SET. FTN$conposi tion [(type ?f) (type 29)]1))))

all (?f1 (infonorphism?fl) ?f2 (infonorphism ?f2) (conposable ?f1 ?f2))

0 The identity function associates a well-defined identity infomorphism with any classification, whose
instance function is the identity class function on instances and whose type function is the identity
class function on types.

(16)

(KI'F$function identity)
(= (KIF$source identity) CLS$classification)
(= (KIF$target identity) infonorphism
(forall (?c (CLS$classification ?c))
(and (= (source (identity ?c)) ?c)
(= (target (identity ?c)) ?c)
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(o]

(= (instance (identity ?c))
(SET. FTN$i dentity (CLSS$i nstance ?c)))
(= (type (identity ?c))
(SET. FTN$i dentity (CLS$type ?c)))))
Duality can be extended to infomorphisms. For any infomorphism f: A = B, the opposite or dual of f

is the infomorphism £ : B” = 4" whose source classification is the opposite of the target classifica-
tion of f, whose target classification is the opposite of the source classification of f, whose instance
function is the type function of f, whose type function is the instance function of f, and whose funda-
mental condition is equivalent to that of f:

typ(/)(¢) £ i iff £ =7 inst(7)(i).

(17) (KIF$function opposite)

(= (KI F$source opposite) infonorphism

(= (KIF$target opposite) infonorphism

(forall (?f (infonorphism?f))

(and (= (source (opposite ?f)) (CLS$opposite (target ?f)))

(= (target (opposite ?f)) (CLS$opposite (source ?f)))
(= (instance (opposite ?f)) (type ?f))
(= (type (opposite ?f)) (instance ?f))))

For any class function f: B — A the components of the instance power in- £t

fomorphism O f: 0 A4 = OB over f (Figure 11) is defined as follows: the 04 —> 0B
source classification 0 4 = [4, 00 4, O,is the instance power classification

over the target class 4, the target classification [ B = [B, 00 B, Upllis the in- T O, T Og
stance power classification over the source class B, the instance function is

£, and the type function is the inverse image function f™*: 0 4 — 0 B from A «— B
the power-class of 4 to the power-class of B. Note the contravariance. f

(18) (KIFsf ugcti on instance- power) S Figure 11: Instance
(= (KI F$source instance-power) SET. FTN$functi on) .
(= (KIF$target instance-power) infonorphism Power Infomorphism
(forall (?f (SET.FTN$function ?f))
(and (= (source (instance-power ?f))
( SET. FTN$power ( SET. FTN$target ?f)))
(= (target (instance-power ?f))
( SET. FTN$power ( SET. FTN$source ?f)))
(instance (instance-power ?f)) ?f)
(type (instance-power ?f))
( SET. FTN$i nverse-image ?f))))

extent

It is a standard fact in Information Flow that from any classification 4 )
typ(4) ——> O inst(4)

there is a canonical extent infomorphism N4 : A = 0 inst(4) (Figure 12)
from A to the instance power classification 0O inst(4) =
Ohst(A4), O inst(4), [ over the instance class. This infomorphism is the A Da
A™ component of a natural quasi-transformation called efa, the unit of )
the adjunction between the underlying instance functor and the instance inst(A)
power functor. The instance function of eta is the identity function on Fiqure 12: Extent
the instance class inst(4), and the type function of eta is the extent func- Inngomor Hism
tion extent : typ(4) — O inst(4). PRISM .4
(19) (KIF$function eta)
(= (KIF$source eta) CLS$classification)
(= (KIF$target eta) infonorphism
(forall (?a (classification ?a))
(and (= (source (eta ?a)) ?a)
target (eta ?a)) (CLSS$i nstance-power (CLS$instance ?a)))

(= (
(= (instance (eta ?a)) (SET.FTN$identity (CLS$instance ?a)))
(= (type (eta ?a)) (CLSsextent ?a))))

Let f = [hst(f), typ(f)l: A = B be any infomorphism from classification 4 to classification B with
instance function inst(f) : inst(B) — inst(4) and type function typ(f) : typ(4) — typ(B). There is an
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adjoint pair adj(f) = Heft(adj(f)), right(adj(f)): complete-lattice(4) = complete-lattice(B), defined
as follows.

left(adj()(d)

= left(adj())([extentp(d), intentg(d)D)l
= [typ(f)(intents(d)))’, (typ(H(intents(d))0

for all concepts d (1 complete-lattice(B), and

right(adj()(c)
= right(adj(f))((extent4(c), intent4(c))
= [linst(f) (extent4(c)), (inst(f) (extent4(c)))'D

for all concepts ¢ O complete-lattice(A).

(20) (KIF$function adjoint-pair)
(= (KI F$source adjoint-pair) infonorphism
(= (KIF$target adjoint-pair) LAT. ADJ$adjoi nt-pair)
(forall (?f (infonorphism?f))
(and (= (LAT. ADJ$source (adjoint-pair ?f))
(CLS. CL$conpl ete-lattice (target ?f)))
(= (LAT. ADJ$target (adjoint-pair ?f))
(CLS. CL$conpl ete-lattice (source ?f)))
(= (SET. FTN$conposi tion
[ (ORD. FTN$f uncti on (LAT. ADJ$l eft (adjoint-pair ?f)))
(CLS. CL$intent (source ?f))])
( SET. FTN$conposi ti on
[(CLS. CL$intent (target ?f))
( SET. FTN$i nver se-i mage (type ?f))]))
(= (SET. FTN$conposi tion
[ (ORD. FTN$f uncti on (LAT. ADJ$right (adjoint-pair ?f)))
(CLS. CL$extent (target ?f))])
( SET. FTN$conposi ti on
[ (CLS. CL$extent (source ?f))
( SET. FTN$i nverse-i mage (instance ?f))]))))

0 Let f: A<= B be any infomorphism from classification 4 to classification B with instance function
inst(f) : inst(B) — inst(A4) and type function typ(f) : typ(4) — typ(B). There is a concept morphism
concept-morphism(f) = lihst(A4), typ(4), adj(4): concept-lattice(4) = concept-lattice(B),

whose instance/type functions are the same as f, and whose adjoint pair the adjoint pair of f.

The concept morphism associated with an infomorphism is the image of the morphism function of
the concept lattice functor applied to the infomorphism:

L : CLASSIFICATION — CONCEPT LATTICE.

(21) (KIF$function concept-norphism
(= (KI F$source concept - nor phi sm) i nf onor phi sm
(= (KIF$target concept-norphi sm) CL. MORSconcept - nor phi sn)
(forall (?f (infonorphism?f))
(and (= (CL. MOR$source (concept-norphism ?f))
(CLS. CL$concept-lattice (source ?f)))
(= (CL. MOR$t arget (concept - nor phi sm ?f))
(CLS. CL$concept-lattice (target ?f)))
(CL. MOR$adj oi nt-pair (concept-norphism?f)) (adjoint-pair ?f))
(CL. MORS$i nstance (concept-norphism ?f)) (instance ?f))
(CL. MOR$t ype (concept-norphism ?f)) (type ?f))))

—~—~—
I n
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Relational Infomorphisms
CLS. REL
. . . . . typ(r)
0 Classifications are also related through (relational) infomorphisms. A typ(4) ——> typ(B)
(relational) infomorphism r : A = B from classification A to classifica- w
tion B (Figure 13) is a pair r = [ihst(r), typ(r)Cof binary relations in the A bond() B
same direction,
— arelation between instances inst(r) : inst(4) - inst(B) and inst(4) ——> inst(B)
inst(r)

— arelation between types typ(r) : typ(4) - typ(B),
which satisfy the fundamental property: Figure 13: Relational

) Infomorphism
inst(r)\ 4 = B/ typ(r).
(1) (KIF$collection infonorphism

(2) (KIF$function source)

(= (KI'F$source source) infonorphisn

(= (KIF$target source) CLS$classification)
(3) F$function target)
(KI F$source target) infonorphism
(

Kl
= (KIF$target target) CLS$classification)

(

(

(

(4) F$function instance)

(KI F$source instance) infonorphisn

(KI F$t arget instance) RELS$rel ation)

orall (?r (infonorphism?r))

(and (= (REL$source (instance ?r)) (CLSS$instance (source ?r)))

(= (REL$target (instance ?r)) (CLSS$instance (target ?r)))))

(K
(:
(:
(fo

(5) F$function type)
(KI F$sour ce type) infonorphism
(KI F$t arget type) RELS$rel ation)
orall (?r (infororphism?r))
(and (= (REL$source (type ?r)) (CLS$type (source ?r)))
(= (REL$target (type ?r)) (CLS$type (target ?r)))))

(K
(:
(:
(fo

(6) (forall (?r (infororphism?r))
(= (RELS$l eft-residuation [(instance ?r) (source ?r)])
(REL$right-residuation [(type ?r) (target ?r)])))

For any relational infomorphism r: A = B, the common relation inst(r)\Ad = B/typ(r) in the funda-

mental property, consider to be a classification bond(r) = [inst(B), typ(4), =pondrLl is called the bond
of r — it bonds the instance and type classifications into a unity.

(7) (KIF$function bond)
(= (KI F$source bond) i nfonorphism
(= (KIF$target bond) CLS. BND$bond)
(forall (?r (infonorphism?r))
(and (= (CLS.BND$source (bond ?r)) (source ?r))
(= (CLS. BND$target (bond ?r)) (target ?r))
(= (CLS. BND$cl assification (bond ?r))
(RELS$l eft-residuation [(instance ?r) (source ?r)]))))

Given any two relational infomorphisms [#, s,[: 4 = B and [, s, B = C, which are composable in
the sense the target classification of the first is the source classification of the second, there is a com-
posite infomorphism [, s,[F [y, s,00= [ °r,, si°s,[: A = C defined by composing the type and in-
stance relations — its fundamental property follows from composition and associative laws.

(8) (KI F$opspan conposabl e- opspan)
(= conposabl e- opspan [target source])

(9) (KIF$relation conposabl e)
(= (KI'F$col | ecti onl conposabl e) i nfonorphism
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(= (KIF$col | ection2 conposabl e) infonorphism
(= (KIF$extent conposable) (KIF$pullback conposabl e- opspan))

(10) (KIF$function conposition)
(= (KI F$source conposition) (KIF$pullback conposabl e-opspan))
(= (KIF$target conposition) infonorphism
(forall (?rl1 (infonorphism ?rl) ?r2 (infonorphism?r2) (conposable ?rl ?r2))
(and (= (source (conposition [?rl ?r2])) (source ?rl))
(= (target (conposition [?rl ?r2])) (target ?r2))
(= (instance (conposition [?rl ?r2]))
(REL$conposition [(instance ?rl) (instance ?r2)]))
(= (type (conposition [?rl ?r2]))
(REL$conposition [(type ?rl) (type ?r2)]))))

0  Given any classification 4 = [nst(A), typ(A), E 40) the pair of identity relations on types and instances,
with the bond being A4, forms an identity infomorphism Id, : A = A (with respect to composition).

(11) (KIF$function identity)

(= (KIF$source identity) CLS$classification)

(= (KIF$target identity) infonorphism

(forall (?a (CLS$classification ?a))

(and (= (source (identity ?a)) ?a)

(= (target (identity ?a)) ?a)
(= (instance (identity ?a)) (REL$identity (CLS$instance ?a)))
(= (type (identity ?a)) (REL$identity (CLS$type ?a)))))

0 For any given infomorphism [#, sC: A = B the dual infomorphism [&, s{¥ = 4%, 71 B®® = A is the
relational infomorphism with type and instance relations switched and transposed.

(12) (KIF$function opposite)
(= (KI'F$source opposite) infonorphism
(= (KIF$target opposite) infonorphism
(forall (?r (infonorphism?r))
(and (= (source (opposite ?r)) (CLS$opposite (target ?r)))
(= (target (opposite ?r)) (CLS$opposite (source ?r)))
(= (instance (opposite ?r)) (REL$opposite (type ?r)))
(= ( ?r)))

type (opposite ?r)) (REL$opposite (instance 7 ))

0 The fundamental property of relational infomorphisms for composition, identity and involution follow
from basic properties of residuation.

Bonds
CLS. BND
F\B
0 Classifications are also related through bonds. A bond F:A —B from typ(4) —> typ(B)
classification A to classification B (Figure 14) is a classification cIS(F) =

Ohst(B), typ(A4), =rUsharing types with 4 and instances with B, that is A F B
compatible with 4 and B in the sense of closure: type classes
{iF |i Oinst(B)} are intents of A and instance classes { Ft |t O typ(B)}

are extents of B. Closure can be expressed relationally (in terms of
residuation) as the following fundamental closure properties.

(4/F)\A = F and B/(F \B) = F.

inst(4) —— inst(B)
A/F

Figure 14: Bond

The first expression says that [M/F, FUis an inst(B)-indexed collective A-concept (or F is a collective
A-intent), and the second expression says that [F, F\BLlis an typ(4)-indexed collective B-concept (or
that F is a collective B-extent). The first expression also says that classification F is type-closed with
respect to classification A, and the second expression says that classification F is instance-closed with
respect to classification B. Let BOND denote the quasi-category of classifications and bonds.

(1) (KIF$collection bond)
(2) (KIF$function source)

(= (KI F$source source) bond)
(= (KIF$target source) CLS$classification)
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(3) (KIF$function target)

(= (KIF$source target) bond)

(= (KIF$target target) CLS$classification)
(4) (KIF$function classification)
= (KI F$source classification) bond)
= (KIF$target classification) CLS$classification)
forall (?b (bond ?b))

(and (= (CLS$instance (classification ?b)) (CLS$instance (target ?b)))
(= (CLS$type (classification ?b)) (CLS$type (source ?b)))))

(
(
(
(

(5) (forall (?b (bond ?b))
(and (= (RELS$l eft-residuation
[ (REL$ri ght-residuation [(classification ?b) (source ?b)])
(source ?b)])
(classification ?b))
(= (RELS$right-residuation
[ (REL$l eft-residuation [(classification ?b) (target ?b)])
(target ?b)])
(classification ?b))))

0 A bond has an associated bimodule, since the classification of a bond, as a relation, is order-closed on
left and right:

J <pj,jFtimply j'Ft, and jFt, t <, ¢ imply jF?t; or,

j' <pjimpliesj'F O jF, and t <, ¢ implies Ft [] F?.

(6) (KIF$function bi nodul e)
(= (KIF$source bi nmodul e) bond)
(= (KIFS$target binodul e) ORD$bi nodul e)
(forall (?b (bond ?b))
(and (= (ORD. REL$source (binodule ?b)) (CLS.CLS$i nstance-order (target ?b)))
(= (ORD. REL$t arget (binodul e ?b)) (CLS.CLS$type-order (source ?b)))
(= (ORD. REL$rel ation (binmodule ?b)) (classification ?b))))

0 For any bond F : A — B, the residuations in the fundamental closure property form a relation infomor-
phism info(F) = [[4/F), (F\B)[I: 4 = B from classification 4 to classification B.

(7) (KIF$function infonorphism
(= (KI F$source infonorphism bond)
(= (KIF$target infonorphisn CLS. REL$i nf onor phisn)
(forall (?b (bond ?b))
(and (= (CLS. REL$source (infonorphism ?b)) (source ?b))
(= (CLS. REL$target (infonorphism ?b)) (target ?b))
(= (CLS. RELS$i nstance (i nfonorphi sm ?b))
(RELS$right-residuation [(classification ?b) (source ?b)]))
(= (CLS. REL$type (i nfonorphism ?b))
(RELS$l eft-residuation [(classification ?b) (target ?b)]))))

0 The fundamental closure property implies that the bond of this relational infomorphism is the original
bond.

(forall (?b (bond ?b))
(= (CLS. REL$bond (i nfonorphism ?b)) ?b))

0 The fundamental closure property of a bond F : A — B, the type-closure of F with respect to A4 and the
instance-closure of F with respect to B, can also be expressed as follows.
(forall (?b (bond ?b))

(and (CLS. CL$type-closed (classification ?b) (source ?b))
(CLS. CL$i nstance-cl osed (classification ?b) (target ?b))))

0 Associated with any bond is an adjoint pair between the complete lattices of source and target classifi-
cations.
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— Since F is type-closed with respect to A, there is an associated coreflection (adjoint pair) corefly r

= [@y, o[ lat(F) = lat(4) between their complete lattices, where 0y : lat(4) — lat(F) is right ad-
joint right inverse (rari) to 0o : lat(F) — lat(A).

— Since F is instance-closed with respect to B, there is an associated reflection (adjoint pair) reflyp =

[@4, 0, lat(B) = lat(F) between their complete lattices, where 0; : lat(B) — lat(F) is left adjoint
right inverse (lari) to 0, : lat(F) — lat(B).

The adjoint pair is the composition of the reflection followed by the coreflection.

(8) (KIF$function adjoint-pair)
(= (KI F$source adjoint-pair) bond)
(= (KIF$target adjoint-pair) LAT. ADJ$adjoint-pair)
(forall (?b (bond ?b))
(and (= (LAT. ADJ$source (adjoint-pair ?b))
(CLS. CL$conpl ete-lattice (target ?b)))
(= (LAT. ADJ$target (adjoint-pair ?b))
(CLS. CL$conpl ete-lattice (source ?h)))
(= (adjoint-pair ?b)
(LAT. ADJ$conposi tion
(CLS. CL$reflection [(target ?b) (classification ?b)])
(CLS. CL$coreflection [(classification ?b) (source ?b)])))))

0 Two bonds F;: A — B and F,: B — C are composable when the target classification of the first is the
source classification of the second. The composition of two composable bonds is the bond

Fy= F; £ (B/F)\F1: A — C defined using left and right residuation. Since both F and G being bonds
are closed with respect to B, an equivalent expression for the composition is
F, = F, 2 F,/(F1\B) : A — C. Pointwise, the composition is F; = F, = {(c, a) | F10. [ (cF»)®}. To check
closure, (A/(F12F,))\A = (A/((B/F2)\F1))\A = (B/F,)\F1, since F; being a collective A-intent means that
(B/F,)\F, is also a collective A-intent.

The adjoint pair associated with a bond is the image of the morphism function of the complete
adjoint functor applied to the bond:

A :BOND - COMPLETE ADJOINT.

8) (KI F$opspan conposabl e- opspan)
(= conposabl e- opspan [target source])
(9) F$rel ati on conposabl e)
(KI F$col | ectionl conposabl e) bond)
(KI F$col | ecti on2 conposabl e) bond)
(

KI
= (KI F$extent conposabl e) (KIF$pullback conposabl e-opspan))

(
(
(
(

(11) (KIF$function conposition)
(= (KI'F$source conposition) (KIF$pullback conposabl e-opspan))
(= (KIF$target conposition) bond)
(forall (?bl (bond ?bl) ?b2 (bond ?b2) (conposable ?bl ?b2))
(and (= (source (composition [?bl ?b2])) (source ?bl))
(= (target (conposition [?bl ?b2])) (target ?b2))
(= (classification (conposition [?bl ?b2]))
(RELS$l eft-residuation [ (REL$right-residuation [?b2 (source ?b2)]) ?bl])))

0 With respect to bond composition, the identity bond at any classification A4 is 4.

(12) (KIF$function identity)
(= (KIF$source identity) CLS$classification)
(= (KIF$target identity) bond)
(forall (?a (CLS$classification ?a))
(and (= (source (identity ?a)) ?a)
(= (target (identity ?a)) ?a)
(= (classification (identity ?a)) ?a)))
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(o]

For any given bond F : A — B the dual bond F : B® — A is the bond with source and target classi-
fications switched, and source, target and classification relations transposed.
(13) (KIF$function opposite)
(= (KI'F$source opposite) bond)
(= (KIF$target opposite) bond)
(forall (?f (bond ?f))
(and (= (source (opposite ?f)) (CLS$opposite (target ?f)))
(= (target (opposite ?f)) (CLS$opposite (source ?f)))
(= (classification (opposite ?f)) (CLS$opposite (classification ?f)))))

The fundamental property of bonds for composition, identity and involution follow from basic proper-
ties of residuation.

The basic theorem of Formal Concept Analysis can be framed in terms of two fundamental bonds be-
tween any classification and its associated concept lattice.

— For any classification A4 there is an instance embedding bond 14 : L(4) — A, whose source classifi-
cation is the classification of the complete lattice of 4 and whose target classification is 4. The
classification of the instance embedding bond is the instance embedding classification. The pair

L (A)/14, T4[E L(A) = A is a relational infomorphism whose bond is the instance embedding bond.

— For any classification A the type embedding bond T4 : A — L(A), whose source classification is 4
and whose target classification is the classification of the complete lattice of 4. The classification
of the type embedding bond is the type embedding classification. The pair

Wy, T4IL(A): A4 = L(A) is a relational infomorphism whose bond is the type embedding bond.

(14) (KIF$function iota)
(= (KIF$source iota) CLS$classification)
(= (KIF$target iota) bond)
(forall (?a (CLS$classification ?a))
(and (= (source (iota ?a)) (LAT$classification (CLS CL$conplete-lattice ?a)))
(= (target (iota ?a)) 7?a)
(= (classification (iota ?a)) (CLS.CL$iota ?a))))

(16) (KIF$function tau)
(= (KIF$source tau) CLS$cl assification)
(= (KIF$target tau) bond)
(forall (?a (CLS$classification ?a))

(and (= (source (iota ?a)) ?a)
(= (target (iota ?a)) (LATS$classification (CLS.CL$conplete-lattice ?a)))
(= (classification (tau ?a)) (CLS.CL$tau ?a))))

The instance and type embedding bonds are inverse to each other: 4= T4 = Id 4y and T4= | 4= Id4.
(forall (?a (CLS$classification ?a))
(and (= (conposition [(iota ?a) (tau ?a)])
(identity (LATS$classification (CLS.CL$conplete-lattice ?a))))
(= (composition [(tau ?a) (iota ?a)])
(identity ?a))))

This demonstrates the bond isomorphism (commuting
Diagram 5) between any classification 4 and the clas- B(A(4))
sification of the complete lattice of 4. It can be proven
that this is a natural isomorphism; that is, that the
i i B(A F B(A
quasi-category CLASSIFICATION of classifications | BAG) L | BA®E)
and bonds is categorically equivalenF .to the. quasi- B(A(B) — B — B(A(B))
category of complete lattices and adjoint pairs. Let 1z Tz

L4 T4

—~ 4 — B(AW)

F: A — B be a bond with associated complete adjoint
adj(F) : lat(B) = lat(A4). The classification of the bond
bnd(adj(F)) : cls(lat(4)) — cls(lat(B)) contains a conceptual pair (a, b) of the form a=(4, ) and
b=(B,N)iff BoT O F, where B o ' = BxI" a Cartesian product or rectangle, iff B 0 I'* iff O B". So,
(145 F)e1g = (FI(14\)=13 = (F/1y) =1z = (B1p)\(F/14) = 13\(F/14) = bnd(adj(F)), by bond
composition and properties of the instance and type relations. Hence, bnd(adj(F)) = 15 = 14° F. This

Diagram 5: Natural Isomorphism

For any classification A4 the iota bond 14 is the 4™ component of a natural isomorphism
B(A(A4)) UA, demonstrating that the quasi-category of bonds is categorically equivalent to the
quasi-category of complete adjoints:

COMPLETE ADJOINT = BOND.
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sition and properties of the instance and type relations. Hence, bnd(adj(F)) = 1= 14 = F. This proves
the required naturality condition.
(forall (?b (bond ?b))
(= (conposition [(CL. ADJ$bond (adjoint-pair ?b)) (iota (target ?f))])
(composition [(iota (source ?f)) ?f])))

Bonding Pairs

CLS. BNDPR
The bond equivalent to a complete homomorphism would seem to be given L4
by two bonds F:4—B and G:B — A where the right adjoint L4) — 4

Wr: L(A) —» L(B) of the complete adjoint A(F) = @, Yk L(4) = L(B) of

one bond (say F, without loss of generality) is equal to the left adjoint T 1 | F
¢ : L(4) - L(B) of the complete adjoint A(G) = [Pg, Yel: L(B) = L(A) of y B
the other bond G with the resultant adjunctions, @ - Yr= g < Yg, where ‘;

the middle adjoint is the complete homomorphism. This is indeed the case,

but the question is what constraint to place on F and G in order for this to  Djagram 6: Bonding Pair
hold. The simple answer is to identify the actions of the two monotonic func-

tions g and @r. Let (4, ') O L(A) be any formal concept in L(A). The action of the left adjoint ¢¢ on this
concept is (4, ) — (4%, A%), whereas the action of the right adjoint s on this concept is (4, ) —
(T*,T*®). So the appropriate pointwise constraints are: 4°*=T" and '"®=4° for every concept
(4,T) O L(A). The relational representation of these pointwise constraints is used in the definition of a
bonding pair.

typ(B)

o A bonding pair [F, GL: A = B between two classifications T4 typ(4)
A and B (Figure 15) is a contravariant pair of bonds, a bond /

F: A — B in the forward direction and a bond G: 4 — B
in the reverse direction, satisfying the following pairing
constraints:

inst(4) inst(B)

Flt4= B/(14\G) and 1 ,\G = (F/14)\B, Figure 15: Bonding Pair

which state that (F/T4, 14\G) = (4= F, G = 1p) is an L(A)-indexed collective B-concept (Diagram 6).
The definitions of the relations F/t14 and 1,\G are given as follows: F/t4 = {(b, a) | int(a) O bF} =
{(b, @) | (bF)*, bF) <g a} and 1\G = {(a, P) | ext(a) 0 GP} = {(a, P) | a <z (GP, (GB)")}. Any concept
a = (4,T) 0 L(A4) is mapped by the relations as: (F/T4)((4, 7)) ={b|T ObF} =T" and (10\G)((4, "))
= {B|A4 0GP} = A°. Hence, pointwise the constraints are " = B® and 4 = ™. These are the
pointwise constraints discussed above. Let BONDING PAIR denote the quasi-category of classifica-
tions and bonding pairs.

(1) (KIF$collection bonding-pair)

(2) (KIF$function source)
(= (KI F$source source) bonding-pair)
(= (KIF$target source) CLS$classification)

(3) (KIF$function target)

(= (KIF$source target) bonding-pair)

(= (KIF$target target) CLS$classification)
(4) (KIF$function forward)

(= (KI F$source forward) bonding-pair)

(= (KIF$target forward) bond)

(forall (?bp (bonding-pair ?bp))

(and (= (CLS. BND$source (forward ?bp)) (source ?bp))
(= (CLS. BND$target (forward ?bp)) (target ?bp))))

(5) (KIF$function reverse)
(= (KI F$source reverse) bonding-pair)
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(= (KIF$target reverse) bond)
(forall (?bp (bonding-pair ?bp))
(and (= (CLS.BND$source (reverse ?bp)) (target ?bp))
(= (CLS. BND$t arget (reverse ?bp)) (source ?bp))))

(6) (forall (?bp (bonding-pair ?bp))
(and (= (RELS$right-residuation [(CLS.CL$tau (source ?bp)) (forward ?bp)])
(RELS$ri ght-residuation
[ (REL$l eft-residuation [(CLS. CL$iota (source ?bp)) (reverse ?bp)])
(target ?bp)]))
(= (RELS$l eft-residuation [(CLS. CL$iota (source ?bp)) (reverse ?bp)])
(RELS$I eft-residuation
[ (REL$right-residuation [(CLS.CL$tau (source ?bp)) (forward ?bp)])
(target ?bp)]1))))

0 The pointwise constraints can be lifted to a collective setting — any bonding pair [F, GL: A = B pre-
serves collective concepts: for any 4-indexed collective A-concept (X, ¥), X\d =Y and A/Y =X, the
conceptual image (F/Y, X\G) is an A-indexed collective B-concept (Figure 16), since B/(X\G) = F/Y
and (F/Y)\B=X\G. An important special case is the L(A)-
indexed collective A-concept (14, T4). To state that the [F, G4 % typ(A) yp(B)
image (F/t4, 14\F) is an L(A)-indexed collective B-concept, is
to assert the pairing constraints F/t4 = B/(1,\G) and 1\G =
(F/13)\B of the bonding pair. So, the concise definition in terms %\
of pairing constraints, the original pointwise definition above, inst(A4) inst(B)
and the assertion that [F, GUOpreserves all collective concepts,
are equivalent versions of the notion of a bonding pair.

Figure 16: Conceptual Image

(7) (KIF$function conceptual -i mage)
(= (KIF$source conceptual -i nage) bondi ng-pair)
(= (KIF$target conceptual -i nage) Kl F$function)
(forall (?bp (bonding-pair ?bp))
(and (= (KIF$source (conceptual -i mage ?bp)) (CLS. Fl B$concept (source ?bp)))
(= (KIF$target (conceptual -image ?bp)) (CLS. Fl B$concept (target ?bp)))
(forall (?a ((CLS.FlB$concept (source ?bp)) ?a))
(and (= ((CLS. FIB$index (target ?bp)) ((conceptual-image ?bp) ?a))
((CLS. FI B$i ndex (source ?bp)) ?a))
(= ((CLS. FI Bsextent (target ?bp)) ((conceptual-inmage ?bp) ?a))
(CLS. FI B$ri ght -resi duati on
[(((CLS. FIB$i ntent (source ?bp)) ?a)
(CLS. BND$cl assification (forward ?bp))]))
(= ((CLS.FIB$intent (target ?bp)) ((conceptual-inmage ?bp) ?a))
(CLS. FI B$l ef t -resi duati on
[(((CLS. FI Bsextent (source ?bp)) ?a)
(CLS. BND$cl assification (reverse ?bp))]))))))

o Let [F, GLI A = B be any bonding pair. Then F : A — B is a bond in the forward direction from clas-

sification A4 to classification B, and G : 4 — B is a bond in the reverse direction to classification 4
from classification B. Applying the complete adjoint functor A : BOND . COMPLETE ADJOINT,
we get two adjoint pairs in opposite directions: an adjoint pair [§ z, Y[ L(B) = L(A) in the forward
direction and an adjoint pair [§ g, Yslk L(A) = L(B) in the reverse direction. The meet-preserving
monotonic function Wr:L(4) - L(B) is equal to the join-preserving monotonic function
§g: L(4) - L(B), giving a complete lattice homomorphism. This function is the unique mediating
function for the L(A)-indexed collective B-concept (F/T4, 1 4\G), the [F, GLimage of the L(A4)-indexed
collective A-concept (14, T4), whose closure expressions define the pairing constraints.

The complete lattice homomorphism associated with a bonding pair is the image of the morphism
function of the complete lattice functor applied to the bonding pair:

A’ : BONDING PAIR — COMPLETE LATTICE.

(8) (KIF$function hononor phism
(= (KI'F$sour ce horonor phi sn) bondi ng-pair)
(= (KIF$t arget hononor phi sn) CL. MOR$Shonmonor phi sn)

—~
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(forall (?bp (bonding-pair ?bp))
(and (= (CL. MOR$source (honmonor phi sm ?bp))

(CLS. CL$conpl ete-lattice (source ?bp)))

(= (CL. MOR$t arget (hononor phi sm ?bp))
(CLS. CL$conpl ete-lattice (target ?bp)))

(= (CL. MOR$f orwar d (honoror phi sm ?bp))
(CLS. BND$adj oi nt-pair (forward ?h)))

(= (CL. MOR$r ever se (‘honmonor phi sm ?bp))
(CLS. BND$adj oi nt-pair (reverse ?h)))))

0 Two bonding pairs [F, GL: A = B and (M, NI B = C are composable when the target of the first is

the source of the second. The composition [F, GLr M, NU2 [Fs M, N= GL: A = C of two compos-
able bonding pairs is defined in terms of bond composition.

(9) (KI F$opspan conposabl e- opspan)
(= conposabl e- opspan [target source])

(10) (KIF$relation conposabl e)

(= (KIF$col |l ectionl conposabl e) bondi ng-pair)

(= (KIF$col | ection2 conposabl e) bondi ng-pair)

(= (KIF$extent conposable) (KIF$pullback conposabl e- opspan))
(11) (KIF$function conposition)

(= (KI F$source conposition) (KIF$pullback conposabl e-opspan))

(= (KIF$target conposition) bonding-pair)

(forall (?bpl (bonding-pair ?bpl)

?bp2 (bondi ng-pair ?bp2) (conposable ?bpl ?bp2))
(and (= (source (conposition [?bpl ?bp2])) (source ?bpl))
(= (target (conposition [?bpl ?bp2])) (target ?bp2))
(= (forward (conposition [?bpl ?bp2]))
(CLS. BND$conposi tion (forward ?bpl) (forward ?bp2)))
(= (reverse (conposition [?bpl ?bp2]))
(CLS. BND$conposition [(reverse ?bp2) (reverse ?bpl)]))))

0 For any classification A, define the bonding pair identity Ud,, Id4[0: A = A in terms of bond identity.

(12) (KIF$function identity)
(= (KIF$source identity) CLS$classification)
(= (KIF$target identity) bonding-pair)
(forall (?a (CLS$classification ?a))
(and (= (source (identity ?a)) ?a)
(= (target (identity ?a)) ?a)
(= (forward (identity ?a)) (CLS.BND$identity ?a))
(= (reverse (identity ?a)) (CLS.BND$identity ?a))))

0 For any classification A the type and instance embedding relations form bonding pairs in two different
ways, 4, 1400 A = L(A) and [, T, L(A4) =

(13) (KIF$function tau-iota)
(= (KIF$source tau-iota) CLS$classification)
(= (KIF$target tau-iota) bonding-pair)
(forall (?a (CLS$classification ?a))
(and (= (source (tau-iota ?a)) ?a)
(= (target (tau-iota ?a))
(LAT$cl assification (CLS. CL$conpl ete-lattice ?a)))
(= (forward (tau-iota ?a)) (CLS.BND$tau ?a))
(= (reverse (tau-iota ?a)) (CLS.BND$iota ?a))))
(14) F$function iota-tau)
(KI F$source iota-tau) CLS$classification)
(KI F$target iota-tau) bonding-pair)
orall (?a (CLS$classification ?a))
(and (= (source (iota-tau ?a))
(LAT$cl assi fication (CLS. CL$conpl ete-lattice ?a)))
(= (target (iota-tau ?a)) ?a)
(= (forward (iota-tau ?a)) (CLS.BND$iota ?a))
(= (reverse (iota-tau ?a)) (CLS.BND$tau ?a))))

0 For any classification 4 the two bonding pairs, [ 4, 14[: A = L(A) and [, T4 L(4) = A, are inverse
to each other: @4, 14[F [, T40= Id, and [y, T4[F @4, 1400= Id\ 4). Therefore, each classification is iso-

(K
(:
(:
(fo
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morphic in the quasi-category BONDING PAIR to the classification of its complete lattice:
A Ocls(clat(A4)).

For any classification A the iota-tau bonding pair [, T40is the 4™ component of a natural iso-
morphism B?(A%(4)) 0 A, demonstrating that the quasi-category of bonding pairs is categorically
equivalent to the quasi-category of complete lattices:

BONDING PAIR = COMPLETE LATTICE.

(forall (?a (CLS$classification ?a))
(and (= (conposition [(tau-iota ?a) (iota-tau ?a)])
(identity ?a))
(= (composition [(iota-tau ?a) (tau-iota ?a)])
(identity (LATS$classification (CLS.CL$conplete-lattice ?a))))))

0 This is a natural isomorphism. Any bonding pair [F, GLI: 4 = B satisfies the following naturality con-
dition: [y, T,[F [F, GC= bndpr(homo([F, GO) = [, T

(forall (?bp (bonding-pair ?bp))
(= (composition [(iota-tau (source ?bp)) ?bp])
(conposition
[ (LAT. MOR$bondi ng- pai r (‘honmonor phi sm ?bp))
(iota-tau (target ?bp))])))

0 For any given bonding pair (F, G[I: A = B the dual or opposite bonding pair [G*°, FP[1 A® = B is
the bonding pair with source/target classifications dualized, and forward/reverse bonds switched and
dualized.

(15) (KIF$function opposite)

(= (KI F$source opposite) bonding-pair)

(= (KIF$target opposite) bonding-pair)

(forall (?bp (bonding-pair ?bp))

(and (= (source (opposite ?bp)) (CLS$opposite (source ?bp)))

(= (target (opposite ?bp)) (CLS$opposite (target ?bp)))
(= (forward (opposite ?bp)) (CLS. BND$opposite (reverse ?bp)))
(= (reverse (opposite ?bp)) (CLS.BND$opposite (forward ?bp)))))
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Finite Colimits
CLS. cOL

Classifications can be fused together and internalized using colimit operations. Here we present axioms that
make CLASSIFICATION, the quasi-category of classifications and infomorphisms, finitely cocomplete.
We assert the existence of initial classifications, binary coproducts of classifications, coequalizers of paral-
lel pairs of infomorphisms and pushouts of spans of infomorphisms. Because of commonality, the termi-
nology for binary coproducts, coequalizers and pushouts are put into sub-namespaces. The diagrams and
colimits are denoted by both generic and specific terminology.

INST%SET) = CLASSIFICATION = TYP %(SET)

0 —1 INST-D /214/5 ﬂ\?\ﬁ\ 0+ TYP 1

SET®

Figure 17: Fibered Span

The following discussion refers to Figure 17 (where arrows denote functors).

The existence of colimits is mediated through the quasi-adjunction INST—L] between

INST : CLASSIFICATION - SET the underlying instance quasi-functor, and
0 : SET® . CLASSIFICATION the instance power quasi-functor,

and the (trivial) quasi-adjunction TYP — 1 between

TYP : CLASSIFICATION - SET the underlying type quasi-functor, and

1:SET - CLASSIFICATION the (trivial) terminal type quasi-functor.
Since the quasi-functors INST and TYP are left adjoint, they preserve all colimits. Using preservation as a
guide, all diagrams, cocones and colimits in CLASSIFICATION have (and use) underlying instance/type
diagrams, instance cones, type cocones, instance limits and type colimits in SET.
The Initial Classification

o There is a special classification 0= [1={0}, O, I (see Figure 18,
where arrows denote functions) called the initial classification,
which has only one instance O, no types, and empty incidence. The
initial classification has the property that for any classification 4 =

L

00—~ > A

Figure 18: Initial Classification
(ihst(A), typ(A4), =4Uthere is a counique infomorphism 1,: 0 = A, & Universality

the unique infomorphism from Oto A. The instance function of this

infomorphism is the unique function from the instance class inst(4) to the terminal (unit) class 1. The
type function of this infomorphism is the counique function (the empty function) from the initial
(empty or null) class O to the type class typ(A4). The fundamental constraint for the counique infomor-
phism is vacuous.

(1) (CLS$classification initial)
(= (CLSSinstance initial) SET.LIMsterninal)
(= (CLS$type initial) SET.COL$initial)
= initial (REL$enpty [SET.LIMterm nal SET.COL$initial])

(2)
(KI F$source couni que) CLS$cl assification)
(KI F$t ar get couni que) CLS. | NFOsi nf onor phi sm)
orall (?a (CLS$classification ?a))
(and (= (CLS. | NFC#source (counique ?a)) initial)
(= (CLS. I NFC#t arget (couni que ?a)) ?a)
(= (CLS. I NFG®i nst ance (couni que ?a)) (SET. LI Mbuni que (CLS$i nstance ?s)))
(= (CLS. | NFGBt ype (counique ?a)) (SET.COL$couni que (CLS$type ?a)))))

KI F$f uncti on couni que)
f
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Binary Coproducts

CLS. COL. COPRD

A binary coproduct (Figure 19) is a finite colimit for a diagram of shape two = + . Such a diagram (of
classifications and infomorphisms) is called a pair of classifications. Given a pair of classifications 4, =
Ohst(4,), typ(4;), =;0and A, = [ihst(A,), typ(4,), =,0] the coproduct or sum A, + A, (see top of Figure 3,
where arrows denote functions) is the classification defined as follows:

(o]

— The class of instances is the Cartesian product inst(4,+A4,) = 11 lz
inst(A4;)xinst(4,). So, instances of 4| + A, are pairs (i1, i;) of in- Al - A1+A2 > S A

stances i; 0 inst(4,) and 7, O inst(4,).

— The class of types is the disjoint union typ(4,+4,) = KZW\L /
typ(A4,)+typ(4,). Concretely, types of A4, + A, are either pairs S
(1, t;) where ¢, O typ(A,) or pairs (2, t;) where t, [ inst(4,).

— The incidence &+, of 4] + A, is defined by Figure 19: Binary Coproduct

(i1, ) F1+2 (1, 1) when iy k= ¢ & Universality
(i], lz) F1+2 (2, lg) When iz |=2 lg.

A pair (of classifications) is the appropriate base diagram for a binary coproduct. Each pair consists of
a pair of classifications called classificationl and classification2. We use either the generic term ‘di a-

gran or the specific term ‘pai r ’ to denotes the pair collection. Pairs are determined by their two com-
ponent classifications.

(1) (KIF$collection diagram
(KI F$col I ection pair)

(= pair diagram
(2)

Kl F$source cl assificationl) diagran)

Kl F$function cl assificationl)
= (
= (KIF$target classificationl) CLS$classification)

(
(
(
$f unction cl assification2)

F
(KI F$source classification2) diagram
(KI F$target classification2) CLS$classification)

(3) (K

(
(
(

(forall (?p (diagram ?p) ?qg (diagram ?q))
(=> (and (= (classificationl ?p) (classificationl ?q))
(= (classification2 ?p) (classification2 ?q)))
(=?p ?0)))

There is an instance pair or instance diagram function, which maps a pair of classifications to the un-
derlying pair of instance classes. Similarly, there is a type pair function, which maps a pair of classifi-
cations to the underlying pair of type classes.

(4) (KIF$function instance-diagram
(KI F$f unction instance-pair)
(= instance-pair instance-diagram
(= (KI F$source instance-di agranm diagram
(= (KIFS$target instance-diagran) SET. LI M PRD$di agram
(forall (?p (diagram ?p))
(and (= (SET.LIM PRD$cl ass1 (instance-di agram ?p))
(CLSS$i nstance (classificationl ?p)))
(= (SET. LI M PRD$cl ass2 (instance-di agram ?p))
(CLS$i nstance (classification2 ?p)))))

(5) F$function type-di agram
F$function type-pair)
type-pair type-di agram
(KI F$source type-di agram diagram
(KI F$t arget type-di agranm) SET. COLI M COPRD$di agr an)
orall (?p (diagram ?p))
(and (= (SET. COLI M COPRD$cl ass1 (type-di agram ?p))
(CLS$type (classificationl ?p)))
(= (SET. COLI M COPRD$cl ass2 (type-di agram ?p))
(CLS$type (classification2 ?p)))))

(KI
(K
(:
(:
(:
(fo
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(o]

(o]

(o]

Every pair has an opposite.

(6) (KIF$function opposite)
(= (KI'F$source opposite) pair)
(= (KIF$target opposite) pair)
(forall (?p (pair ?p))
(and (= (classificationl (opposite ?p)) (classification2 ?p))
(= (classification2 (opposite ?p)) (classificationl ?p))))

The opposite of the opposite is the original pair — the following theorem can be proven.

(forall (?p (pair ?p))
(= (opposite (opposite ?p)) ?p))

Figure 20: Binary

A binary coproduct cocone is the appropriate cocone for a binary coproduct. Coproduct Cocone

A coproduct cocone (see Figure 20, where arrows denote functions) consists A4, A
of a pair of infomorphisms called opfirst and opsecond. These are required to \

have a common source classification called the opvertex of the cocone. Each ,; St\ %]ﬂnd
binary coproduct cocone is under a pair of classifications. A

(7) (KIF$collection cocone)

(8) (KIF$function cocone-di agram
(= (KIF$source cocone-di agran) cocone)
(= (KIF$target cocone-di agram diagram

(9) (KIF$function opvertex)
(= (KIF$source opvertex) cocone)
(= (KIF$target opvertex) CLS$classification)

(10) (KIF$function opfirst)
(= (KIF$source opfirst) cocone)
(= (KIF$target opfirst) CLS.|NFGSi nfonor phism
(forall (?s (cocone ?s))
(and (= (CLS. | NFC#source (opfirst ?s))
(classificationl (cocone-di agram ?s)))
(= (CLS.INFCstarget (opfirst ?s)) (opvertex ?s))))

(11) (KIF$function opsecond)
(= (KIF$source opsecond) cocone)
(= (KIF$target opsecond) CLS. | NFGSi nf oror phi sm
(forall (?s (cocone ?s))

(and (= (CLS. | NFC#source (opsecond ?s))
(classification2 (cocone-di agram ?s)))
(= (CLS. I NFC#t arget (opsecond ?s)) (opvertex ?s))))

There is an instance cone function, which maps a binary coproduct cocone of classifications and info-
morphisms to the underlying binary product cone of instance classes and instance functions. Similarly,
there is a #ype cocone function, which maps a binary coproduct cocone of classifications and infomor-
phisms to the underlying binary coproduct cocone of type classes and type functions.

(12) (KIF$function instance-cone)
(= (KIF$source instance-cone) cocone)
(= (KIF$target instance-cone) SET.LIM PRD$cone)
(forall (?s (cocone ?s))
(and (= (SET. LI M PRD$cone-di agram (i nstance-cone ?s))
(i nstance-di agram (cocone-di agram ?s)))
(= (SET. LI M PRD$vertex (instance-cone ?s))
(CLSS$i nstance (opvertex ?s)))
(= (SET.LIM PRD$first (instance-pair ?s))
(CLS. I NFGsi nstance (opfirst ?s)))
(= (SET. LI M PRD$second (instance-pair ?s))
(CLS. | NFG#i nst ance (opsecond ?s)))))
(13) (KIF$function type-cocone)
(= (KIF$source type-cocone) cocone)
(= (KIF$target type-cocone) SET.COLI M COPRD$cocone)
(forall (?s (cocone ?s))
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(and (= (SET. COLI M COPRD$cocone-di agram (type-cocone ?s))

(type-di agram (cocone-di agram ?s)))

(= (SET. COLI M COPRD$opvertex (type-cocone ?s))
(CLS$type (opvertex ?s)))

(= (SET. COLI M COPRD$opfirst (type-cocone ?s))
(CLS. I NFO$t ype (opfirst ?s)))

(= (SET. COLI M COPRD$opsecond (type-cocone ?s))
(CLS. | NFC#t ype (opsecond ?s)))))

o There is a KIF function ‘col i mi ti ng- cone’ that maps a pair (of classifications) to its binary coproduct
(colimiting binary coproduct cocone) (see Figure 21, where arrows denote functions). The totality of
this function, along with the universality of the comediator infomorphism, implies that a binary copro-
duct exists for any pair of classifications. The opvertex of the colimiting binary coproduct cocone is a
specific binary coproduct class. It comes equipped with two injection infomorphisms. The binary
coproduct and injections are expressed both abstractly in the second
to last axiom and concretely in the last axiom. The last axiom im-
plicitly ensures that both the coproduct and the two injection info- A, A,
morphisms are specific — that its instance class is exactly the Carte- \ /
sian product of the instance classes of the pair of classifications and 11\ /12
that its type class is exactly the disjoint union of the type classes of A+A;
the pair of classifications.

Figure 21: Colimiting Cocone

(14) (KIF$function colimting-cocone)

(= (KI'F$source colinting-cocone) diagran

(= (KIF$target colimting-cocone) cocone)

(forall (?p (diagram ?p))

(= (cocone-di agram (colimting-cocone ?p)) ?p))

(15) (KIF$function colimt)
Kl F$f uncti on bi nary- coproduct)
= bi nary-coproduct colimt)
= (KI F$source colimt) diagram
= (KIF$target colimt) CLS$classification)
(16) (KIF$function injectionl)
= (KI F$source injectionl) diagram
= (KIF$target injectionl) CLS.I|NFGSi nfonorphism

(17) F$function injection2)
(KI F$source injection2) diagram
(

Ki
= (KIF$target injection2) CLS.I|NFGSi nfonorphism

(
(
(

(18) (forall (?p (diagram ?p))

(and (= (colimt ?p) (opvertex (colimting-cocone ?p)))
(CLS. I NFOssource (injectionl ?p)) (classificationl ?p))
(CLS. INFOstarget (injectionl ?p)) (colimt ?p))
(injectionl ?p) (opfirst (colimting-cocone ?p)))
(CLS. | NFC#source (injection2 ?p)) (classification2 ?p))
(CLS. INFO$t arget (injection2 ?p)) (colimt ?p))
(injection2 ?p) (opsecond (colimting-cocone ?p)))))

N~~~
o nn

(19) (forall (?p (diagram ?p)
?i ((CLS$instance (colimt ?p)) ?i)
?t ((CLS$type (colimt ?p)) ?t))
(<=> ((colimt ?p) ?2i ?t)
(and (=> (= (?t 1) 1) ((classificationl ?p) (?2i 1) (?t 2)))
(=> (= (?t 1) 2) ((classification2 ?p) (?i 2) (?t 2))))))

0 The following two axioms are the necessary conditions that the instance and type quasi-functors pre-
serve concrete colimits. These explicitly ensure that this colimit is specific — that its instance class is
exactly the Cartesian product of the instance classes of the pair of classifications and that its type class
is exactly the disjoint union of the type classes of the pair of classifications. Also, these explicitly en-
sure that the two coproduct injection infomorphisms are specific — that their instance functions are ex-
actly the Cartesian product projections of the instance classes of the pair of classifications and that
their type functions are exactly the disjoint union injections of the type classes of the pair of classifica-
tions.
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(20) (forall (?p (diagram ?p))
(and (= (instance-cone (coliniting-cocone ?p))
(SET. LI M PRD$! i mi ti ng-cone (instance-diagram ?p)))
(= (CLSS$instance (colimt ?p))
(SET.LIM PRD$I i mit (instance-diagram ?p)))
(= (CLS. I NFG#i nst ance (injectionl ?p))
(' SET. LI M PRD$pr oj ectionl (instance-diagram ?p)))
(= (CLS. I NFG#i nstance (injection2 ?p))
( SET. LI M PRD$pr oj ection2 (instance-diagram?p)))))

(21) (forall (?p (diagram ?p))
(and (= (type-cocone (colimting-cocone ?p))

( SET. COL. COPRD$col i m ting-cocone (type-diagram ?p)))

(= (CLS$type (colimt ?p))
(SET. COL. COPRD$col i mit (type-diagram ?p)))

(= (CLS. I NFC#type (injectionl ?p))
( SET. COL. COPRDS$i nj ectionl (type-diagram ?p)))

(= (CLS. I NFC#type (injection2 ?p))
( SET. COL. COPRD$i nj ection2 (type-diagram ?p)))))

0 For any binary coproduct cocone, there is a comediator infomorphism Figure 22: Coproduct

y:A;+A; = A (see Figure 22, where arrows denote infomorphisms) from Comediator
the binary coproduct of the un(.ier.lying dia.gram. (pair of glassiﬁcqtions) to Alg A+ Azg A,
the opvertex of the cocone. This is the unique infomorphism, which com-
mutes with.opf.lrst and opsecond. We deﬁn@ this by using the .mediator of op ]st\ \J/y/ op2n
the underlying instance cone and the comediator of the underlying type co- A
cone. Existence and uniqueness represents the universality of the binary
coproduct operator.
(22) (KIF$function conedi ator)
(= (KIF$source conedi ator) cocone)
(= (KIF$target conedi ator) CLS. | NFGSi nf onor phi sn)
(forall (?s (cocone ?s))
(and (= (CLS. | NFOssource (conediator ?s)) (colimt (cocone-diagram ?s)))
(= (CLS. I NFC#t arget (conediator ?s)) (opvertex ?s))
(= (CLS. I NFGBi nst ance (comnedi ator ?s))
( SET. LI M PRD$nedi at or (i nstance-cone ?s)))

(= (CLS. | NFC#t ype (conedi ator ?s))
( SET. COL. COPRD$conedi at or (type-cocone ?s)))))

o It can be verified that the comediator is the unique infomorphism that makes the diagram in Figure 6
commutative.
(forall (?s (cocone ?s))
(= (conedi ator ?s)
(the (?f (CLS.|NFGsi nfonorphism ?f))
(and (= (CLS. | NFQOsconposition [(injectionl (cocone-diagram?s)) ?f])
(opfirst ?s))
(= (CLS. | NFG#conposition [(injection2 (cocone-diagram?s)) ?f])
(opsecond ?s))))))

Coinvariants and Coquotients
CLS. COL. CO NV

o Given a classification 4 = Ohst(A), typ(A4), =40 a coinvariant (called a dual invariant in Barwise and
Seligman, 1997) is a pair J = [4, ROconsisting of a subclass of instances 4 [1 inst(A4) and a binary en-
dorelation R on types R [ typ(4)xtyp(A4) that satisfies the fundamental constraint:

if (to, t1) O R then for each i 0 A4, i =4 tpiffi =4 11

The classification A4 is called the base classification of J — the classification on which J is based. A
coinvariant is determined by its base, class and endorelation triple.

(1) (KIFS$collection coinvariant)

(2) (KIF$function classification)
(KI F$f uncti on base)
(= base classification)
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(KI F$sour ce base) coinvariant)
(KI F$t arget base) CLS$cl assification)

—_~—

(3) F$function cl ass)
(KI F$source cl ass) coinvariant)
(

Ki
= (KIF$target class) SET$cl ass)

(
(
(
(4) $f uncti on endorel ati on)

F
(KI F$source endorel ation) coinvariant)
(

Kl
= (KIF$target endorel ation) REL. ENDO$endor el ati on)

(
(
(

(5) (forall (?j (coinvariant ?j))
(and (SET$subcl ass (class ?j) (CLS$instance (base ?j)))
(= (REL. ENDC#cl ass (endorelation ?j)) (CLS$type (base ?j)))
(forall (?t0 ?t1 ((endorelation ?j) ?t0 ?t1)
?i ((class ?j) ?i))
(<=> ((base ?j) ?i ?t0)
((base ?j) 2i ?t1)))))

(forall (?j1 (coinvariant ?j1) ?j2 (coinvariant ?j2))
(=> (and (= (base ?j1) (base ?j2))
(= (class ?j1) (class ?j2))
(= (endorelation ?j1) (endorelation ?j2)))
(=7172)))

o  Often, the relation R is an equivalence relation on the types. However (Barwise and Seligman, 1997), it
is convenient not to require this. The endorelation R is contained in a smallest equivalence relation =g
on types called the equivalence relation generated by R. This is the reflexive, symmetric, transitive clo-
sure of R. For any type ¢ 0 typ(4), write [£] for the R-equivalence class of 7. Then J = (U, =,[Jis also a
coinvariant on A4.

The coquotient A/J of a coinvariant J on a classification 4 (see Figure 23, where arrows denote func-
tions) (called the dual quotient in Barwise and Seligman, 1997) is the classification defined as follows:

— The class of instances of A4/J is 4, the given subset of inst(4).
— The class of types of A/J is typ(A4)/R, the quotient class over typ(4) of R-equivalence classes.

— The incidence & 4,; of A/J is defined by %
iEqy[flgwhenie,t A . > Al

which is well-defined by the fundamental constraint.

There is a canonical quotient infomorphism T;: A = A/J, whose instance \\ f
f

function is the inclusion function inc : A - inst(A4), and whose type func-
B

tion is the canonical quotient function [-]g : typ(4) — typ(4)/R. The fun- ) )
damental property for this infomorphism is trivial, given the definition of Figure 23: Unilversallty
the coquotient incidence above. of the Coquotient

(6) (KIF$function coquotient)
(= (KI F$source coquotient) coinvariant)
(= (KIF$target coquotient) CLS$classification)
(forall (?j (coinvariant ?j))
(and (= (CLS$i nstance (coquotient ?j)) (class ?j))
(= (CLS$type (coquotient ?j))
(REL. ENDCBquot i ent ( REL. ENDOBequi val ence-cl osure (endorelation ?j))))
(forall (?i ((class ?j) ?i)
?t ((CLS$type (base ?j)) ?t))
(<=> ((coquotient ?j)
?i
( (REL. ENDC#canon
( REL. ENDO$equi val ence-cl osure (endorelation ?j))) ?t))
((base ?j) ?i 7?t)))))

(7) (KIF$function canon)
(= (KI'F$source canon) coinvariant)
(= (KIF$target canon) CLS.|NFGOsi nfonor phi sm
(forall (?j (coinvariant ?j))
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(and (= (CLS. | NFC#source (canon ?j)) (base ?j))
(= (CLS. I NFC#t arget (canon ?j)) (coquotient ?j))
(:

(e]

SET. FTN$i ncl usion [(class ?j) (CLS$instance (base ?j))]))
CLS. | NFC#t ype (canon ?j))
( REL. ENDO$canon ( REL. ENDCBequi val ence-cl osure (endorelation ?j))))))

(
(
(CLS. | NFG$i nst ance (canon ?j))
(
(

Let J= 4, Rbe a coinvariant on a classification A. An infomorphism f: A = B respects J when:
— for any instance j [1 inst(B), inst(f)(y) O 4; and

- for any two types fo, tn 0 typ(A), if (to, 1) O R then typ(f)(to) = typ(f)(t0).

(8) (KIF$relation respects)
(= (KIF$col l ectionl respects) CLS.|NFGSi nf onor phi sm
(= (KIF$col | ection2 respects) coinvariant)
(forall (?f (CLS.|NFG&i nfonorphism ?f)
?J (coinvariant ?J))
(<=> (respects ?f ?J)
(and (= (CLS.| NFC#source ?f) (base ?J))
(forall (?j ((CLS$instance (CLS.|INFCstarget ?f)) ?j))
((class ?J) ((CLS.INFG8instance ?f) ?j)))
(forall (?t0 ((CLS$type (CLS.|NFCBsource ?f)) ?t0)
?t1 ((CLS$type (CLS.|NFOssource ?f)) ?t1)
((endorelation ?j) ?t0 ?t1))
(= ((CLS. INFCBtype ?f) ?t0) ((CLS.INFCBtype ?f) ?t1))))))

Proposition. For every coinvariant J on a classification A and every infomorphism f: A = B that re-

spects J, there is a unique comediating infomorphism f: AlJ = B such that Ty° f=f (the diagram in
Figure 7 commutes).

Based on this proposition, a definite description is used to define a comediator function (Figure 7) that
maps a pair (f, J) consisting of a coinvariant and a respectful infomorphism to their comediator f.

(9) (KIF$function conediator)

(= (KIF$source conedi ator) (KIF$extent respects))

(= (KIF$target conedi ator) CLS.|NFGSi nf onor phi sm)

(forall (?j (coinvariant ?j)

?f (CLS. | NFG&i nf oror phi sm ?f) (respects ?f ?j))
(= (conmediator [?f ?j])
(the (?ft (CLS.|NFG®i nfonorphism ?ft))
(and (= (CLS. | NFCssource ?ft) (coquotient ?j))

(= (CLS.INFCstarget ?ft) (CLS.INFC$target ?f))
(= (CLS. I NFGBconposition [(canon ?j) ?ft]) ?2f)))))

Coequalizers

CLS. COL. CCEQ

A coequalizer is a finite colimit in CLASSIFICATION for a diagram of shape parallel-pair = + = +. Such
a diagram (of classes and functions) is called a parallel pair of functions.

(o]

A parallel pair (see Figure 24, where arrows denote infomorphisms) is the

. : . . . h
appropr.late base @agram for a coequahz.er. Each parallel pair consists of a B >
pair of infomorphisms called infomorphisml and infomorphism2 that share 7

the same source and target classifications. We use either the generic term
‘di agr an? or the specific term ‘par al | el - pai r’ to denote the parallel pair Fiqure 24: Parallel Pair
collection. Parallel pairs are determined by their two component infomor-

phisms.

(1) (KIF$collection diagran

(KI F$col | ection parallel-pair)
(= parallel-pair diagram
(2) (KIF$function source)
(= (KI'F$source source) diagram
(= (KIF$target source) CLS$classification)

(3) (KIF$function target)
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(KI F$source target) diagram
(KI F$target target) CLS$classification)

—_~—

(4) | F$f uncti on i nf onor phi sni)
Kl F$sour ce i nf onor phi snl) di agran)

(
(KI F$t arget i nfonor phi sml) CLS. | NFO$i nf onor phi sn)

nnx

(
(
(
(5) $f uncti on i nf onor phi snR)

F
(KI F$sour ce i nfonor phi sn2) di agram
(

Kl
= (KIF$target infonorphisnR) CLS.|NFGsi nfonorphi sm

(
(
(

(6) (forall (?p (diagram ?p))
(and (= (SET. FTN$source (i nfonorphisml ?p)) (source ?p))
(= (SET. FTN$t arget (i nfornorphisml ?p)) (target ?p))
(= (SET. FTN$source (i nfonorphisn2 ?p)) (source ?p))
(= (SET. FTN$t arget (i nfonorphisn2 ?p)) (target ?p))))

(forall (?p (diagram ?p) ?qg (diagram ?q))
(=> (and (= (infonorphisnl ?p) (infonorphisnl ?q))
(= (informorphisnm2 ?p) (infororphisnm ?q)))
(= 7?p ?09)))

0 There is an instance parallel pair or instance diagram function, which maps a parallel pair of infomor-
phisms to the underlying (SET. LI M EQU) parallel pair of instance functions. Similarly, there is a type
parallel pair or type diagram function, which maps a parallel pair of infomorphisms to the underlying
(SET. cOLI M CCEQ) parallel pair of type functions.

(7) (KIF$function instance-diagran
(KI'F$function instance-parallel-pair)
(= instance-parallel-pair instance-diagran
(= (KIF$source instance-di agram diagram
(= (KIF$target instance-diagram SET.LIM EQU$di agram
(forall (?p (diagram ?p))
(and (= (SET.LIM EQU$source (instance-di agram ?p))
(CLSS$i nstance (target ?p)))
(= (SET.LIMEQUS$t arget (instance-di agram ?p))
(CLS$i nstance (source ?p)))
(= (SET. LI M EQU$functionl (instance-diagram ?p))
(CLS. | NFG#i nst ance (i nfonorphisnml ?p)))
(= (SET. LI M EQU$function2 (instance-di agram ?p))
(CLS. I NFG8i nst ance (i nfonorphisn2 ?p)))))
(8) (KIF$function type-diagram
KI F$f uncti on type-parallel-pair)
type-parall el -pair type-diagram
(KI F$sour ce type-di agram diagram
(KI F$t arget type-di agram) SET. COLI M COEQBdi agr am
rall (?p (diagram ?p))
(and (= (SET.COLI M COEQ®Bsource (type-di agram ?p))
(CLS$type (source ?p)))
(= (SET. COLI M COEQ®t ar get (type-di agram ?p))
(CLS$type (target ?p)))
(= (SET. COLI M COEQ®f unctionl (type-diagram ?p))
(CLS. | NFG#t ype (i nfonorphisml ?p)))
(= (SET. COLI M COEQf unction2 (type-diagram ?p))
(CLS. I NFOst ype (i nfonorphisn2 ?p)))))

(o]

0 The information in a coequalizer diagram (parallel pair of infomorphisms) is equivalently expressed as
a coinvariant based on the target classification of the parallel pair, whose class is the equalizer of in-
stance diagram, and whose endorelation is the coequalizer endorelation of the type diagram.

(9) (KIF$function coinvariant)
(= (KI F$source coinvariant) diagram
(= (KIF$target coinvariant) CLS. COL. CO NV$coi nvari ant)
(forall (?p (diagram ?p))
(and (= (CLS. COL. CO NV$base (coinvariant ?p)) (target ?p))
(= (CLS. COL. CO NV$cl ass (coinvariant ?p))
( SET. LI M EQUsequal i zer (instance-di agram ?p)))
(= (CLS. COL. CO Nv$endorel ation (coinvariant ?p))
( SET. COL. COEQBendor el ation (type-diagram ?p)))))
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0 The notion of a coequalizer cocone is used to specify and axiomatize co-
equalizers. Each coequalizer cocone (see Figure 25, where arrows denote g
infomorphisms) has an opvertex classification, and an infomorphism whose B ? 4
source classification is the target classification of the infomorphisms in the hf \ l/f
parallel-pair and whose target classification is the opvertex. Since Figure 25 =fa f

(o]

is commutative, the composite infomorphism is not needed. Each coequal-
izer cocone is situated under a coequalizer diagram (parallel pair of Figure 25: Coequalizer
infomorphisms). Cocone

(10) (KIF$collection cocone)

(11) (KIF$function cocone-di agram
(= (KIF$source cocone-di agran) cocone)
(= (KIF$target cocone-di agram diagram

(12) (KIF$function opvertex)
(= (KI F$source opvertex) cocone)
(= (KIF$target opvertex) CLS$classification)
(13) (KIF$function infonorphism
(= (KIF$source i nfonorphisn cocone)
(= (KIF$target infonorphisn CLS.|NFGsi nfonorphi sm
(14) (forall (?s (cocone ?s))
(and (= (CLS.|NFOssource (infonorphism?s)) (target (cocone-diagram ?s)))
(= (CLS. | NFC#t arget (i nfonorphism ?s)) (opvertex ?s))
(= (CLS. | NFGsconposi tion

[ (i nfonor phi sml (cocone-di agram ?s))
(i nfonor phi sm ?s)])
(CLS. | NFOsconposi tion
[ (i nfonor phi sn2 (cocone-di agram ?s))
(i nfonorphism ?s)]))))

The instance equalizer cone function maps a coequalizer cocone of classifications and infomorphisms
to the underlying equalizer cone of instance classes and instance functions. Dually, the #ype coequal-
izer cocone function maps a coequalizer cocone of classifications and infomorphisms to the underlying
coequalizer cocone of type classes and type functions.

(15) (KIF$function instance-cone)
(= (KI F$source instance-cone) cocone)
(= (KIF$target instance-cone) SET.LIM EQU$cone)
(forall (?s (cocone ?s))
(and (= (SET.LIM EQU$cone-di agram (i nstance-cone ?s))
(i nstance-di agram (cocone-di agram ?s)))
(= (SET.LIMEQU$vertex (instance-cone ?s))
(CLS$i nstance (opvertex ?s)))
(= (SET.LIMEQU$function (instance-pair ?s))
(CLS. | NFG#i nst ance (i nfonorphism ?s)))))
(16) (KIF$function type-cocone)
(= (KIF$source type-cocone) cocone)
(= (KIF$target type-cocone) SET.COLI M COEQBcocone)
(forall (?s (cocone ?s))
(and (= (SET. COLI M COEQBcocone-di agram (type-cocone ?s))
(type-di agram (cocone-di agram ?s)))
(= (SET. COLI M COEQBopvertex (type-cocone ?s))
(CLS$type (opvertex ?s)))
(= (SET. COLI M COEQ®f unction (type-cocone ?s))
(CLS. I NFO$t ype (i nfonmorphism ?s)))))

It is important to observe that the infomorphism in a cocone respects the coinvariant of the underlying
diagram of the cocone. This fact is needed to help define the comediator of a cocone.

(forall (?s (cocone ?s))
(CLS. COL. CO NV$respects (infonorphism ?s) (coinvariant (cocone-diagram?s))))
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(o]

There is a KIF function ‘Ii ni ti ng- cone’ that maps a parallel pair (of info- Figure 26: Colimiting
morphisms) to its coequalizer (colimiting coequalizer cocone) (see Figure qenne

26, where arrows denote infomorphisms). The totality of this function, along h

with the universality of the comediator infomorphism, implies that a co- B—— A
equalizer exists for any parallel pair of infomorphisms. The opvertex of the 7
colimiting coequalizer cocone is a specific coequalizer class. It comes \ J/V
equipped with a canon infomorphism. The coequalizer and canon are ex- i

pressed both abstractly, and, in the last axiom, as the coquotient and canon of
the coinvariant of the diagram.

(17) (KIF$function colimting-cocone)
(= (KIF$source colimting-cocone) diagran
(= (KIF$target colimting-cocone) cocone)
(forall (?p (diagram ?p))
(= (cocone-di agram (colimting-cocone ?p)) ?p))

(18) (KIF$function colimt)

(KI F$f uncti on coequal i zer)

(= coequalizer colimt)

(= (KIF$source colimt) diagram

(= (KIF$target colinit) CLS$classification)
(19) (KIF$function canon)

(= (KI F$source canon) diagram

(= (KIF$target canon) CLS.|NFGOsi nfonor phi sm

(20) (forall (?p (diagram ?p))
(and colimt ?p) (opvertex (colimting-cocone ?p)))
CLS. | NFOG$source (canon ?p)) (target ?p))
CLS. | NFO$t arget (canon ?p)) (colimt ?p))
canon ?p) (infonorphism (colimting-cocone ?p)))))

o un
~~—~—

(
(
(
(

(21) (forall (?p (diagram ?p))
(and (= (colimt ?p) (CLS.COL.CO Nv$coquotient (coinvariant ?p)))
(= (canon ?p) (CLS.COL.CO NV$canon (coinvariant ?p)))))

The following two axioms are the necessary conditions that the instance and type quasi-functors pre-
serve concrete colimits. These ensure that both this coequalizer and its canon infomorphism are spe-
cific.

(22) (forall (?p (diagram ?p))
(and (= (instance-cone (coliniting-cocone ?p))
(SET. LI M EQU$l i mi ting-cone (instance-diagram ?p)))
(= (CLSS$instance (colimt ?p))
(SET.LIMEQU$l imt (instance-diagram ?p)))
(= (CLS. I NFG8i nst ance (canon ?p))
( SET. LI M EQU$i ncl usi on (instance-diagram ?p)))))

(23) (forall (?p (diagram ?p))
(and (= (type-cocone (colimting-cocone ?p))
( SET. COL. COEQ®col i m ting-cocone (type-diagram ?p)))
(= (CLS$type (colimt ?p))
(SET. COL. COEQ®Bcol imt (type-diagram ?p)))
(= (CLS. | NFC$t ype (canon ?p))
( SET. COL. COEQBcanon (type-diagram ?p)))))

The comediator infomorphism, from the coequalizer of a parallel pair of Figure 27: Comediator

infomorphisms to the opvertex of a cocone under the parallel pair (see f v
Figure 27, where arrows denote infomorphisms), is the unique infomor- B—=A4—> ]
phism that commutes with cocone infomorphisms. This is defined ab- ? !
stractly by using a definite description, and is defined concretely as the ' éx \J/
comediator of the associated coinvariant. C

(24) (KIF$function conedi ator)
(= (KI'F$source conedi ator) cocone)
(= (KIF$target comedi ator) CLS. | NFG8i nf onor phismn)
(forall (?s (cocone ?s))
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(and (= (CLS. | NFC#source (conediator ?s)) (colimt (cocone-diagram ?s)))
(= (CLS. I NFC#t arget (conediator ?s)) (opvertex ?s))
(= (comedi ator ?s)
(the (?m (CLS. | NFG&i nf onor phi sm ?m))

(= (conposition [(canon (cocone-diagram ?s)) ?ni)
(i nf onor phism ?s))))))

(25) (forall (?s (cocone ?s))
(= (conedi ator ?s)
(CLS. COL. CO NV$conedi at or
[ (i nf ormor phi sm ?s) (coi nvariant (cocone-diagram ?s))])))

Pushouts
CLS. COL. PSH

A pushout is a finite colimit for a diagram of shape span = ««—+—-.
Such a diagram (of classifications and infomorphisms) is called an span
(see Figure 28, where arrows denote infomorphisms) fl/ \fz

0 A span is the appropriate base diagram for a pushout. Each opspan
consists of a pair of infomorphisms called first and second. These are
required to have a common source classification B, denoted as the Figure 28: Pushout Diagram
vertex. We use either the generic term ‘di agr ani or the specific term = Span
‘span’ to denote the span collection. A span is the special case of a
general diagram whose shape is the graph that is also named span.

Spans are determined by their pair of component infomorphisms.
(1) (KIFS$collection diagram

(KI F$col | ection span)
(= span di agram

Ay

(2) F$function cl assificationl)
(KI F$source cl assificationl) diagram
(

Kl
= (KIF$target classificationl) CLS$classification)

(
(
(
(3) $f unction classification2)

F
(KI F$source cl assification2) diagram
(KI F$target classification2) CLS$classification)

X

(
(
(
(4) $function vertex)

F
(KI F$source vertex) diagran
(KI F$target vertex) CLS$cl assification)

nonx

(
(
(
(5) $function first)

F
(KI F$source first) diagram
(KIF$target first) CLS.|NFGSi nfonor phism

X

(
(
(
(6) $f uncti on second)

F
(KI F$sour ce second) di agram
(

Ki
= (KIF$target second) CLS.|NFGOsi nfonorphi sm

(
(
(

(7) (forall
(and

(?r (diagram ?r))
(= (CLS. I NFC#source (first ?r)) (vertex ?r))
(= (CLS. I NFCGBsource (second ?r)) (vertex ?r))
(= (CLS. INFCstarget (first ?r)) (classificationl ?r))
(= (CLS. I NFC#t arget (second ?r)) (classification2 ?r))))
(forall (?rl (diagram ?rl) ?r2 (diagram ?r2))
(=> (and (= (first ?r1) (first ?r2))
(= (second ?rl1) (second ?r2)))
=72rl ?r2)))

0 The pair of target classifications (suffixing discrete diagram) underlying any span is named. This con-
struction is derived from the fact that the pair shape is a subshape of span shape.
(8) (KIF$function pair)

(= (KI'F$source pair) diagran
(= (KIF$target pair) CLS.CO.. COPRD$di agran)
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(forall (?r (diagram ?r))
(and (CLS. COL. COPRD$cl assificationl (pair ?r)) (classificationl ?r))
(CLS. COL. COPRD$cl assification2 (pair ?r)) (classification2 ?r))))

0 Every span has an opposite.

(9) (KIF$function opposite)
(= (KI F$source opposite) span)
(= (KIF$target opposite) span)
(forall (?r (span ?r))

(and (= (classificationl (opposite ?r)) (classification2 ?r))
(classification2 (opposite ?r)) (classificationl ?r))
(vertex (opposite ?r)) (vertex ?r))

(first (opposite ?r)) (second ?r))
(second (opposite ?r)) (first ?r))))

(
(
(
(

0 The opposite of the opposite is the original opspan — the following theorem can be proven.

(forall (?r (span ?r))
(= (opposite (opposite ?r)) ?r))

0 The instance opspan or instance diagram function maps a span of infomorphisms to the underlying
(SET. LI M PBK) opspan of instance functions. Dually, the type span or type diagram function maps a
span of infomorphisms to the underlying (SET. COLI M COEQ) span of type functions.

(10) (KIF$function instance-diagram
(KI' F$f uncti on i nstance-opspan)
(= instance-opspan i nstance-di agram
(= (KIF$source instance-di agram diagram
(= (KIFS$target instance-diagran) SET. LI M PBK$di agr am
(forall (?r (diagram ?r))
(and (= (SET.LIM PBK$cl ass1 (instance-diagram ?r))
(CLS$i nstance (classificationl ?r)))
(= (SET. LI M PBK$cl ass2 (instance-di agram ?r))
(CLSS$i nstance (classification2 ?r)))
(= (SET. LI M PBK$opvertex (instance-diagram ?r))
(CLS$i nstance (vertex ?r)))
(= (SET. LI M PBK$opfirst (instance-diagram ?r))
(CLS. | NFG#i nstance (first ?r)))
(= (SET. LI M PBK$opsecond (instance-diagram ?r))
(CLS. I NFG8i nstance (second ?r)))))

b I T |

(11) (KIF$function type-diagram
KI F$f uncti on type-span)
= type-span type-di agran
= (KI F$source type-di agranm diagram
= (KIF$target type-diagram SET.COL. PSH$di agram
forall (?r (diagram ?r))
(and (= (SET. COL. PSH$cl ass1 (type-diagram ?r))
(CLS$type (classificationl ?r)))
(= (SET. COL. PSH$cl ass2 (type-di agram ?r))
(CLS$type (classification2 ?r)))
(= (SET.COL. PSH$vertex (type-diagram?r))
(CLS$type (vertex ?r)))
(= (SET.COL. PSH$first (type-diagram ?r))
(CLS. I NFCBtype (first ?r)))
(= (SET.COL. PSH$second (type-diagram ?r))
(CLS. I NFOst ype (second ?r)))))

0 The parallel pair or coequalizer diagram function maps a span of

infomorphisms to the associated (CLS. COL. COEQ) parallel pair of B
infomorphisms (see Figure 29, where arrows denote infomor- A / J/J/ \fz
phisms), which are the composite of the first and second info-

morphisms of the span with the coproduct injection infomor- A1 —> A1+A> < A
phisms of the binary coproduct of the component classifications l1 l2

in the span. The coequalizer and canon of the associated parallel Figure 29: Coequalizer Diagram
pair will be used to define the pushout.

(12) (KIF$function coequalizer-diagram
(KI'F$function parallel-pair)
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(= parallel-pair coequalizer-diagram
(= (KIF$source coequal i zer-di agran) di agram
(= (KIF$target coequalizer-diagranm CLS. COL. COEQBdi agr an)
(forall (?r (diagram ?r))
(and (= (CLS. COL. COEQBsour ce (coequalizer-diagram ?r))
(vertex ?r))
(= (CLS. COL. COEQ®t arget (coequal i zer-di agram ?r))
(CLS. COL. COPRDS$bi nary- coproduct (pair ?r)))
(= (CLS. COL. COEQ®i nf onor phi sml (coequal i zer-di agram ?r))
(CLS. | NFOsconposi tion
[(first ?r)
(CLS. COL. COPRDS$i nj ectionl (pair ?r))]))
(= (CLS. COL. COEQ®i nf onor phi sn2 (coequal i zer-di agram ?r))
(CLS. | NFOsconposi tion
[ (second ?r)
(CLS. COL. COPRDS$I nj ection2 (pair ?r))]))))

0 There are two important categorical identities (not just isomorphisms) that relate (1) the underlying
instance limit and (2) the underlying type colimit of the coequalizer of the parallel pair of any span to
(1") the limit (equalizer) of the equalizer diagram of the underlying instance opspan and (2') the colimit
(coequalizer) of the coequalizer diagram of the underlying type span. These identities are assumed in
the definition of the colimiting cocone below.
(13) (forall (?r (diagram?r))
(and (= (CLS. COL. COEQ®i nst ance-di agram (coequal i zer-di agram ?r))
( SET. LI M EQU$equal i zer - di agram (i nstance-di agram ?r)))
(= (CLS. COL. COEQ®t ype- di agram (coequal i zer-di agram ?r))
( SET. COL. COEQBcoequal i zer-di agram (type-diagram ?r)))))

(14) (forall (?r (diagram?r))
(and (= (CLS. COL. COEQ®i nst ance-di agram
(CLS. COL. COEQ®col i m ting-cocone (coequalizer-diagram?r)))
(SET. LI M EQU$l i m ting-cone
( SET. LI M EQU$equal i zer - di agram (i nstance-di agram ?r))))
(= (CLS. COL. COEQ®t ype- di agram
(CLS. COL. COEQ®col i mting-cocone (coequalizer-diagram?r)))
( SET. LI M COEQ®Bcol i mi ting-cocone
( SET. COL. COEQBcoequal i zer-di agram (type-diagram ?r))))))

0 Pushout cocones are used to specify and axiomatize pushouts. Each
pushout cocone (Figure 30, where arrows denote infomorphisms) has B
an underlying diagram (the shaded part of Figure 30), an opvertex fy \fz
classification A4, and a pair of infomorphisms called opfirst and op-
second, whose common target classification is the opvertex and whose Ay A
source classifications are the target classifications of the infomor- \
phisms in the span. The opfirst and opsecond infomorphisms form a oplst A”Z"d
commutative diagram with the span. A pushout cocone is the very spe- A
cial case of a colimiting cocone under a span. The term ‘cocone’ de-
notes the pushout cocone collection. The term ‘cocone-diagrani Figure 30: Pushout Cocone
represents the underlying diagram.

(15) (KIF$collection cocone)

(16) (KIF$function cocone-di agram
(= (KIF$source cocone-di agran) cocone)
(= (KIF$target cocone-di agram diagram

(17) (KIF$function opvertex)
(= (KI F$source opvertex) cocone)
(= (KIF$target opvertex) CLS$classification)
(19) (KIF$function opfirst)
(= (KIF$source opfirst) cocone)
(= (KIF$target opfirst) CLS.|NFGSi nfonor phism
(forall (?s (cocone ?s))

(and (= (CLS. | NFC#source (opfirst ?s)) (classificationl (cocone-diagram ?s)))
(= (CLS.INFCstarget (opfirst ?s)) (opvertex ?s))))
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(20) (KIF$function opsecond)
(= (KI'F$source opsecond) cocone)
(= (KIF$t arget opsecond) CLS. | NFG$i nf oror phi sm
(forall (?s (cocone ?s))
(and (= (CLS. | NFOssource (opsecond ?s)) (classification2 (cocone-diagram ?s)))
(= (CLS. | NFC#t arget (opsecond ?s)) (opvertex ?s))))

(21) (forall (?s (cocone ?s))
(= (CLS. I NFGsconposition [(first (cocone-diagram ?s)) (opfirst ?s)])
(CLS. I NFOsconposi tion [(second (cocone-di agram ?s)) (opsecond ?s)])))

0 The binary-coproduct cocone underlying any cocone (pushout diagram) is named.

(22) (KIF$function binary-coproduct-cocone)

(= (KI F$source binary-coproduct-cocone) cocone)

(= (KIF$target binary-coproduct-cocone) CLS. COL. COPRD$cocone)

(forall (?s (cocone ?s))

(and (= (CLS. COL. COPRD$cocone-di agram ( bi nary- coproduct-cocone ?r))

(pair (cocone-diagram ?s)))
(CLS. COL. COPRD$opvertex (binary-coproduct-cocone ?r)) (opvertex ?s))
(CLS. COL. COPRD$opf i rst (binary-coproduct-cocone ?r)) (opfirst ?s))
(CLS. COL. COPRD$opsecond (bi nary-coproduct-cocone ?r)) (opsecond ?s))))

(
(
(

0 The coequalizer cocone function maps a pushout cocone of info-
morphisms to the associated (CLS. COL. COEQ) coequalizer cocone B
of infomorphisms (see Figure 31, where arrows denote infomor- fl/ \fz
phisms), which is the binary coproduct comediator of the opfirst
and opsecond infomorphisms with respect to the coequalizer dia- A ?1 ArtA, ﬁ 42
gram of a cocone. This is the first step in the definition of the opl SN \Ly op2nd
pushout comediator infomorphism. The following string of equali-
ties demonstrates that this cocone is well-defined. A

firli-Y=firoplst=fo-oplst=fp - 157y Figure 31: Coequalizer Cocone

(23) (KIF$function coequalizer-cocone)
(= (KI F$source coequal i zer-cocone) cocone)
(= (KIF$target coequalizer-cocone) CLS. COL. COEQBcocone)
(forall (?s (cocone ?s))
(and (= (CLS. COL. COEQBcocone-di agram (coequal i zer-cocone ?s))
(coequal i zer - di agram (cocone-di agram ?s)))
(= (CLS. COL. COEQBopvertex (coequalizer-cocone ?s))
(opvertex ?s))
(= (CLS. COL. COEQ®i nf onor phi sm (coequal i zer-cocone ?s))
(CLS. COL. COPRD$conedi at or (bi nary-coproduct-cocone ?r)))))

0 The KIF function ‘col i ni ti ng- cocone’ maps a span to its pushout

(colimiting pushout cocone) (see Figure 32, where arrows denote in- B
fomorphisms). For convenience of reference, we define three terms fl/ \fZ
that represent the components of this pushout cocone. The opvertex

of the pushout cocone is a specific pushout classification, which Al? Artdz < A
comes equipped with two projection infomorphisms. The last axiom \1 l/ y/z
expresses concreteness of the colimit — it expresses pushouts in 1 l2
terms of coproducts and coequalizers: the colimit of the coequalizer A1xgA>

diagram is (not just isomorphic but) equal to the pushout; likewise, Figure 32: Colimiting Cocone
the compositions of the coproduct injections of the pair diagram
with the canon of the coequalizer diagram are equal to the pushout injections.

(24) (KIF$function colimting-cocone)
(= (KI'F$source colinting-cocone) diagran
(= (KIF$target colimting-cocone) cocone)
(forall (?r (diagram ?r))
(= (cocone-di agram (colimting-cocone ?r)) ?r))

(25) (KIF$function colimt)
(KI F$f uncti on pushout)
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(= pushout colimt)

(= (KIF$source colimt) diagram

(= (KIF$target colint) CLS$classification)
(26) (KIF$function injectionl)

(= (KIF$source injectionl) diagran

(= (KIF$target injectionl) CLS.INFGSi nfonorphisn
(27) (KIF$function injection2)

(= (KIF$source injection2) diagran

(= (KIF$target injection2) CLS.INFG$i nfonorphisn
(28) (forall (?r (diagram?r))

(29)

(and (= (colimt ?r) (opvertex (colimting-cocone ?r)))
(= (CLS. I NFCBsource (injectionl ?r)) (classificationl ?r))
(= (CLS.INFC#target (injectionl ?r)) (colimt ?r))
(= (injectionl ?r) (opfirst (colimting-cocone ?r)))
(= (CLS. I NFG#source (injection2 ?r)) (classification2 ?r))
(= (CLS.INFCtarget (injection2 ?r)) (colimt ?r))
(= (injection2 ?r) (opsecond (colimting-cocone ?r)))))

(forall (?r (diagram ?r))
(and (= (colimt ?r)
(CLS. COL. COEQ®Bcoequal i zer (coequal i zer-diagram ?r)))
(= (injectionl ?r)
(CLS. | NFCG#conposi tion
[ (CLS. COL. COPRDS$i nj ectionl (pair ?r))
(CLS. COL. COEQBcanon (coequal i zer-diagram ?r))]))
(= (injection2 ?r)
(CLS. | NFC#conposi tion
[ (CLS. COL. COPRDS$i nj ection2 (pair ?r))
(CLS. COL. COEQBcanon (coequal i zer-diagram ?r))]))))

1/2/2002

0 The following two axioms are the necessary conditions that the instance and type quasi-functors pre-
serve concrete colimits. These ensure that both this pushout and its two pushout injection infomor-
phisms are specific.

(30)

(31)

(forall (?r (diagram ?r))
(and (= (instance-cone (coliniting-cocone ?r))
(SET. LI M PBK$l i mi ting-cone (instance-diagram?r)))
(= (CLSS$instance (colimt ?r))
(SET.LIM PBK$l imt (instance-diagram?r)))
(= (CLS. I NFG®i nstance (injectionl ?r))
(' SET. LI M PBK$proj ectionl (instance-diagram?r)))
(= (CLS. I NFG#i nstance (injection2 ?r))
( SET. LI M EQU$pr oj ection2 (instance-diagram?r)))))

(forall (?r (diagram ?r))
(and (= (type-cocone (colimting-cocone ?r))

( SET. COL. PSH$col i m ti ng-cocone (type-diagram ?r)))

(= (CLS$type (colimt ?r))
(SET. COL. PSH$col imt (type-diagram?r)))

(= (CLS. I NFCBtype (injectionl ?r))
( SET. COL. PSH$i nj ectionl (instance-diagram ?r)))

(= (CLS. I NFC#type (injection2 ?r))
(SET. COL. PSH$i nj ection2 (instance-diagram?r)))))

B
S f2
YA
Alxp A,

J/v

oplst op2nd

A

Figure 33: Comediator

0 The comediator infomorphism, from the pushout of a span to the opvertex of a cocone over the span
(see Figure 33, where arrows denote infomorphisms), is the unique infomorphism that commutes with
opfirst and opsecond. This is defined abstractly by using a definite description, and is defined con-
cretely as the comediator of coequalizer cocone.

(32)

(KI F$f unction conedi at or)

(= (KI F$source conedi ator) cocone)

(= (KIF$target conedi ator) CLS. | NFGSi nf onor phisn)
(forall (?s (cocone ?s))

(and (= (CLS. | NFC#source (conediator ?s)) (colimt (cocone-diagram ?s)))

(= (CLS. | NFC#t arget (conedi ator ?s)) (opvertex ?s))
(= (comedi ator ?s)
(the (?m (CLS. | NFG&i nf onor phi sm ?n))
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(and (= (conposition [(injectionl (cocone-diagram?s)) ?nj)
(opfirst ?s))
(= (composition [(injection2 (cocone-diagram?s)) ?n])
(opsecond ?s)))))))

(33) (forall (?s (cocone ?s))
(= (comedi ator ?s)
(CLS. COL. COEQconedi at or (coequal i zer-cocone ?s))))

Examples

The Living Classification

o The Living Classification is a tiny dataset, which exists within a conceptual universe of living organ-
isms. This classification listed below consists of eight organisms (plants and animals), and nine of their
properties. The organisms are the instances of the classification, and the properties are the #ypes. The
classification relation is presented as a Boolean matrix in the lower-right table. The Living Concept
Lattice, which contains 19 formal concepts, is visualized in the upper-left image.

Concept Lattice Type Class

0 | nw needs water
1 [lw lives in water
2 (I lives on land
3 [nc needs chlorophyll
4 |2lg| 2 leaf germination
5 |11g| 1 leaf germination
6 | is motile
7 (Ib has limbs
8 |sk suckles young
Instance Class Classification Relation
nw|lw]|Il [nc|2lg|llg| m |Ib | sk
0 |Le Leech ol < |« »
1B Bream Br X X X X
2 | Frog Fr x x X X X
3 | D Dog Dg | x X X X X
4 | SW| Spike Weed Wl < 1| = » »
5 | R Reed Rd | x X X X X
6 | Bn Bean Bn X X X X
7 | M Maize e | = = | »

The following table lists the formal concepts of the Living concept lattice in terms of their extent, in-
tent, instance generators and type generators.

Formal Concepts

Generators

Index | Objects Attributes Extent Intent

0 needs water fTanck Dennes Dene Moo Cnils |l fneeds water }
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Weed, Reed, Bean, Maize}

1 is motile {Leech, Bream, Frog, Dog} {needs water, is motile }
2 has limbs {Bream, Frog, Dog} {needs water, is motile, has limbs }
3 needs chlorophyll [ { Spike Weed, Reed, Bean, Maize} {needs water, needs chlorophyll }
4 1 leaf germination [ { Spike Weed, Reed, Maize} {nee(.is V\./ater, needs chlorophyll, 1 leaf
germination }
5 lives on land {Frog, Dog, Reed, Bean, Maize} {needs water, lives on land }
{needs water, lives on land, is motile,
6 {Frog, Dog} has limbs }
ds water, lives on land, is motile
D kl {nee , , ,
7 o8 suckies young {Dog} has limbs, suckles young }
8 {Reed, Bean, Maize } {needs water, lives on land, needs chlo-
rophyll }
. . {needs water, lives on land, needs chlo-
? Maize {Reed, Maize } rophyll, 1 leaf germination }
10 Bean 2 leaf germination || {Bean } {needs water, lives on land, needs chlo-

rophyll, 2 leaf germination }

{Leech, Bream, Frog, Spike Weed,

11 lives in water Reed } {needs water, lives in water }
12 Leech {Leech, Bream, Frog } {needs water, lives in water, is motile }
{needs water, lives in water, is motile,
B
13 ream {Bream, Frog } has limbs }
14 Spike Weed {Spike Weed, Reed } {needs water, lives in water, needs
P P ’ chlorophyll, 1 leaf germination }
{needs water, lives in water, lives on
15 {Frog, Reed } Jand }
16 Fro {Frog} {needs water, lives in water, lives on
J 08 land, is motile, has limbs }
{needs water, lives in water, lives on
17 Reed {Reed } land, needs chlorophyll, 1 leaf germina-
tion }
{needs water, lives in water, lives on
18 0 =0 land, needs chlorophyll, 2 leaf germina-

tion, 1 leaf germination, is motile, has
limbs, suckles young }

o  The following KIF represents the Living Classification.

(CLS$d assi fication Living)

((CLS$type Living) needs-water)
((CLS$type Living) lives-in-water)
((CLS$type Living) |ives-on-Iand)
((CLS$type Living) needs-chlorophyll)
((CLS$type Living) 2-1eaf-germnation)
((CLS$type Living) 1-1eaf-germ nation)
((CLS$type Living) is-notile)
((CLS$type Living) has-Iinbs)
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((CLS$type Living)

(e]

((CLS$i nst ance
((CLS$i nst ance
((CLS$i nst ance
((CLS$i nst ance
((CLS$i nst ance
((CLSS$i nst ance
((CLS$i nst ance
((CLS$i nst ance

Li vi
Li vi
Li vi
Li vi
Li vi
Li vi
Li vi
Li vi

Page 76

suckl es-young)

ng)
ng)
ng)
ng)
ng)
ng)
ng)
ng)

Leech)
Bream
Frog)

Dog)

Spi ke- Weed)
Reed)

Bean)

Mai ze)

(Living Leech needs-water)

(Living Leech lives-in-water)

(not (Living Leech lives-on-1land))

(not (Living Leech needs-chl orophyll))
(not (Living Leech 2-1eaf-germination))
(not (Living Leech 1-1eaf-germnation))
(Living Leech is-notile)

(not (Living Leech has-linbs))

(not (Living Leech suckl es-young))

The Living Lattice is the concept lattice of the Living Classification.

(CL$concept-lattice Living-Lattice)
(= Living-Lattice (CLS.CL$concept-lattice Living))

The Dictionary Classification

1/2/2002

Here are examples of classifications and infomorphisms taken from the text Information Flow: The Logic

of Distributed Systems by Barwise and Seligman.

(e]

Table 4: Webster Classification

The following KIF represents the Webster Webster [ Noun Int-Vb  Tr-Vb  Adj
Classification on page 70 of Barwise and bet 1 1 1 0
Seligman. This classification, which is (a eat 0 1 1 0
small part of) the classification of English fit 1 1 1 1
words according to parts of speech as given friend 1 0 1 0
in Webster’s dictionary, is diagrammed on square 1 0 1 1
the right.

(CLS$cl assi fication Wbster)

((CLS$type Webster) Noun)

((CLS$type Webster)
((CLS$type Webster)
((CLS$type Webster)
((CLSS$i nstance Webster)
((CLSS$i nstance Webster)
((CLS$i nstance Webster)
((CLS$i nstance Webster)
((CLSS$i nstance Webster)

(Webster bet Noun)
(Webster bet Intransitive-Verb)
(Webster bet Transitive-Verb)
(not (Webster bet Adjective))

(not (Webster eat

Intransitive-Verb)
Transi tive- Verb)
Adj ecti ve)

bet)
eat)
fit)
friend)
squar e)

Noun) )

(Webster eat Intransitive-Verb)
(Webster eat Transitive-Verhb)
(not (Webster fit Adjective))
(Webster fit Noun)
(Webster fit Intransitive-Verb)
(Webster fit Transitive-Verb)

(Webster fit Adjective)

(Webster friend Noun)
(not (Webster friend Intransitive-Verb))
(Webster friend Transitive-Verb)

(not (Webster friend Adjective))
(Webster square Noun)
(not (Webster square Intransitive-Verb))
(Webster square Transitive-Verb)
(Webster square Adjective)
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(CLS$cl assification Webster)
((CLS$type Webster) Noun)

((CLS$type Webster) Intransitive-Verb)
((CLS$type Webster) Transitive-Verb)
((CLS$type Webster) Adjective)

((CLS$i nstance Webster) bet)

((CLS$i nstance Webster) eat)

((CLSS$i nstance Webster) fit)

((CLSS$i nstance Webster) friend)
((CLS$i nstance Webster) square)

(Webster bet Noun)

(Webster bet Intransitive-Verb)

(Webster bet Transitive-Verb)

(not (Webster bet Adjective))

(not (Webster eat Noun))

(Webster eat Intransitive-Verb)

(Webster eat Transitive-Verb)

(not (Webster fit Adjective))

(Webster fit Noun)

(Webster fit Intransitive-Verb)

(Webster fit Transitive-Verb)

(Webster fit Adjective)

(Webster friend Noun)

(not (Webster friend Intransitive-Verb))
(Webster friend Transitive-Verb)

(not (Webster friend Adjective))

(Webst er square Noun)

(not (Webster square Intransitive-Verb))
(Webster square Transitive-Verb)
(Webster square Adjective)

o The following KIF represents the infomorphism defined on page 73 of Barwise and Seligman. This
represents the way that punctuation at the end of a sentence carries information about the type of the
sentence. The infomorphism is from a Punctuation classification to a Sentence classification. The in-
stances of Punctuation are the inscriptions of the punctuation marks of English. These marks are clas-
sified by the terms ‘Period, ‘Excl amati on-Mark’, ‘Question- Mark’, ‘Comma’, etc. The instances of
Sentence are inscriptions of grammatical sentences of English. There are but three types of Sentence:
‘Decl arative’, ‘Question’, and ‘Ct her’. The instance function of the infomorphism assigns to each
sentence its own terminating punctuation mark. The type function of the infomorphism assigns ‘De-
clarative’ to ‘Period’ and ‘Excl amation-Mark’, ‘Question’ to ‘Question-Mark’, and ‘G her’ to
other types of Punctuation. The fundamental property of this infomorphism is the requirement that a
sentence be of the type indicated by its punctuation.

Let ‘yaki ty-yak’ denote the command “Take out the papers and the trash!” with its punctuation
symbol ‘yy- punc’ being the exclamation symbol at the end of the sentence. Let ‘get t ysbur g1’ denote
the statement that “Fourscore and seven years ago our fathers brought forth on this continent a new na-
tion, conceived in liberty and dedicated to the proposition that all men are created equal.” with its
punctuation symbol ‘gl- punc’ being the period at the end of the sentence. Let ‘angel s’ denote the
question “How many angels can fit on the head of a pin?” with its punctuation symbol ‘ag- punc’ being
the question mark at the end of the sentence.

(CLS$cl assi fication Punctuation)
((CLS$type Punctuation) Period)
((CLS$type Punctuation) Exclamation- Mark)
((CLS$type Punctuation) Question-Mark)
((CLS$type Punctuation) Comma)

((CLS$i nstance Punctuation) yy-punc)
((CLSS$i nstance Punctuation) gl-punc)
((CLSS$i nstance Punctuation) ag-punc)

.(;’I;JI (Punctuation yy-punc Period))
(Punctuation yy-punc Excl amati on- Mar k)
(not (Punctuation yy-punc Question-Mark))
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(CLS$cl assification Sentence)
((CLS$type Sentence) Declarative)
((CLS$type Sentence) Question)
((CLS$type Sentence) O her)

((CLSS$i nstance Sentence) yakity-yak)
((CLS$i nstance Sentence) gettysburgl)
((CLS$i nstance Sentence) angels)

kéént ence gettysburgl Declarative)
(not (Sentence gettysburgl Question))
(not (Sentence gettysburgl O her))

(CLS I NFG&i nf oror phi sm punct - t ype)

(= (CLS. | NFCBsource punct-type) Punctuation)

(= (CLS. | NFC#t arget punct-type) Sentence)

(= ((CLS. | NFG#i nst ance punct-type) yakity-yak) yy-punc)

(= ((CLS. | NFG#i nst ance punct-type) gettysburgl) gl-punc)

(: ((CLS. | NFOst ype punct-type) Period) Declarative)

(= ((CLS. | NFC#t ype punct-type) Exclamation-Mark) Declarative)
(= ((CLS. | NFC#t ype punct-type) Question-Mark) Question)

(= ((CLS. I NFC#t ype punct-type) Commm) O her)

The Truth Classification

(o]

The truth classification of a first-order language L is the large classification, whose instances are L-
structures, whose types are L-sentences, and whose classification relation is satisfaction. Here we rep-
resent the truth classification in an external namespace. Note that the source is a class, whereas the tar-
get is a collection — rather unusual. The image should then be just a class.
(KI'F$function truth-classification)
(= (KIF$source truth-classification) |ang$l anguage)
(= (KIF$target truth-classification) CLS$classification)
(forall (?1 (lang$l anguage ?1))
(and (= (CLS$instance (truth-classification ?1)) (MOD$fiber ?1))
(= (CLS$type (truth-classification ?1)) (I ang$sentence ?1))
(= (truth-classification ?1) (MXD$satisfaction ?1))))

The truth concept lattice is the concept lattice of the truth classification. This large complete lattice can
function as the appropriate “lattice of ontological theories” for a modular SUO architecture. A formal
concept in this lattice has an intent that is a closed theory (set of sentences) and an extent that is the
class of all models for that theory. The intent (theory) of the join of two formal concepts is the intersec-
tion of the intents (theories) of the formal concepts. The intent (theory) of the meet of two formal con-
cepts is the type-closure of the union of the intents (theories) of the formal concepts, or the theory of
the common models.
(KI'F$function truth-concept-lattice)
(= (KIF$source truth-concept-lattice) |ang$language)
(= (KIF$target truth-concept-lattice) CL$concept-lattice)
(forall (?I (lang$l anguage ?1))

(= (truth-concept-lattice ?I)

(CLS. CL$concept-lattice (truth-classification ?1))))
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