
RACER User’s Guide and Reference Manual

Version 1.7.7

Volker Haarslev∗ and Ralf Möller∗∗

∗Concordia University
Computer Science Department
1455 de Maisonneuve Blvd. W.
Montreal, Quebec H3G 1M8, Canada
haarslev@cs.concordia.ca

∗∗Univ. of Appl. Sciences in Wedel
Computer Science Department
Feldstrasse 143
22880 Wedel, Germany
rmoeller@fh-wedel.de

September 17, 2003

Contents

1 Introduction 11

1.1 Features . 11

1.2 New Features in Version 1.7.7 . 12

1.3 Application Areas . 13

1.4 About this Document . 13

1.5 Acknowledgments . 14

2 Obtaining and Running RACER 14

2.1 System Requirements . 14

2.2 System Installation . 15

2.3 Sample Session . 15

2.4 Open-World Assumption and Unique Name Assumption 19

2.5 The RACER Server . 20

2.5.1 The File Interface . 21

2.5.2 TCP Socket Interface: JRACER . 21

2.5.3 HTTP Interface: DIG Interface . 22

2.5.4 Additional Options for the RACER Server 23

2.6 Graphical Client Interfaces . 23

2.6.1 RICE . 23

2.6.2 OilEd . 26

2.6.3 Using OilEd and Rice in Combination 41

2.6.4 Protégé . 43

2.7 Naming Conventions . 44

1

http://www.fh-wedel.de/~race/
http://www.cs.concordia.ca/~faculty/haarslev/
http://www.fh-wedel.de/~mo/home.html
mailto:haarslev@cs.concordia.ca
mailto:rmoeller@fh-wedel.de

3 RACER Knowledge Bases 45

3.1 Concept Language . 45

3.2 Concept Axioms and Terminology . 49

3.3 Role Declarations . 49

3.4 Concrete Domains . 51

3.5 Concrete Domain Attributes . 54

3.6 Algorithms for Concrete Domains . 54

3.7 ABox Assertions . 54

3.8 Inference Modes . 55

3.9 Retraction and Incremental Additions . 56

4 The RDF/RDFS/DAML interface 56

5 The RDF/OWL interface 60

6 Knowledge Base Management Functions 60

in-knowledge-base . 61

racer-read-file . 61

racer-read-document . 62

include-kb . 62

daml-read-file . 62

daml-read-document . 63

owl-read-file . 63

owl-read-document . 64

mirror . 64

kb-ontologies . 64

save-kb . 65

6.1 TBox Management . 66

in-tbox . 66

init-tbox . 66

signature . 67

ensure-tbox-signature . 68

tbox-signature . 68

current-tbox . 69

current-tbox . 69

save-tbox . 69

forget-tbox . 70

delete-tbox . 71

2

delete-all-tboxes . 71

create-tbox-clone . 72

clone-tbox . 72

find-tbox . 73

tbox-name . 73

clear-default-tbox . 73

associated-aboxes . 73

xml-read-tbox-file . 74

rdfs-read-tbox-file . 74

6.2 ABox Management . 74

in-abox . 75

init-abox . 75

ensure-abox-signature . 76

abox-signature . 76

kb-signature . 76

current-abox . 76

current-abox . 76

save-abox . 77

forget-abox . 77

delete-abox . 78

delete-all-aboxes . 78

create-abox-clone . 78

clone-abox . 79

find-abox . 79

abox-name . 80

tbox . 80

associated-tbox . 80

set-associated-tbox . 80

7 Knowledge Base Declarations 81

7.1 Built-in Concepts . 81

top, top . 81

bottom, bottom . 81

7.2 Concept Axioms . 81

implies . 82

equivalent . 82

disjoint . 82

define-primitive-concept . 83

3

define-concept . 83

define-disjoint-primitive-concept . 83

add-concept-axiom . 84

add-disjointness-axiom . 84

7.3 Role Declarations . 84

define-primitive-role . 85

define-primitive-attribute . 86

add-role-axioms . 87

functional . 88

role-is-functional . 88

transitive . 88

role-is-transitive . 88

inverse . 89

inverse-of-role . 89

roles-equivalent . 89

roles-equivalent-1 . 89

domain . 90

role-has-domain . 90

attribute-has-domain . 90

range . 90

role-has-range . 91

attribute-has-range . 91

implies-role . 91

role-has-parent . 91

7.4 Concrete Domain Attribute Declaration . 92

define-concrete-domain-attribute . 92

7.5 Assertions . 92

instance . 92

add-concept-assertion . 93

forget-concept-assertion . 93

related . 94

add-role-assertion . 94

forget-role-assertion . 95

forget-disjointness-axiom . 95

forget-disjointness-axiom-statement 95

define-distinct-individual . 96

state . 96

4

forget . 96

forget-statement . 97

7.6 Concrete Domain Assertions . 97

add-constraint-assertion . 97

constraints . 97

add-attribute-assertion . 98

constrained . 98

8 Reasoning Modes 98

auto-classify . 98

auto-realize . 99

9 Evaluation Functions and Queries 99

9.1 Queries for Concept Terms . 99

concept-satisfiable? . 99

concept-satisfiable-p . 99

concept-subsumes? . 100

concept-subsumes-p . 100

concept-equivalent? . 100

concept-equivalent-p . 101

concept-disjoint? . 101

concept-disjoint-p . 101

concept-p . 102

concept? . 102

concept-is-primitive-p . 102

concept-is-primitive? . 102

alc-concept-coherent . 103

9.2 Role Queries . 103

role-subsumes? . 103

role-subsumes-p . 103

role-p . 104

role? . 104

transitive-p . 104

transitive? . 104

feature-p . 105

feature? . 105

cd-attribute-p . 105

cd-attribute? . 105

5

symmetric-p . 106

symmetric? . 106

reflexive-p . 106

reflexive? . 106

atomic-role-inverse . 107

role-inverse . 107

role-domain . 107

atomic-role-domain . 107

role-range . 108

atomic-role-range . 108

attribute-domain . 108

attribute-domain-1 . 108

9.3 TBox Evaluation Functions . 108

classify-tbox . 109

check-tbox-coherence . 109

tbox-classified-p . 109

tbox-classified? . 109

tbox-prepared-p . 110

tbox-prepared? . 110

tbox-cyclic-p . 110

tbox-cyclic? . 111

tbox-coherent-p . 111

tbox-coherent? . 111

get-tbox-language . 112

get-meta-constraint . 112

get-concept-definition . 113

get-concept-definition-1 . 113

get-concept-negated-definition . 114

get-concept-negated-definition-1 . 114

9.4 ABox Evaluation Functions . 114

realize-abox . 114

abox-realized-p . 115

abox-realized? . 115

abox-prepared-p . 115

abox-prepared? . 115

compute-all-implicit-role-fillers . 116

compute-implicit-role-fillers . 116

6

get-abox-language . 116

9.5 ABox Queries . 116

abox-consistent-p . 117

abox-consistent? . 117

check-abox-coherence . 117

individual-instance? . 117

individual-instance-p . 118

constraint-entailed? . 118

constraint-entailed-p . 118

individuals-related? . 119

individuals-related-p . 119

individual-equal? . 119

individual-not-equal? . 120

individual-p . 120

individual? . 120

cd-object-p . 120

cd-object? . 121

10 Retrieval 121

10.1 TBox Retrieval . 121

taxonomy . 121

concept-synonyms . 122

atomic-concept-synonyms . 122

concept-descendants . 122

atomic-concept-descendants . 123

concept-ancestors . 123

atomic-concept-ancestors . 123

concept-children . 124

atomic-concept-children . 124

concept-parents . 124

atomic-concept-parents . 124

role-descendants . 125

atomic-role-descendants . 125

role-ancestors . 125

atomic-role-ancestors . 126

role-children . 126

atomic-role-children . 126

role-parents . 127

7

atomic-role-parents . 127

role-synonyms . 127

atomic-role-synonyms . 127

all-tboxes . 128

all-atomic-concepts . 128

all-equivalent-concepts . 128

all-roles . 128

all-features . 128

all-attributes . 129

attribute-type . 129

all-transitive-roles . 129

describe-tbox . 129

describe-concept . 130

describe-role . 130

10.2 ABox Retrieval . 130

individual-direct-types . 130

most-specific-instantiators . 131

individual-types . 131

instantiators . 131

concept-instances . 132

retrieve-concept-instances . 132

individual-fillers . 132

retrieve-individual-fillers . 133

individual-attribute-fillers . 133

retrieve-individual-attribute-fillers 133

told-value . 134

retrieve-related-individuals . 134

related-individuals . 134

retrieve-individual-filled-roles . 135

retrieve-direct-predecessors . 135

all-aboxes . 135

all-individuals . 136

all-concept-assertions-for-individual 136

all-role-assertions-for-individual-in-domain 136

all-role-assertions-for-individual-in-range 137

all-concept-assertions . 137

all-role-assertions . 137

8

all-constraints . 137

all-attribute-assertions . 138

describe-abox . 138

describe-individual . 138

11 Configuring Optimizations 139

compute-index-for-instance-retrieval 139

ensure-subsumption-based-query-answering 139

12 The Publish-Subscribe Mechanism 140

12.1 An Application Example . 140

12.2 Using JRacer for Publish and Subscribe . 145

12.3 Realizing Local Closed World Assumptions 146

12.4 Publish and Subscribe Functions . 147

publish . 147

publish-1 . 147

unpublish . 147

unpublish-1 . 148

subscribe . 148

subscribe-1 . 148

unsubscribe . 149

unsubscribe-1 . 149

init-subscriptions . 149

init-subscriptions-1 . 149

init-publications . 150

init-publications-1 . 150

check-subscriptions . 150

13 The Racer Persistency Services 151

store-tbox-image . 151

store-tboxes-image . 151

restore-tbox-image . 151

restore-tboxes-image . 152

store-abox-image . 152

store-aboxes-image . 152

restore-abox-image . 152

restore-aboxes-image . 152

store-kb-image . 153

9

store-kbs-image . 153

restore-kb-image . 153

restore-kbs-image . 153

14 The Racer Proxy 154

14.1 Installation and Configuration . 154

14.2 Multiuser-Access to a Racer Server . 154

14.3 Load Balancing Using Multiple Racer Servers 154

14.4 Extension of the Publish-Subscribe Mechanism 154

14.5 Persistency and Logging . 154

15 Reporting Errors and Inefficiencies 155

logging-on . 155

logging-off . 155

16 What comes next? 156

A Integrated Sample Knowledge Base 158

B An Excerpt of the Family Example in DAML Syntax 160

C Another Family Knowledge Base 164

D A Knowledge Base with Concrete Domains 165

10

1 Introduction

1.1 Features

The RACER1 system is a knowledge representation system that implements a highly op-
timized tableau calculus for a very expressive description logic. It offers reasoning services
for multiple TBoxes and for multiple ABoxes as well. The system implements the descrip-
tion logic ALCQHIR+ also known as SHIQ (see [Horrocks et al. 2000]). This is the basic
logic ALC augmented with qualifying number restrictions, role hierarchies, inverse roles,
and transitive roles. In addition to these basic features, RACER also provides facilities for
algebraic reasoning including concrete domains for dealing with:

• min/max restrictions over the integers,

• linear polynomial (in-)equations over the reals or cardinals with order relations,

• nonlinear multivariate polynomial (in-)equations over complex numbers,

• equalities and inequalities of strings.

RACER supports the specification of general terminological axioms. A TBox may contain
general concept inclusions (GCIs), which state the subsumption relation between two con-
cept terms. Multiple definitions or even cyclic definitions of concepts can be handled by
RACER.

RACER implements the HTTP-based quasi-standard DIG for interconnecting DL systems
with interfaces and applications using an XML-based protocol [Bechhofer 02]. RACER also
implements most of the functions specified in the older Knowledge Representation System
Specification (KRSS), for details see [Patel-Schneider and Swartout 93].

RACER has been initially developed at the University of Hamburg, Germany. RACER is
actively supported and future releases are developed at Concordia University in Montreal,
Canada, and at the University of Applied Sciences in Wedel near Hamburg, Germany.

Given a TBox, various kinds of queries can be answered. Based on the logical semantics
of the representation language, different kinds of queries are defined as inference problems
(hence, answering a query is called providing inference service). As a summary, we list only
the most important ones here:

• Concept consistency w.r.t. a TBox: Is the set of objects described by a concept empty?

• Concept subsumption w.r.t. a TBox: Is there a subset relationship between the set of
objects described by two concepts?

• Find all inconsistent concepts mentioned in a TBox. Inconsistent concepts might be
the result of modeling errors.

• Determine the parents and children of a concept w.r.t. a TBox: The parents of a
concept are the most specific concept names mentioned in a TBox which subsume the
concept. The children of a concept are the most general concept names mentioned in a

1RACER stands for RenamedABox and Concept Expression Reasoner

11

TBox that the concept subsumes. Considering all concept names in a TBox the parent
(or children) relation defines a graph structure which is often referred to as taxonomy.
Note that some authors use the name taxonomy as a synonym for ontology.

Note that whenever a concept is needed as an argument for a query, not only predefined
names are possible. If also an ABox is given, among others, the following types of queries
are possible:

• Check the consistency of an ABox w.r.t. a TBox: Are the restrictions given in an
ABox w.r.t. a TBox too strong, i.e., do they contradict each other? Other queries are
only possible w.r.t. consistent ABoxes.

• Instance testing w.r.t. an ABox and a TBox: Is the object for which an individual
stands a member of the set of objects described by a certain query concept? The
individual is then called an instance of the query concept.

• Instance retrieval w.r.t. an ABox and a TBox: Find all individuals from an ABox
such that the objects they stand for can be proven to be a member of a set of objects
described by a certain query concept.

• Computation of the direct types of an individual w.r.t. an ABox and a TBox: Find the
most specific concept names from a TBox of which a given individual is an instance.

• Computation of the fillers of a role with reference to an individual.

• Check if certain concrete domains constraints are entailed by an ABox and a TBox.

1.2 New Features in Version 1.7.7

Among others, version 1.7 of the RACER system offers the following new features.

• Support for the DIG standard such that, for instance, graphical ontology editors such
as OilEd [Bechhofer et al. 01] can be used with RACER as a reasoning engine.

• RACER 1.7 can directly read knowledge bases specified w.r.t. the OWL, DAML+OIL,
RDFS or RDF standard (although there are some restrictions on some OWL and
DAML+OIL language expressions).

• RACER 1.7.7 comes with an interactive graphical shell called RICE. RICE was de-
veloped by Ronald Cornet, Univ. of Amsterdam.

• Many more query functions for information about processed TBoxes (e.g., for retriev-
ing the definition of a concept, the meta constraints, the description logic language
actually used in a knowledge base, etc.).

• Modifications of TBoxes are possible (i.e., retransmission of a changed TBox to the
server is no longer necessary).

• Dramatically improved performance of ABox query processing.

12

• Reasoning effort for answering ABox queries can be controlled (e.g., users can speci-
fiy whether computing an index is desired or whether query subsumption should be
exploited).

• RACER 1.7 offers a publish-subscribe service for subscribing instance retrieval queries
(see below for details). Applications of this feature are, for instance, document man-
agement systems.

• Persistency management for TBoxes and ABoxes is now offerered. Restarting a DL
inference server is now up to 10 times faster.

• Multi-user access is possible with the Racer Proxy.

• New concrete domains for cardinals (linear ineqations with order constraints and
integer coefficients), complex numbers (nonlinear multivariate inequations with integer
coefficients), and strings (equality and inequality) are supported.

1.3 Application Areas

There are numerous paper describing how RACER can be used to solve application problems
(see the Workshops on description logics and the workshops on applications of description
logics ADL-01, ADL-02). Without completeness one can summarize that applications come
from the following areas:

• Semantic Web

• Electronic Business

• Medicine/Bioinformatics

• Natural Language Processing

• Knowledge-Based Vision

• Process Engineering

• Knowledge Engineering

• Software Engineering

1.4 About this Document

Developing a DL system is by no means a trivial task. However, due to our experiences,
writing a usable User’s Guide for a DL system might be even more complex. Writing this
manual took much time. We hope that you can make use of this manual, although we know
that there may be deficiencies. If you have questions do not hesitate to ask, if you find a
bug send a note such that we can reproduce the problem, or send us emails if you have any
suggestions.

13

http://dl.kr.org/workshops/index.html
http://dl.kr.org/adl2001/
http://www-lti.informatik.rwth-aachen.de/ki02dlws.html

1.5 Acknowledgments

RACER has been developed with Macintosh Common Lisp from Digitool Inc. The RACER
server for Linux and Window is implemented with Lispworks from Xanalys Inc. Testing was
partly performed with Allegro Common Lisp from Franz Inc.

The XML-based part of the input interface for RACER is implemented using the
XML/RDF/RDFS/DAML parser Wilbur written by Ora Lassila. For more informa-
tion on Wilbur see http://wilbur-rdf.sourceforge.net/. In addition, the HTTP
server for the DIG interface of RACER is implemented with CL-HTTP which is de-
veloped and owned by John C. Mallery. For more information on CL-HTTP see
http://www.ai.mit.edu/projects/iiip/doc/cl-http/home-page.html.

Many users have directly contributed to the functionality and stability of the RACER sys-
tem by giving comments, providing ideas and test knowledge bases, implementing interfaces,
or sending bug reports. In alphabetical order we would like to mention Jordi Alvarez, Car-
los Areces, Franz Baader, Sean Bechhofer, Daniela Berardi, Ronald Cornet, Maarten de
Rijke, Michael Eisfeld, Enrico Franconi, Günther Görz, Ian Horrocks, Alexander Huber,
Sebastian, Hübner, Thomas Kleemann, Alexander Koller, Christian Lorenz, Bernd Ludwig,
Carsten Lutz, Maarten Marx, Jean-Luc Metzger, Bernd Neumann, Hans-Jürgen Ohlbach,
Peter Patel-Schneider, Peter Reiss, Stefan Schlobach, Michael Sintek, Kristina Striegnitz,
Sergio Tessaris, Martina Timmann, Stephan Tobies, Anni-Yasmin Turhan, Mike Ushold,
Ragnhild Van Der Straeten, Michael Wessel, and Cai Ziegler. We apologize if somebody
who should be mentioned is not included in this list.

2 Obtaining and Running RACER

The RACER system can be obtained from the following web sites:

Europe:
http://www.fh-wedel.de/~mo/racer/

America:
http://www.cs.concordia.ca/~faculty/haarslev/racer/

2.1 System Requirements

On the one hand RACER is available as a standalone version with no additional licences
required. Throughout this manual, the standalone version is also called RACER executable
or RACER Server. The RACER server can be started from an operating system shell or by
double-clicking the program icon. Based on either TCP sockets of HTTP streams, clients
can connect to the RACER Server via a remote interface (an example client written in
Java is provided with the RACER distribtion). In addition, the RACER executable can be
used to process files (see below for a detailed introduction on how to use RACER). On the
other hand RACER is available as a fasl file for most Common Lisp and operating systems
(Linux, Macintosh, Solaris, Windows).

14

http://wilbur-rdf.sourceforge.net/
http://www.lispworks.com
http://www.franz.com/
http://wilbur-rdf.sourceforge.net/
http://www.ai.mit.edu/projects/iiip/doc/cl-http/home-page.html
http://www.fh-wedel.de/~mo/racer/
http://www.cs.concordia.ca/~faculty/haarslev/~racer/

2.2 System Installation

Go to the RACER download page found at the URLs specied above. Download the les
for the environment of your preference and use an appropriate program to unpack the
archive (StuffIt Expander for Macintosh, WinZip for Windows and gzip/tar for Unix). The
examples are provided as an additional archive that can be downloaded. Since you already
read this manual you probably already downloaded it. New versions can be downloaded
from the site specied above. In this manual the directory where you installed RACER is
referred to by the name RACER:. We assume that you install the examples in the directory
“RACER:Examples;”

2.3 Sample Session

In this section we present a first example for the use of description logics. We use the Lisp
interface here in order to directly present the results of queries. Note, however, that all
examples can be processed in a similar way with the RACER Server (and the file interface).
The file "family.racer" contains the TBox and ABox introduced in this section. The
queries are in the file "family-queries.lisp". If you use the RACER executable just
type racer -f family.racer -q family-queries.lisp in order to see the results (see
Section 2.5 for details on how to use RACER from a shell).

;;;===
;;; the following forms are assumed to be contained in a
;;; file "RACER:examples;family-tbox.krss".

;;; initialize the TBox "family"
(in-tbox family)

;;; supply the signature for this TBox
(signature
:atomic-concepts (person human female male woman man parent mother

father grandmother aunt uncle sister brother)
:roles ((has-child :parent has-descendant)

(has-descendant :transitive t)
(has-sibling)
(has-sister :parent has-sibling)
(has-brother :parent has-sibling)
(has-gender :feature t)))

;;; domain & range restrictions for roles
(implies *top* (all has-child person))
(implies (some has-child *top*) parent)
(implies (some has-sibling *top*) (or sister brother))
(implies *top* (all has-sibling (or sister brother)))
(implies *top* (all has-sister (some has-gender female)))
(implies *top* (all has-brother (some has-gender male)))

15

;;; the concepts
(implies person (and human (some has-gender (or female male))))
(disjoint female male)
(implies woman (and person (some has-gender female)))
(implies man (and person (some has-gender male)))
(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent grandmother (and mother (some has-child (some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

Figure 1: Role hierarchy for the family TBox.
r denotes the internally defined universal role.
! denotes features
∗ denotes transitive roles

Figure 2: Concept hierarchy for the family TBox.

16

The RACER Session:

;;; load the TBox
CL-USER(1): (load "RACER:examples;family-tbox.krss")
;;; Loading RACER:examples;family-tbox.krss
T
;;; some TBox queries
;;; are all uncles brothers?
CL-USER(2): (concept-subsumes? brother uncle)
T
;;; get all super-concepts of the concept mother
;;; (This kind of query yields a list of so-called name sets
;;; which are lists of equivalent atomic concepts.)
CL-USER(3): (concept-ancestors mother)
((PARENT) (WOMAN) (PERSON) (*TOP* TOP) (HUMAN))
;;; get all sub-concepts of the concept man
CL-USER(4): (concept-descendants man)
((UNCLE) (*BOTTOM* BOTTOM) (BROTHER) (FATHER))
;;; get all transitive roles in the TBox family
CL-USER(5): (all-transitive-roles)
(HAS-DESCENDANT)

;;;===
;;; the following forms are assumed to be contained in a
;;; file "RACER:examples;family-abox.krss".

;;; initialize the ABox smith-family and use the TBox family
(in-abox smith-family family)

;;; supply the signature for this ABox
(signature :individuals (alice betty charles doris eve))

;;; Alice is the mother of Betty and Charles
(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)

;;; Betty is mother of Doris and Eve
(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)

;;; Charles is the brother of Betty (and only Betty)
(instance charles brother)
(related charles betty has-sibling)

17

;;; closing the role has-sibling for Charles
(instance charles (at-most 1 has-sibling))

;;; Doris has the sister Eve
(related doris eve has-sister)

;;; Eve has the sister Doris
(related eve doris has-sister)

Figure 3: Depiction of the ABox smith-family.
(with explicitly given information being shown)

The RACER Session:

;;; now load the ABox
CL-USER(6): (load "RACER:examples;family-abox.krss")
;;; Loading RACER:examples;family-abox.krss
T

18

;;; some ABox queries
;;; Is Doris a woman?
CL-USER(7): (individual-instance? doris woman)
T
;;; Of which concepts is Eve an instance?
CL-USER(8): (individual-types eve)
((SISTER) (WOMAN) (PERSON) (HUMAN) (*TOP* TOP))
;;; get all direct types of eve
CL-USER(9): (individual-direct-types eve)
(SISTER)
;;; get all descendants of Alice
CL-USER(10): (individual-fillers alice has-descendant)
(DORIS EVE CHARLES BETTY)
;;; get all instances of the concept sister
CL-USER(11): (concept-instances sister)
(DORIS BETTY EVE)

In the Appendix different versions of this knowledge base can be found. In Appendix A,
on page 158, you find a version where the TBox and ABox are integrated. All exam-
ple files and some additional ones (see the appendix) can also be found in the directory
"RACER:examples;".

2.4 Open-World Assumption and Unique Name Assumption

As other description logic systems, RACER employs the Open World Assumption (OWA)
for reasoning. This means that what cannot be proven to be true is not believed to be false.
Given the TBox and ABox of the previous subsection, a standard pitfall would be to think
that RACER is wrong considering its answer to the following query:

(individual-instance? alice (at-most 2 has-child))

RACER answers NIL. However, NIL does not means NO but just “cannot be proven w.r.t.
the information given to RACER”. Absence of information w.r.t. a third child is not inter-
preted as “there is none” (this would be the Closed-World Assumption, CWA). It might
be the case that there is an assertion (related alice william has-child) added to the ABox
later on. Thus, the answer NIL is correct but has to be interpretedin the sense of “cannot
be proven”. Note that it is possible to add the assertion

(instance alice (at-most 2 has-child))

to the ABox. Given this, the ABox will become inconsistent if another invidividual (e.g.,
william)) is declared to be a child of alice. Many users askedfor a switch such that RACER
automatically closes roles. However, this problem is ill-dened. A small example should su?ce
to illustrate why closing a role (or even a KB) is a tricky problem. Assume the following
axioms:

(disjoint a b c)
(instance i (and (some r a) (some r b) (some r c) (some r d)))
(related i j r)

19

Now assume the task is to closedthe role r for the individual i. Just determining the number
of llers of r w.r.t. i and adding a corresponding assertion (¡= 1 r) to the ABox is a bad idea
because the ABox gets inconsistent. Due to the TBox, the minimum number of llers is 3. But,
should we add (at-most 1 r) or (at-most 1 r (and a b c))? The rst one might be too
strong (because of i being an instance of some r d). What about d. Would it be a good idea
to also add (at-most 1 r d)? If yes, then the question arises how to determine the qualier
concepts used in qualied number restrictions. In addition to the Open World Assumption,
RACER also employs the Unique Name Assumption (UNA). This means that all individuals
used in an ABox are assumed to be mapped to different elements of the universe, i.e. two
individuals cannot refer to the same domain element. Hence, adding (instance alice (at-
most 1 has-child)) does not identify betty and charles but makes the ABox inconsistent.
Due to our experience with users, we wouldlik e to emphasize that most users take UNA
for grantedbut are astonishedto learn that OWA is assumed (rather than CWA).

Due to the non-monotonic nature of the closed-world assumption and the ambiguities about
what closing should actually mean, in description logic inference systems usually there is no
support for the closed-world assumption. However, with the publish and subscribe interface
of Racer, users can achieve a local closed-world (LCW) assumption (see Section 12).

2.5 The RACER Server

The RACER Server is an executable file available for Linux and Windows. It can be started
from a shell or by double-clicking the correspoding program icon in a graphics-based envi-
ronment. For instance, the Windows version is shown in Figure 4.

Figure 4: A screenshot of the RACER Server started under Windows.

Depending on the arguments provided at startup, the RACER executable supports different
modes of operation. It offers a file-based interface, a socket-based TCP stream interface,
and a HTTP-based stream interface.

20

2.5.1 The File Interface

If your knowledge bases and queries are available as files use the file interface of RACER,
i.e. start RACER with the option -f. In your favorite shell just type:

$ racer -f family.racer -q family-queries.lisp

The input file is family.racer and the queries file is family-queries.lisp. The output
of RACER is printed into the shell. If output is to be printed into a file, specify the file with
the option -o as in the following example:

$ racer -f family.racer -q family-queries.lisp -o ouput.text

The syntax for processing input files is determined by RACER using the file type (file
extension). If “.lisp”, “.krss”, or “.racer” is specified, a KRSS-based syntax is used.
Other possibilities are “.rdfs”, “.daml”, and “.dig”. If the input file has one of these
extensions, the respective syntax for the input is assumed. The syntax can be enforced with
corresponding options instead of -f: -rdfs, -daml, and -dig.

The option -xml <filename> is provided for historical reasons. The input syntax is the
older XML syntax for description logic systems. This syntax was developed for the FaCT
system [Horrocks 98]. In the RACER Server, output for query results based on this syntax
is also printed using an XML-based syntax. However, the old XML syntax of FaCT is now
superseded by the DIG standard. Therefore, the RACER option -xml may no longer be
supported once the file interface fully supports the DIG standard for queries (see above).

Currently, the file interface of RACER supports only queries given in KRSS syntax. How-
ever, DIG-based queries [Bechhofer 02] can be specified indirectly with the file interface as
well. Let us assume a DIG knowledge base is given in the file kb.xml and corresponding
DIG queries are specified in the file queries.xml. In order to submit this file to RACER
just create a file q.racer, say, with contents (dig-read-file "queries.xml") and start
RACER as follows:

$ racer -dig kb.xml -q q.racer

Note the use of the option -dig for specifying that the input knowledge base is in DIG
syntax. Since the le extension for the knowledge base is .xml, the option -f wouldassume
the older XML syntax for knowledge bases (see above). If the queries le has the extensions
.xml RACER assumes DIG syntax. For older programs this kind of backward compatibility
is needed.

The option -t <seconds> allows for the specification of a timeout. This is particularly
useful if benchmark problems are to be solved using the file interface.

2.5.2 TCP Socket Interface: JRACER

The socket interface of the RACER Server can be used from application programs (or
graphical interfaces). If the option -f is not provided, the socket interface is automatically
enabled. Just execute the following.

$ racer

The default TCP communication port used by RACER is 8088. In order to change the port
number, the RACER Server should be started with the option -p. For instance:

$ racer -p 8000

21

In this document the TCP socket is also called the raw TCP interface. The functionality
offered by the TCP socket interface is documented in the next sections. An example client
implemented in the Java programming language is provided with source code with the
RACER distribtution. The client is based on the JRACER library developed by Jordi
Alvarez. See the folder RACER:jracer;. The main idea of the socket interface is to open a
socket stream, submit declarations and queries using strings and to parse the answer strings
provided by RACER. JRACER provides a Java layer for accessing the services of RACER
using methods.

The current version of the TCP socket interface does not support logging.

The following code fragment explains how to send message to a Racer Server running at
racer.fh-wedel.de under prot 8088.

public class MyProgram {
public static void main(String[] argv) {

RacerSocketClient client = new RacerClient("racer.fh-wedel.de", 8088);
try {

client.openConnection();
try {

String result =
client.send

("(concept-instances person)");

...
}

catch (RacerException e) {
...
}

}
client.closeConnection();

} catch (IOException e) {
...

}
}

}

2.5.3 HTTP Interface: DIG Interface

In a similar way as the socket interface the HTTP interface can be used from application
programs (and graphical interfaces). If the option -f is not provided, the HTTP interface is
automatically enabled. If you do not use the HTTP interface at all but the TCP interface
only, start RACER with the option -http 0.

Clients can connect to the HTTP based RACER Server using the POST method. For
details see the DIG standard [Bechhofer 02]. The default HTTP communication port used
by RACER is 8080. In order to change the port number, the RACER Server should be
started with the option -http. For instance:

$ racer -http 8000

Console logging of incoming POST requests in provided by default but can be switched off
using the option -nohttpconsolelog. With the option -httplogdir <directory> logging
into a file in the specified directory can be switched on.

22

A document describing the XML syntax of the DIG standard is provided with this distri-
bution. See the folder racer:doc;. The DIG standard as it is defined now is just a first
step towards a communication standard for connecting applications to DL systems. RACER
provides many more features that are not yet standardized. These features are offered only
over the TCP socket interface. However, applications using RACER can be developed with
DIG as a starting point. If other facilities of RACER are to be used, the raw TCP interface
of RACER can be used in a seemingless way to access a knowledge base declared with the
DIG interface. If, later on, the standardization process make progress, users should be able
to easily adapt their code to use the HTTP-based DIG interface.

In some applications, the RACER Server is to be addressed with persistent connections.
The RACER Server provides a timeout in order to control the duration of these connections.
With the option -c a timeout in seconds can be specied (the default is 10).

$ RACER -c 200

2.5.4 Additional Options for the RACER Server

Sometimes it happens that the default stack space is too small for processing certain queries.
The stack space can be enlarged by starting RACER with the option -s <value>. The initial
value is 320000.

Processing knowledge bases in a distributed system can cause security problems. The
RACER Server executes statements as described in the sections below. The only state-
ments that might cause security problems are save-tbox, save-abox, and save-kb. Files
may be generated at the server computer. By default these functions are not provided by
the RACER Server. If you would like your RACER Server to support these features, startup
RACER with the option -u (for unsafe).

If RACER is used in the server mode, the option -init <filename> defines an initial file
to be processed before the server starts up. For instance, an initial knowledge base can be
loaded into RACER before clients can connect.

Sometimes using the option -verbose is useful for debugging purposes. Use the option -h
to get the list of possible options and a short explanation.

The option -n allows for removing the prex of the default namespace as dened for DAML
les. See Chapter 4 for details.

2.6 Graphical Client Interfaces

In this section we present graphical client interfaces for the RACER Server. The examples
require that RACER be started with the option -u. The first interface is the RICE sys-
tem, which comes with the RACER distribution. Afterwards, a short presentation of the
OilEd system [Bechhofer et al. 01] with RACER as a backend reasoner is given. Then, the
coordinated use of OilEd and RICE is sketched.

2.6.1 RICE

RICE is an acronym for RACER Interactive Client Environment and has been de-
veloped by Ronald Cornet from the Academic Medical Center in Amsterdam. RICE

23

is provided with source code and uses the JRACER system (see above). The exe-
cutable version is provided as a jar file. Newer versions of RICE can be found at
http://www.b1g-systems.com/ronald/rice.

In order to briefly explain the use of RICE let us consider the family example again. First,
start the RACER server. As an example, the family knowledge base might be loaded into
the server at startup.

racer -u -init family.racer

Then, either double-click the jar file icon or type java -jar rice.jar into a shell. Connect
RICE to RACER by selecting Connect from the Tools menu. In addition to the default TBox
(named default) always provided by RACER, the TBox “FAMILY” is displayed in the left
upper window which displays the parent-children relationship between concept names of
different TBoxes. An example screenshot is shown in Figure 5. Users can interactively
unfold and fold the tree display.

24

http://www.b1g-systems.com/ronald/rice

Figure 5: Screenshot of RICE.

Using the middle subwindow, statements, declarations, and queries can be typed and sub-
mitted to RACER. The answers are printed into the lower window. A query concerning
the family knowledge base is presented in Figure 5. The query searches for instances of the
concept (or man woman). Other queries (e.g., as those shown in the previous section) can
be submitted to RACER is a similar way.

An example for submitting a statement is displayed in Figure 6. The family knowledge base
is exported as a DAML file. As we will see below, this file can then be processed with OilEd.

25

Figure 6: Screenshot of RICE.

2.6.2 OilEd

OilEd may be used as another graphical interface for RACER. While RICE can be
used to pose queries, in particular for ABoxes, OilED can be used to graphically con-
struct TBoxes (or ontologies) and ABoxes. OilEd has been developed by Sean Bechhofer
and colleagues at the University of Manchester [Bechhofer et al. 01]. It is available at
http://oiled.man.ac.uk/. You need OilEd version 3.5 or newer to access RACER as
a backend reasoner.

26

http://oiled.man.ac.uk/

Figure 7: First step for declaring RACER as the reasoner used by OilEd.

In order to declare RACER as the standard reasoner used by OilEd, select the Preferences
menu in OilEd(see Figure 7).

27

Figure 8: Second step for declaring RACER as the reasoner used by OilEd.

In the preferences dialog window select the Reasoner tab (see Figure 8).

28

Figure 9: Third step for declaring RACER as the reasoner used by OilEd.

Then, select the HTTP Reasoner radio button in the dialog window (see Figure 9). The
URL should be ok since it reects the standard port for RACER on you local host. If you
would like to change the URL do not forget to press the return key in order to make
the changes effective. Afterwards, press the Save button, then press the OK button. Now,
RACER can be used as a reasoner for OilEd. In order to demonstrate this we discuss the
Family examples from above.

29

Figure 10: Oiled displaying the Family knowledge base.

The example presented in Figure 10 shows a screenshot of OilEd with the family knowledge
base. The knowledge base was exported in Figure 6 using the DAML syntax. DAML files
can be manipulated with OilEd.

In Figure 10 the concept grandmother is selected (concepts are called classes in OilEd). See
the restrictions displayed is the lower right window and compare the specification with the
KRSS syntax used above (see the axiom for grandmother).

30

Figure 11: Concept hierarchy based on displaying explictly given superconcepts only.

Double-click a concept (class) and see the hierarchy window displayed here in Figure 11.
Reasoning services are provided when OilEd is connected to RACER. Press the DIG button
in the tools bar. Afterwards, select the “tick” button to let RACER check for unsatisfiable
concepts in the current OilEd knowledge base and find implicit subsumption relationships
between concept names.

31

Figure 12: OilEd activity log window.

Implicit subsumption relationships are indicated in the OilEd activity log window, which
can be displayed by selecting the corrosponding menu item in the Log menu (see Figure 12).

32

Figure 13: Concept hierarchy reflecting implicit subsumption relationships.

In Figure 12 it is indicated that RACER reveals implicit subsumption relationships. For
instance, an aunt is also a sister. The same can be seen in Figure 13 using the concept
hierarchy window. Compare with Figure 11.

33

Figure 14: The individuals of the family example. Properties of the selected individual alice
are displayed.

After the tab Individuals is selected, OilEd displays the individuals of the family knowledge
base together with their properties (or relationships). This is shown here in Figure 14.

Although OilEd can be used to display (and edit) ABoxes, let us return to RICE for a
moment to examine the result of querying an ABox. In our example we assume that the
RICE window is still open. Select the concept PERSON in the concept window. The instances
of PERSON are displayed in the upper-right instance window.

34

Figure 15: Screenshot of RICE indicating the direct types of the individual charles.

Selecting the individual charles causes RICE to highlight the direct types in the concept
window (see Figure 15). You see that it is easy to pose often-used queries concerning indi-
viduals using RICE. In addition, query results are graphically visualized with RICE. Fur-
thermore, RICE can be used to describe individuals. See the query describe-individual
typed into the interaction window of RICE in Figure 15.

35

Figure 16: Screenshot of Oiled displaying only told information about charles.

Currenty, OilEd does not support ABox querying. Implicit information derivable about
individuals is not shown in OilEd. This is indicated in Figure 16. The individual charles
is indicated to be an instance of brother (rather than uncle).

Another example for using OilEd with RACER is presented in subsequent figures. The
knowledge base is provided as one of the standard examples coming with the OilEd distri-
bution. Start OilEd and open the example ontology mad cows.daml. Then, connect OilEd
to RACER and verify the knowledge base.

36

Figure 17: Inconsistent class mad cow.

The result of the knowledge base verification process using RACER is displayed in Figure 17.
The concept (class) mad cow is found to be inconsistent (unsatisfiable).2

2The icon for the class mad cow is displayed with red color. However, this may be lost due to black and
white printing. Unsatisfiable concepts are also indicated by a circle rather than by a square as used for
satisfiable concepts.

37

Figure 18: Implicit subsumption relationsship detected by the reasoner.

In Figure 18 implicit subsumption relationships found by the reasoner are indicated.

38

Figure 19: Restrictions for the concept haulage truck driver.

In particular, we consider the concept haulage truck driver. Its restrictions are shown
in Figure 19.

39

Figure 20: OilEd showing the concept hierarchy after the model is verified by the reasoner.

In Figure 20 we can see that, for instance, haulage truck driver is (also) subsumed
by haulage worker and driver. The reasoner is used to find these implicit subsumption
relationships.

40

Figure 21: Making implicit subsumption explicit: committing reasoning results into the
model.

OilEd can be used to commit implicit subsumption relationships found be the reasoner into
the model (see the tool bar). If the augmented model is saved to a file, it can then be
processed by “simple” processing engines which are not based on description logics (such
as RACER).

2.6.3 Using OilEd and Rice in Combination

Let us assume, RACER is started, OilEd is connected to RACER, and some knowledge base
verifications on mad cows.daml have been performed. OilEd uses the default knowledge base
of RACER (this is due to the DIG interface). Then, RICE is started. The user can browse
through the concept hierarchy of the default knowledge base.

41

Figure 22: RICE showing the ontology mad cows.daml.

The concepts from the mad cows example can now be inspected with the RICE interface
(Figure 22). Again, the concept mad cow is found to be unsatisfiable. OilEd provides names-
paces for concept names. Namespaces are indicated with prefixes in concept names. The
current version of RICE (and RACER) directly displays the prefixes. In addition, concept
names are case-sensitive. Case-sensitive concept name should be specified surrounded with
bars (|) in order to convince RACER to correctly treat these concept names.

42

Figure 23: Dealing with individuals in RICE.

Selecting a concept instructs RICE to display its instances in the upper right instances
window (see Figure 23). In addition, Figure 23 shows a query. The bus The42 is described.
Note that the filler for the attribute service number is 42. Hence, we can see that Racer
also supports the specification of numbers (see below for a detailed introduction on how to
use concrete domains).

This concludes the interface examples. Not all features can be shown in a static text doc-
ument. We encourage users to experiment with all graphical interfaces in order to find out
how they can be used in combination. We now turn to the features provided by the RACER
system, and we start with some naming conventions.

2.6.4 Protégé

Protégé is an ontology editor and a knowledge-base editor. Version 2.0 also supports OWL
files and provides custom-tailored graphical widgets for editing description logic expres-
sions (see http://protege.stanford.edu/ and subpages). A screenshot of Protégé is shown in
Figure 24. Protégé is built by Holger Knublauch, Stanford University.

In Protégé inference services can be invoked by pressing the ”Classify” button above the
class tree in the OWL Classes Tab to execute classifiers. Before you can use it you must make
sure that an external classifier with a DIG-compliant interface (e.g., Racer) is executing and
accessible through your localhost at port 8080 (see the Protégé manual for changing the

43

Figure 24: A screenshot of the Protégé system.

Racer host ip and port that Protégé addresses). When you hit the classify button, the
system will then invoke Racer. When Racer has finished it will display a small report dialog
to indicate how many new class relationships have been identifed. Using the classifier may
directly change the inheritance hierarchy displayed in the Protégé window.

2.7 Naming Conventions

Throughout this document we use the following abbreviations, possibly subscripted.

C Concept term
CN Concept name
IN Individual name

ON Object name
R Role term

RN Role name
AN Attribute name

ABN ABox name
TBN TBox name
KBN knowledge base name

name Name of any sort
S List of Assertions

GNL List of group names
LCN List of concept names
abox ABox object
tbox TBox object

n A natural number
real A real number

integer An integer number
string A string

All names are Lisp symbols, the concepts are symbols or lists. Please note that for macros
in contrast to functions the arguments should not be quoted.

44

The API is designed to the following conventions. For most of the services offered by
RACER, macro interfaces and function interfaces are provided. For macro forms, the TBox
or ABox arguments are optional. If no TBox or ABox is specified, the *current-tbox* or
current-abox is taken, respectively. However, for the functional counterpart of a macro
the TBox or ABox argument is not optional. For functions which do not have macro coun-
terparts the TBox or ABox argument may or may not be optional. Furthermore, if an
argument tbox or abox is specified in this documentation, a name (a symbol) can be used
as well.

Functions and macros are only distinguished in the Lisp version. Macros do not evaluate
their arguments. If you use the RACER server, you can use functions just like macros.
Arguments are never evaluated.

3 RACER Knowledge Bases

In description logic systems a knowledge base is consisting of a TBox and an ABox. The
conceptual knowledge is represented in the TBox and the knowledge about the instances of a
domain is represented in the ABox. For more information about the description logic SHIQ
supported by RACER see [Horrocks et al. 2000]. Note that RACER assumes the unique
name assumption for ABox individuals (see also [Haarslev and Möller 2000] where the logic
supported by RACER’s precursor RACE is described). The unique name assumption does
not hold for the description logic SHIQ as introduced in [Horrocks et al. 2000].

3.1 Concept Language

The content of RACER TBoxes includes the conceptual modeling of concepts and roles as
well. The modelling is based on the signature, which consists of two disjoint sets: the set of
concept names C, also called the atomic concepts, and the set R containing the role names3.

Starting from the set C complex concept terms can be build using several operators. An
overview over all concept- and role-building operators is given in Figure 25.

Boolean terms build concepts by using the boolean operators.

DL notation RACER syntax
Negation ¬ C (not C)
Conjunction C1 u . . .u Cn (and C1 ...Cn)
Disjunction C1 t . . .t Cn (or C1 ...Cn)

3The signature does not have to be specified explicitly in RACER knowledge bases - the system can
compute it from the all the used names in the knowledge base - but specifying a signature may help avoiding
errors caused by typos!

45

C −→ CN |
top |
bottom |
(not C) |
(and C1 ...Cn) |
(or C1 ...Cn) |
(some R C) |
(all R C) |
(at-least n R) |
(at-most n R) |
(exactly n R) |
(at-least n R C) |
(at-most n R C) |
(exactly n R C) |
(a AN) |
(an AN) |
(no AN) |
CDC

R −→ RN |
(inv RN)

Figure 25: RACER concept and role terms.

Qualified restrictions state that role fillers have to be of a certain concept. Value restric-
tions assure that the type of all role fillers is of the specified concept, while exist restrictions
require that there be a filler of that role which is an instance of the specified concept.

DL notation RACER syntax
Exists restriction ∃ R.C (some R C)
Value restriction ∀ R.C (all R C)

Number restrictions can specify a lower bound, an upper bound or an exact number for
the amount of role fillers each instance of this concept has for a certain role. Only roles that
are not transitive and do not have any transitive subroles are allowed in number restrictions
(see also the comments in [Horrocks-et-al. 99a, Horrocks-et-al. 99b]).

DL notation RACER syntax
At-most restriction ≤ n R (at-most n R)
At-least restriction ≥ n R (at-least n R)
Exactly restriction = n R (exactly n R)
Qualified at-most restriction ≤ n R.C (at-most n R C)
Qualified at-least restriction ≥ n R.C (at-least n R C)
Qualified exactly restriction = n R.C (exactly n R C)

Actually, the exactly restriction (exactly n R) is an abbreviation for the concept term

46

CDC −→ (min AN integer) |
(max AN integer) |
(equal AN integer) |
(equal AN AN) |
(divisible AN cardinal) |
(not-divisible AN cardinal) |
(> aexpr aexpr) |
(>= aexpr aexpr) |
(< aexpr aexpr) |
(<= aexpr aexpr) |
(<> aexpr aexpr) |
(= aexpr aexpr) |
(string= AN string) |
(string<> AN string) |
(string= AN AN) |
(string<> AN AN)

string −→ " letter∗ "
aexpr −→ AN |

real |
(+ aexpr1 aexpr1 ∗) |
aexpr1

Figure 26: RACER concrete domain concepts and attribute expressions.

(and (at-least n R) (at-most n R)) and (exactly n R C) is an abbreviation for
the concept term (and (at-least n R C) (at-most n R C))

There are two concepts implicitly declared in every TBox: the concept “top” (>) denotes the
top-most concept in the hierarchy and the concept “bottom” (⊥) denotes the inconsistent
concept, which is a subconcept to all other concepts. Note that > (⊥) can also be expressed
as C t ¬C (C u ¬C). In RACER > is denoted as *top* and ⊥ is denoted as *bottom*4.

4For KRSS compatibility reasons RACER also supports the synonym concepts top and bottom.

47

aexpr1 −→ aexpr2
| aexpr3
| aexpr5

aexpr2 −→ real
| AN (AN of type real or complex)
| (* real AN) (AN of type real or complex)

aexpr3 −→ real
| AN (AN of type complex)
| (* integer aexpr4 aexpr4 ∗)

aexpr4 −→ AN (AN of type complex)
| (expt AN n) (AN of type complex)

aexpr5 −→ integer
| AN (AN of type cardinal)
| (* integer AN) (AN of type cardinal)

Figure 27: Specific expressions for predicates (n > 0 is a natural number) .

Concrete domain concepts state concrete predicate restrictions for attribute fillers (see
Figure 3.1). RACER currently supports three unary predicates for integer attributes (min,
max, equal), six nary predicates for real attributes (>, >=, <, <=, =, <>), a unary existential
predicate with two syntactical variants (a or an), and a special predicate restriction disal-
lowing a concrete domain filler (no). The restrictions for attributes of type real have to be
in the form of linear inequations (with order relations) where the attribute names play the
role of variables. If an expression is built with the rule for aexpr4 (see Figure 3.1), a so-called
nonlinear constraint is specified. In this case, only equations and inequations (=, <>), but
no order constraints (>, >=, <, <=) are allowed, and the attributes must be of type complex.
If an expression is built with the rule for aexpr5 (see Figure 3.1) a so-called cardinal linear
constraint is specified, i.e., attributes are constrainted to be a natural number (including
zero). Racer also supports a concrete domain for representing equations about strings with
predicaes string= and string<>. The use of concepts with concrete domain expressions is
illustrated with examples in Section 3.4. For the declaration of types for attributes, see see
Section 3.5.

DL notation RACER syntax
Concrete filler exists restriction ∃A.>D (a A) or (an A)
No concrete filler restriction ∀A.⊥D (no A)
Integer predicate exists restriction ∃A.minz (min A z)

with z ∈ Z ∃A.max z (max A z)
∃A.=z (equal A z)

Real predicate exists restriction ∃A1, . . . , An.P (P aexpr aexpr)
with P ∈ {>,>=, <, <=,=}

An all restriction of the form ∀A1, . . . , An.P is currently not directly supported. However,
it can be expressed as disjunction: ∀A1.⊥D t · · · t ∀An.⊥D t ∃A1, . . . , An.P .

48

3.2 Concept Axioms and Terminology

RACER supports several kinds of concept axioms.

General concept inclusions (GCIs) state the subsumption relation between two concept
terms.
DL notation: C1 v C2

RACER syntax: (implies C1 C2)

Concept equations state the equivalence between two concept terms.
DL notation: C1

.= C2

RACER syntax: (equivalent C1 C2)

Concept disjointness axioms state pairwise disjointness between several concepts. Dis-
joint concepts do not have instances in common.
DL notation: C1 v ¬(C2 t C3 t · · · u Cn)

C2 v ¬(C3 t · · · u Cn)
. . .
Cn−1 v ¬Cn

RACER syntax: (disjoint C1 ...Cn)

Actually, a concept equation C1
.= C2 can be expressed by the two GCIs: C1 v C2 and

C2 v C1. The disjointness of the concepts C1 . . .Cn can also be expressed by GCIs.

There are also separate forms for concept axioms with just concept names on their left-hand
sides. These concept axioms implement special kinds of GCIs and concept equations. But
concept names are only a special kind of concept terms, so these forms are just syntactic
sugar. They are added to the RACER system for historical reasons and for compatibility
with KRSS. These concept axioms are:

Primitive concept axioms state the subsumption relation between a concept name and
a concept term.
DL notation: (CN v C)
RACER syntax: (define-primitive-concept CN C)

Concept definitions state the equality between a concept name and a concept term.
DL notation: (CN .= C)
RACER syntax: (define-concept CN C)

Concept axioms may be cyclic in RACER. There may also be forward references to con-
cepts which will be “introduced” with define-concept or define-primitive-concept in
subsequent axioms. The terminology of a RACER TBox may also contain several axioms
for a single concept. So if a second axiom about the same concept is given, it is added and
does not overwrite the first axiom.

3.3 Role Declarations

In contrast to concept axioms, role declarations are unique in RACER. There exists just one
declaration per role name in a knowledge base. If a second declaration for a role is given,

49

an error is signaled. If no signature is specified, undeclared roles are assumed to be neither
a feature nor a transitive role and they do not have any superroles.

The set of all roles (R) includes the set of features (F) and the set of transitive roles (R+).
The sets F and R+ are disjoint. All roles in a TBox may also be arranged in a role hierarchy.
The inverse of a role name RN can be either explicitly declared via the keyword :inverse
(e.g. see the description of define-primitive-role in Section 7.3, page 86) or referred to
as (inv RN).

Features (also called attributes) restrict a role to be a functional role, e.g. each individual
can only have up to one filler for this role.

Transitive Roles are transitively closed roles. If two pairs of individuals IN 1 and IN 2 and
IN 2 and IN 3 are related via a transitive role R, then IN 1 and IN 3 are also related
via R.

Role Hierarchies define super- and subrole-relationships between roles. If R1 is a super-
role of R2, then for all pairs of individuals between which R2 holds, R1 must hold too.

In the current implementation the specified superrole relations may not be cyclic. If a role
has a superrole, its properties are not in every case inherited by the subrole. The properties
of a declared role induced by its superrole are shown in Figure 28. The table should be read
as follows: For example if a role RN 1 is declared as a simple role and it has a feature RN 2

as a superrole, then RN 1 will be a feature itself.

Superrole RN 1 ∈
R R+ F

Subrole RN 1 R R R F
declared as R+ R+ R+ -
element of: F F F F

Figure 28: Conflicting declared and inherited role properties.

The combination of a feature having a transitive superrole is not allowed and features cannot
be transitive. Note that transitive roles and roles with transitive subroles may not be used
in number restrictions.

RACER does not support role terms as specified in the KRSS. However, a
role being the conjunction of other roles can as well be expressed by using
the role hierarchy (cf. [Buchheit et al. 93]). The KRSS-like declaration of the role
(define-primitive-role RN (and RN 1 RN 2)) can be approximated in RACER by:
(define-primitive-role RN :parents (RN 1 RN 2)).

RACER offers the declaration of domain and range restrictions for roles. These restric-
tions for primitive roles can be either expressed with GCIs, see the examples in Figure 29
(cf. [Buchheit et al. 93]) or declared via the keywords :domain and :range (e.g. see the
description of define-primitive-role in Section 7.3, page 86).

50

KRSS DL notation
(define-primitive-role RN (domain C)) (∃ RN.>) v C
(define-primitive-role RN (range D)) > v (∀ RN.D)

RACER Syntax DL notation
(define-primitive-role RN :domain C) (∃ RN.>) v C
(define-primitive-role RN :range D) > v (∀ RN.D)

Figure 29: Domain and range restrictions expressed via GCIs.

3.4 Concrete Domains

RACER supports reasoning over natural numbers (N), integers (Z), reals (R), complex
numbers (C), and strings. For different sets, different kinds of predicates are supported.

N linear inequations with order constraints and integer coefficients
Z interval constraints
R linear inequations with order constraints and rational coefficients
C nonlinear multivariate inequations with integer coefficients

Strings equality and inequality

For the users convenience, rational coefficients can be specified in floating point notation.
They are automatically transformed into their rational equivalents (e.g., 0.75 is transformed
into 3/4). In the following we will use the names on the left-hand side of the table to refer
to the correspondings concrete domains.

Names for values from concrete domains are called objects. The set of all objects is referred to
as O. Individuals can be associated with objects via so-called attributes names (or attributes
for short). Note that the set A of all attributes must be disjoint to the set of roles (and the
set of features). Attributes can be declared in the signature of a TBox (see below).

The following example is an extension of the family TBox introduced above. In the example,
the concrete domains Z and R are used.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes ((integer age)))

...
(equivalent teenager (and human (min age 16)))
(equivalent old-teenager (and human (min age 18)))
...

Asking for the children of teenager reveals that old-teenager is a teenager. A further
extensions demonstrates the usage of reals as concrete domain.

...
(signature

:atomic-concepts (... teenager)

51

:roles (...)
:attributes ((integer age)

(real temperature-celsius)
(real temperature-fahrenheit)))

...
(equivalent teenager (and human (min age 16)))
(equivalent old-teenager (and human (min age 18)))
(equivalent human-with-feaver (and human (>= temperature-celsius 38.5))
(equivalent seriously-ill-human (and human (>= temperature-celsius 42.0)))
...

Obviously, RACER determines that the concept seriously-ill-human is subsumed by
human-with-feaver. For the reals, RACER supports linear equations and inequations.
Thus, we could add the following statement to the knowledge base in order to make sure the
relations between the two attributes temperature-fahrenheit and temperature-celsius
is properly represented.

(implies top (= temperature-fahrenheit
(+ (* 1.8 temperature-celsius) 32)))

If a concept seriously-ill-human-1 is defined as

(equivalent seriously-ill-human-1
(and human (>= temperature-fahrenheit 107.6)))

RACER recognizes the subsumption relationship with human-with-feaver and the syn-
onym relationship with seriously-ill-human.

In an ABox, it is possible to set up constraints between individuals. This is illustrated with
the following extended ABox.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes (...)
:individuals (eve doris)
:objects (temp-eve temp-doris))

...
(constrained eve temp-eve temperature-fahrenheit)
(constrained doris temp-doris temperature-celsius)
(constraints

(= temp-eve 102.56)
(= temp-doris 39.5))

For instance, this states that eve is related via the attribute temperature-fahrenheit to
the object temp-eve. The initial constraint (= temp-eve 102.56) specifies that the object
temp-eve is equal to 102.56.

52

Now, asking for the direct types of eve and doris reveals that both individuals are instances of
human-with-feaver. In the following Abox there is an inconsistency since the temperature
of 102.56 Fahrenheit is identical with 39.5 Celsius.

(constrained eve temp-eve temperature-fahrenheit)
(constrained doris temp-doris temperature-celsius)
(constraints

(= temp-eve 102.56)
(= temp-doris 39.5)
(> temp-eve temp-doris))

We present another example that might be important for many applications: dealing with
dates. The following declarations can be processed with Racer. The predicates divisible
and not-divisible are defined for natural numbers and are reduced to linear inequations
internally.

(define-concrete-domain-attribute year :type cardinal)
(define-concrete-domain-attribute days-in-month :type cardinal)

(implies Month (and (>= days-in-month 28) (<= days-in-month 31)))

(equivalent month-inleapyear
(and Month

(divisible year 4)
(or (not-divisible year 100)

(divisible year 400))))

(equivalent February
(and Month

(<= days-in-month 29)
(or (not month-inleapyear)

(= days-in-month 29))
(or month-inleapyear

(= days-in-month 28))))

Next, we assume some instances of February are declared.

(instance feb-2003 February)
(constrained feb-2003 year-1 year)
(constrained feb-2003 days-in-feb-2003 days-in-month)
(constraints (= year-1 2003))

(instance feb-2000 February)
(constrained feb-2000 year-2 year)
(constrained feb-2000 days-in-feb-2000 days-in-month)
(constraints (= year-2 2000))

53

Note that the number of days for both months is not given explicitly. Nevertheless,
asking (concept-instances month-inleapyear) yields (feb-2000) whereas asking for
(concept-instances (not month-inleapyear)) returns (feb-2003). In addition, one
could check the number of days:

(constraint-entailed? (<> days-in-feb-2003 29))
(constraint-entailed? (= days-in-feb-2000 29))

In both cases, the answer is true.

3.5 Concrete Domain Attributes

Attributes are considered as “typed” since they can either have fillers of type cardinal,
integer, real, complex, or string. The same attribute cannot be used in the same TBox
such that both types are applicable, e.g., (min has-age 18) and (>= has-age 18) are
not allowed. If the type of an attribute is not explicitly declared, its type is implicitly
derived from its use in a TBox/ABox. An attribute and its type can be declared with the
signature form (see above and in Section 6.1, page 68)) or by using the KRSS-like form
define-concrete-domain-attribute (see Section 7.4, page 92). If an attribute is declared
to be of type complex is can be used in linear (in-)equations. However, if an attribute
is declare to be of type real or integer it is an error to use this attribute in terms for
nonlinear polynoms. In a similar way, currently, an attribute of type integer may not be
used in a term for a linear polynoms, either. If the coefficients are integers, then cardinal
(natural number, including 0) for the type of attributes may be used in a linear polynom.
Furthermore, attributes of type string may not be used on polynoms, and non-strings may
not be used in constraints for strings.

3.6 Algorithms for Concrete Domains

[Rychlik 2000] [Weispfenning 92]

Jaffar, incremental constraint solving

[Jaffar and Maher 94]

Gomory

3.7 ABox Assertions

An ABox contains assertions about individuals. The set of individual names (or individuals
for brevity) I is the signature of the ABox. The set of individuals must be disjoint to the
set of concept names and the set of role names. There are four kinds of assertions:

Concept assertions with instance state that an individual IN is an instance of a spec-
ified concept C .

Role assertions with related state that an individual IN 1 is a role filler for a role R with
respect to an individual IN 2.

54

Attribute assertions with constrained state that an object ON is a filler for a role R
with respect to an individual IN .

Constraints within constraints state relationships between objects of the concrete do-
main. The syntax for constraints is explained in Figure 3.1. Instead of attribute names,
object names must be used.

In RACER the unique name assumption holds, this means that all individual names used
in an ABox refer to distinct domain objects, therefore two names cannot refer to the same
domain object. Note that the unique name assumption does not hold for object names.

In the RACER system each ABox refers to a TBox. The concept assertions in the ABox
are interpreted with respect to the concept axioms given in the referenced TBox. The role
assertions are also interpreted according to the role declarations stated in that TBox. When
a new ABox is built, the TBox to be referenced must already exist. The same TBox may
be referred to by several ABoxes. If no signature is used for the TBox, the assertions in the
ABox may use new names for roles5 or concepts6 which are not mentioned in the TBox.

3.8 Inference Modes

After the declaration of a TBox or an ABox, RACER can be instructed to answer queries.
Processing the knowledge base in order to answer a query may take some time. The standard
inference mode of RACER ensures the following behavior: Depending on the kind of query,
RACER tries to be as smart as possible to locally minimize computation time (lazy inference
mode). For instance, in order to answer a subsumption query w.r.t. a TBox it is not necessary
to classify the TBox. However, once a TBox is classified, answering subsumption queries
for atomic concepts is just a lookup. Furthermore, asking whether there exists an atomic
concept in a TBox that is inconsistent (tbox-coherent-p) does not require the TBox to be
classified, either. In the lazy mode of inference (the default), RACER avoids computations
that are not required concerning the current query. In some situations, however, in order to
globally minimize processing time it might be better to just classify a TBox before answering
a query (eager inference mode).

A similar strategy is applied if the computation of the direct types of individuals is requested.
RACER requires as precondition that the corresponding TBox has to be classified. If the
lazy inference mode is enabled, only the individuals involved in a “direct types” query are
realized.

The inference behavior of RACER can be controlled by setting the value of the variables
auto-classify and *auto-realize* for TBox and ABox inference, respectively. The
lazy inference mode is activated by setting the variables to the keyword :lazy. Eager
inference behavior can be enforced by setting the variables to :eager. The default value for
each variable is :lazy-verbose, which means that RACER prints a progress bar in order
to indicate the state of the current inference activity if it might take some time. If you want
this for eager inferences, use the value :eager-verbose. If other values are encountered,
the user is responsible for calling necessary setup functions (not recommended).

5These roles are treated as roles that are neither a feature, nor transitive and do not have any superroles.
New items are added to the TBox. Note that this might lead to surprising query results, e.g. the set
of subconcepts for > contains concepts not mentioned in the TBox in any concept axiom. Therefore we
recommend to use a signature declaration (see below).

6These concepts are assumed to be atomic concepts.

55

We recommend that TBoxes and ABoxes should be kept in separate files. If an ABox is
revised (by reloading or reevaluating a file), there is no need to recompute anything for the
TBox. However, if the TBox is placed in the same file, reevaluating a file presumably causes
the TBox to be reinitialized and the axioms to be declared again. Thus, in order to answer
an ABox query, recomputations concerning the TBox might be necessary. So, if different
ABoxes are to be tested, they should probably be located separately from the associated
TBoxes in order to save processing time.

During the development phase of a TBox it might be advantageous to call inference services
directly. For instance, during the development phase of a TBox it might be useful to check
which atomic concepts in the TBox are inconsistent by calling check-tbox-coherence. This
service is usually much faster than calling classify-tbox. However, if an application prob-
lem can be solved, for example, by checking whether a certian ABox is consistent or not (see
the function abox-consistent-p), it is not necessary to call either check-tbox-coherence
or classify-tbox. For all queries, RACER ensures that the knowledge bases are in the ap-
propriate states. This behavior usually guarantees minimum runtimes for answering queries.

3.9 Retraction and Incremental Additions

RACER offer constructs for retracting TBox axioms (see the function forget-statement).
However, complete reclassification may be necessary in order to answer queries. Retracting
axioms is mainly useful if the RACER server is used. With retracting there is no need to
delete and retransfer a knowledge base (TBox).

RACER also offers constructs for retracting ABox assertions (see forget,
forget-concept-assertion, forget-role-assertion, and friends). If a query has
been answered and some assertions are retracted, then RACER might be forced to compute
the index structures for the ABox again (realization), i.e. after retractions, some queries
might take some time to answer. Note that may queries are answered without index
structures at all (see also Section 11).

RACER also supports incremental additions to ABoxes, i.e. assertions can be added even
after queries have been answered. However, the internal data structures used for anwering
queries are recomputed from scratch. This might take some time. If an ABox is used for
hypothesis generation, e.g. for testing whether the assertion i : C can be added without
causing an inconsistency, we recommend using the instance checking inference service. If
(individual-instance? i (not C)) returns t, i : C cannot be added to the ABox. Now,
let us assume, we can add i : C and afterwards want to test whether i : D can be added
without causing an inconsistency. In this case it might be faster not to add i : C directly but
to check whether (individual-instance? i (and C (not D))) returns t. The reason is
that, in this case, the index structures for the ABox are not recomputed.

To be practically useful, description logics have to be integrated into current Web software
architectures. We first turn to syntax issues and deal with distributed access to inference
services afterwards.

4 The RDF/RDFS/DAML interface

Racer can read RDF, RDFS, and DAML+OIL files (DAML for brevity, see the function
daml-read-file and friends described below). Information in an RDF file is represented

56

using an ABox in such a way that usually triples are represented as related statements,i.e.,
the subject of a triple is represented as an individual, the property as a role, and the object
is also represented as an individual. The property rdf:type is treated in a special way.
Triples with property rdf:type are represented as concept assertions. RACER does not
represent meta-level knowledge in the theory because this might result in paradoxes (which
are reported elsewhere).

The triples in RDFS files are processed in a special way. They are represented as TBox
axioms. If the property is rdf:type, the object must be rdfs:Class or rdfs:Property.
These statements are interpreted as declarations for concept and role names, respectively.
Three types of axioms are supported with the following properties: rdfs:subClassOf,
rdfs:range, and rdfs:domain. Other triples are ignored.

DAML files are processed in a similar way. The semantics of DAML is described elsewhere
(see http://www.w3.org/TR/daml+oil-reference). There are two main restrictions in the
RACER implementation.

Equality for roles (daml:equalR construct) is not supported in general. Only names for the
inverse of a role can be declared with the (daml:inverseOf construct). Currently, synonyms
for roles cannot be processed. Furthermore, cycles in the role hierarchy are not possible due
to similar reasons.

Usually, the default namespace for concept and role name is dened by the pathname of
the DAML le. If the DAML le contains a specication for the default namespace (i.e., a
specication xmlns=”...”) this URL is taken as a prex for concept and role names.

<?xml version="1.0" encoding="ISO-8859-1"?>
<rdf:RDF
xmlns="http://www.mycompany.com/project#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#">
...
</rdf:RDF>

Insteadof xmlns=”...” the specication xmlns:ns0=”...” also denes the default namespace (the
namespace ns0 is used by OilEd). By default, RACER prepends the URL of the default
namespace to all DAML names starting with the # sign. If you would like to instruct RACER
to return abbreviatednames (i.e., to remove the prex again in output it produces), start the
RACER Server with the option -n (Abbreviation is possible in the server version only).

Individual names (nominals) in class declarations introduced with daml:oneOf are treated
as disjoint (atomic) concepts. This is similar to the behavior of other DAML inference
engines. Currently, DL systems can provide only an approximation for true nominals. Note
that reasoning is sound but still incomplete if daml:oneOf is used. In RACER, individuals
used in class declarations are also represented in the ABox part of the knowledge base. They
are instances of a concept with the same name. An example is appropriate to illustrate the
idea. Although the KRSS syntax implemented by RACER does not include one-of as a
concept-building operator we use it here for demonstration purposes.

(in-knowledge-base test)

57

(implies c (some r (one-of j)))
(instance i c)

For those users more familiar with DAML we also give the DAML version of this knowledge
base (see file ex1.daml in the examples folder). The file was created with OilEd.

<?xml version="1.0" encoding="ISO-8859-1"?>
<rdf:RDF xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:oiled="http://img.cs.man.ac.uk/oil/oiled#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#">
<daml:Ontology rdf:about="">

<dc:title>"An Ontology"</dc:title>
<dc:date></dc:date>
<dc:creator></dc:creator>
<dc:description></dc:description>
<dc:subject></dc:subject>
<daml:versionInfo></daml:versionInfo>

</daml:Ontology>
<daml:Class rdf:about="file:C:\Ralf\Ind-Examples\ex1.daml#c">

<rdfs:label>c</rdfs:label>
<rdfs:comment><![CDATA[]]></rdfs:comment>
<oiled:creationDate><![CDATA[2002-09-27T19:09:25Z]]></oiled:creationDate>
<oiled:creator><![CDATA[MO]]></oiled:creator>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="file:C:\Ralf\Ind-Examples\ex1.daml#R"/>
<daml:hasClass>

<daml:Class>
<daml:oneOf>
<daml:List>
<daml:first>
<daml:Thing rdf:about="file:C:\Ralf\Ind-Examples\ex1.daml#j"/>
</daml:first>
<daml:rest>
<daml:nil/>
</daml:rest>

</daml:List>
</daml:oneOf>
</daml:Class>

</daml:hasClass>
</daml:Restriction>

</rdfs:subClassOf>
</daml:Class>
<daml:ObjectProperty rdf:about="file:C:\Ralf\Ind-Examples\ex1.daml#R">

<rdfs:label>R</rdfs:label>

58

<rdfs:comment><![CDATA[]]></rdfs:comment>
<oiled:creationDate><![CDATA[2002-09-27T19:09:49Z]]></oiled:creationDate>
<oiled:creator><![CDATA[MO]]></oiled:creator>

</daml:ObjectProperty>
<rdf:Description rdf:about="file:C:\Ralf\Ind-Examples\ex1.daml#i">

<rdfs:comment><![CDATA[]]></rdfs:comment>
<oiled:creationDate><![CDATA[2002-09-27T19:17:36Z]]></oiled:creationDate>
<oiled:creator><![CDATA[MO]]></oiled:creator>
<rdf:type>

<daml:Class rdf:about="file:C:\Ralf\Ind-Examples\ex1.daml#c"/>
</rdf:type>

</rdf:Description>
<rdf:Description rdf:about="file:C:\Ralf\Ind-Examples\ex1.daml#j">

<rdfs:comment><![CDATA[]]></rdfs:comment>
<oiled:creationDate><![CDATA[2002-09-27T19:09:36Z]]></oiled:creationDate>
<oiled:creator><![CDATA[MO]]></oiled:creator>
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#Thing"/>

</rdf:Description>
</rdf:RDF>

Dealing with indviduals is done by an approximation such that reasoning is sound but must
remain incomplete. The following examples demonstrate the effects of the approximation.

Given this knowledge base, asking for the role fillers of r w.r.t. i returns nil. Note that
DAML names must be enclosed with bars (|).

? (individual-fillers |file:C:\\Ralf\\Ind-Examples\\ex1.daml#i|
|file:C:\\Ralf\\Ind-Examples\\ex1.daml#R|)

NIL

Asking for the instances of j returns j.

? (concept-instances |file:C:\\Ralf\\Ind-Examples\\ex1.daml#j|)
(|file:C:\\Ralf\\Ind-Examples\\ex1.daml#j|)

The following knowledge base (for the DAML version see file ex2.daml in the examples
folder) is inconsistent:

(in-knowledge-base test)
(implies c (all r (one-of j)))
(instance i c)
(related i k r)

Note again that, in general, reasoning is incomplete if individuals are used in concept terms.
The following query is given w.r.t. the above-mentioned knowledge base given in the DAML
file ex2.daml in the examples folder.

59

? (concept-subsumes? (at-most 1 |file:C:\\Ralf\Ind-Examples\\ex1.daml#R|)
|file:C:\Ralf\Ind-Examples\ex1.daml#c|)

NIL

If dealing with nominals were no approximation, i.e., if reasoning were complete, then
RACER would be able to prove a subsumption relationship because (all r (one-of j))
implies (at-most 1 r).

Due to the problems described in this section, processing DAML files with individuals in
concept terms with the RACER system is not recommended. However, at the time of this
writing there is no other system know that provides complete reasoning on nominals.

5 The RDF/OWL interface

RACER can also process OWL documents. Documents are interpreted w.r.t. the OWL DL
languages. The implementation is prototypical. Similar restrictions as describe for DAML
documents apply (see the documentation on owl-read-file and owl-read-document).

6 Knowledge Base Management Functions

A knowledge base is just a tuple consisting of a TBox and an associated ABox. Note that
a TBox and its associated ABox may have the same name. This section documents the
functions for managing TBoxes and ABoxes and for specifying queries.

Racer provides a default knowledge base with a TBox called default and an associated
ABox with the same name.

60

in-knowledge-base macro

Description: This form is an abbreviation for the sequence:
(in-tbox TBN)
(in-abox ABN TBN). See the appropriate documentation for these

functions.

Syntax: Two forms are possible:
(in-knowledge-base TBN &optional ABN) or
(in-knowledge-base TBN &key (init t))

Arguments: TBN - TBox name

ABN - ABox name

init - t or nil

Remarks: If no ABox is specified an ABox with the same name as the TBox is created
(or initialized if already present). The ABox is associated with the TBox.
If the keyword :init is specified with value nil no new knowledge base is
created but just the current TBox and ABox is set. If :init is specified, no
ABox name may be given.

Examples: (in-knowledge-base peanuts peanuts-characters)
(in-knowledge-base peanuts)
(in-knowledge-base peanuts :init nil)

racer-read-file function

Description: A file in RACER format (as described in this document) containing TBox
and/or ABox declarations is loaded.

Syntax: (racer-read-file pathname)

Arguments: pathname - is the pathname of a file

Examples: (racer-read-file "kbs/test.lisp")

See also: Function include-kb

61

racer-read-document function

Description: A file in RACER format (as described in this document) containing TBox
and/or ABox declarations is loaded.

Syntax: (racer-read-document URL)

Arguments: URL - is the URL of a text document with RACER statements.

Remarks: The URL can also be a file URL. In this case, racer-read-file is used on the
pathname of the URL.

Examples: (racer-read-document "http://www.fh-wedel.de/mo/test.lisp")
(racer-read-document "file:///home/mo/kbs/test.lisp")

See also: Function racer-read-file

include-kb function

Description: A file in RACER format (as described in this document) containing TBox
and/or ABox declarations is loaded. The function include is used for parti-
tioning a TBox or ABox into several files.

Syntax: (include-kb pathname)

Arguments: pathname - is the pathname of a file

Examples: (include-kb "project:onto-kb;my-knowledge-base.lisp")

See also: Function racer-read-file

daml-read-file function

Description: A file in DAML format (e.g., produced OilEd) is loaded and represented as
a TBox and an ABox with appropriate declarations.

Syntax: (daml-read-file pathname &key (init t) (verbose nil) (kb-name
nil)))

Arguments: pathname - is the pathname of a file
init - specifies whether the kb is initialized or extended (the default is to

(re-)initialize the kb.
verbose - specifies whether ignored triples are indicated (the default is to just

suppress any warning).
kb-name - specifies the name of the kb (TBox and ABox). The default is the

file specified in the pathname argument (without file type).

Examples: (daml-read-file "oiled:ontologies;madcows.daml") reads the file
"oiled:ontologies;madcows.daml" and creates a TBox madcows and an
associated ABox madcows.

62

daml-read-document function

Description: A text document in DAML format (e.g., produced OilEd) is loaded from
a web server and represented as a TBox and an ABox with appropriate
declarations.

Syntax: (daml-read-document URL &key (init t) (verbose nil) (kb-name
nil)))

Arguments: URL - is the URL of a text document

init - specifies whether the kb is initialized or extended (the default is to
(re-)initialize the kb.

verbose - specifies whether ignored triples are indicated (the default is to just
suppress any warning).

kb-name - specifies the name of the kb (TBox and ABox). The default is the
document name specified in the URL argument (without file type).

Examples: (daml-read-document "http://www.fh-wedel.de/mo/madcows.daml")
reads the specified text document from the corresponding web server and
creates a TBox madcows and an associated ABox madcows. A file URL may
also be specified (daml-read-document "file://mo/madcows.daml")

owl-read-file function

Description: A file in OWL format (e.g., produced OilEd) is loaded and represented as a
TBox and an ABox with appropriate declarations.

Syntax: (owl-read-file pathname &key (init t) (verbose nil) (kb-name
nil)))

Arguments: pathname - is the pathname of a file

init - specifies whether the kb is initialized or extended (the default is to
(re-)initialize the kb.

verbose - specifies whether ignored triples are indicated (the default is to just
suppress any warning).

kb-name - specifies the name of the kb (TBox and ABox). The default is the
file specified in the pathname argument (without file type).

Examples: (owl-read-file "oiled:ontologies;madcows.owl") reads the file
"oiled:ontologies;madcows.owl" and creates a TBox madcows and an
associated ABox madcows.

63

owl-read-document function

Description: A text document in OWL format (e.g., produced OilEd) is loaded from
a web server and represented as a TBox and an ABox with appropriate
declarations.

Syntax: (owl-read-document URL &key (init t) (verbose nil) (kb-name
nil)))

Arguments: URL - is the URL of a text document

init - specifies whether the kb is initialized or extended (the default is to
(re-)initialize the kb.

verbose - specifies whether ignored triples are indicated (the default is to just
suppress any warning).

kb-name - specifies the name of the kb (TBox and ABox). The default is the
document name specified in the URL argument (without file type).

Examples: (owl-read-document "http://www.fh-wedel.de/mo/madcows.owl")
reads the specified text document from the corresponding web server and
creates a TBox madcows and an associated ABox madcows. A file URL may
also be specified (owl-read-document "file://mo/madcows.owl")

mirror function

Description: If you are offline, importing OWL or DAML ontologies may cause problems.
However, editing documents and inserting local URLs for ontologies is in-
convenient. Therefore, Racer provides a facility to declare local mirror URLs
for ontology URLs

Syntax: (mirror URL mirror −URL)

Arguments: URL - a URL used to refer to an ontology in a DAML-OIL or OWL doc-
ument

mirror −URL - a URL that refers to the same ontology. Possibly, a file URL
may be supplied.

kb-ontologies function

Description: A document in DAML+OIL or OWL format can import other ontologies.
With this function one can retrieve all ontologies that were imported into
the specified knowledge base

Syntax: (kb-ontologies KBN)

Arguments: KBN - is the name of the knowledge base.

64

save-kb function

Description: If a pathname is specified, a TBox is saved to a file. In case a stream is
specified the TBox is written to the stream (the stream must already be
open) and the keywords if -exists and if -does-not -exist are ignored.

Syntax: (save-kb pathname-or-stream
&key (tbox *current-tbox*) (abox *current-abox*)
(syntax :krss) (if -exists :supersede)
(if -does-not-exist :create)
(uri "")
(ns0 ""))

Arguments: pathname-or -stream - is the pathname of a file or is an output stream

tbox - TBox name or TBox object

abox - ABox name or ABox object

syntax - indicates the syntax of the KB to be generated. Possible values for
the syntax argmument are :krss (the default), :xml, or :daml.
Note that concerning KRSS only a KRSS-like syntax is supported
by RACER. Therefore, instead of :krss it is also possible to specify
:racer.

if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is :supersede.

if -does-not -exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create.

uri - The keyword :uri specifies the URI prefix for names. It is only
available if syntax :daml is specified. This argument is useful in
combination with OilEd. See the OilEd documentation.

ns0 - The keyword :uri is also provided for generating DAML files to
be processed with OilEd. The keyword :ns0 specifies the name of
the OilEd namespace 0. This keyword is important for the ABox
part. If the value of :uri is /home/user/test#, the value of :ns0
should probably be /home/user/. Some experimentation might be
necessary to find the correct values for :uri and :ns0 to be used
with OilEd.

Examples: (save-kb "project:onto-kb;my-knowledge-base.krss"
:syntax :krss
:tbox ’family
:abox ’smith-family)

65

(save-kb "family.daml" :syntax :daml

:tbox ’family
:abox ’smith-family
:uri "http://www.fh-wedel.de/family.daml")
:ns0 "http://www.fh-wedel.de/")

6.1 TBox Management

If RACER is started, there exists a TBox named DEFAULT, which is set to the current
TBox.

in-tbox macro

Description: The TBox with the specified name is taken or a new TBox with that name
is generated and bound to the variable *current-tbox*.

Syntax: (in-tbox TBN &key (init t))

Arguments: TBN - is the name of the TBox.

init - boolean indicating if the TBox should be initialized.

Values: TBox object named TBN

Remarks: Usually this macro is used at top of a file containing a TBox. This macro
can also be used to create new TBoxes.

The specified TBox is the *current-tbox* until in-tbox is called again or
the variable *current-tbox* is manipulated directly.

Examples: (in-tbox peanuts)
(implies Piano-Player Character)

...

See also: Macro signature on page 68.

init-tbox function

Description: Generates a new TBox or initializes an existing TBox and binds it to the vari-
able *current-tbox*. During the initialization all user-defined concept ax-
ioms and role declarations are deleted, only the concepts *top* and *bottom*
remain in the TBox.

Syntax: (init-tbox tbox)

Arguments: tbox - TBox object

Values: tbox

Remarks: This is the way to create a new TBox object.

66

signature macro

Description: Defines the signature for a knowledge base.

If any keyword except individuals or objects is used, the *current-tbox* is
initialized and the signature is defined for it.

If the keyword individuals or objects is used, the *current-abox* is initial-
ized. If all keywords are used, the *current-abox* and its TBox are both
initialized.

Syntax: (signature &key (atomic-concepts nil) (roles nil)
(transitive-roles nil) (features nil) (attributes nil)
(individuals nil) (objects nil))

Arguments: atomic-concepts - is a list of all the concept names, specifying C.

roles - is a list of role declarations.

transitive-roles - is a list of transitive role declarations.

features - is a list of feature declarations.

attributes - is a list of attributes declarations.

individuals - is a list of individual names.

objects - is a list of object names.

Remarks: Usually this macro is used at top of a file directly after the macro
in-knowledge-base, in-tbox or in-abox.

Actually it is not necessary in RACER to specify the signature, but it helps
to avoid errors due to typos.

Examples: Signature for a TBox:
(signature

:atomic-concepts (Character Baseball-Player...)
:roles ((has-pet)
(has-dog :parents (has-pet) :domain human :range dog)
(has-coach :feature t))

:attributes ((integer has-age) (real has-weight)))

Signature for an ABox:
(signature

:individuals (Charlie-Brown Snoopy ...)
:objects (age-of-snoopy ...))

67

Signature for a TBox and an ABox:
(signature

:atomic-concepts (Character Baseball-Player...)
:roles ((has-pet)
(has-dog :parents (has-pet) :domain human :range dog)
(has-coach :feature t))

:attributes ((integer has-age) (real has-weight))
:individuals (Charlie-Brown Snoopy ...)
:objects (age-of-snoopy ...))

See also: Section Sample Session, on page 15 and page 17.
For role definitions see define-primitive-role, on page 86, for feature
definitions see define-primitive-attribute, on page 86, for attribute def-
initions see define-concrete-domain-attribute, on page 92.

ensure-tbox-signature function

Description: Defines the signature for a TBox and initializes the TBox.

Syntax: (ensure-tbox-signature tbox &key (atomic-concepts nil)
(roles nil) (transitive-roles nil) (features nil) (attributes nil))

Arguments: tbox - is a TBox name or a TBox object.

atomic-concepts - is a list of all the concept names.

roles - is a list of all role declarations.

transitive-roles - is a list of transitive role declarations.

features - is a list of feature declarations.

attributes - is a list of attributes declarations.

See also: Definition of macro signature.

tbox-signature function

Description: Gets the signature for a TBox.

Syntax: (tbox-signature &optional tbox)

Arguments: tbox - is a TBox name or a TBox object.

68

current-tbox special-variable

Description: The variable *current-tbox* refers to the current TBox object. It is set by
the function init-tbox or by the macro in-tbox.

Remarks: The variable is only supported in the Lisp version of RACER. In the server
version use the function current-tbox

See also: Definition of current-tbox

current-tbox function

Description: The function returns the value of the variable *current-tbox*.

Syntax: (current-tbox)

Arguments:

See also: Definition of *current-tbox*

save-tbox function

Description: If a pathname is specified, a TBox is saved to a file. In case a stream is
specified the TBox is written to the stream (the stream must already be
open) and the keywords if -exists and if -does-not -exist are ignored.

Syntax: (save-tbox pathname-or-stream &optional (tbox *current-tbox*)
&key (syntax :krss) (transformed nil) (if -exists :supersede)
(if -does-not-exist :create)
(uri "")
(ns0 ""))

Arguments: pathname-or -stream - is the pathname of a file or is an output stream

tbox - TBox object

syntax - indicates the syntax of the KB to be generated. Possible values
for the syntax argmument are :krss (the default), :xml, or :daml.
Note that only a KRSS-like syntax is supported by RACER. There-
fore, instead of :krss it is also possible to specify :racer.

if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is :supersede.

69

if -does-not -exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create.

uri - The keyword :uri specifies the URI prefix for names. It is only
available if syntax :daml is specified. This argument is useful in
combination with OilEd. See the OilEd documentation.

ns0 - The keyword :uri is also provided for generating DAML files to
be processed with OilEd. The keyword :ns0 specifies the name of
the OilEd namespace 0. This keyword is important for the ABox
part. If the value of :uri is /home/user/test#, the value of :ns0
should probably be /home/user/. Some experimentation might be
necessary to find the correct values for :uri and :ns0 to be used
with OilEd.

Values: TBox object

Remarks: A file may contain several TBoxes.
The usual way to load a TBox file is to use the Lisp function load.
If the server version is used, it must have been started with the option -u in
order to have this function available.

Examples: (save-tbox "project:TBoxes;tbox-one.lisp")
(save-tbox "project:TBoxes;final-tbox.lisp"

(find-tbox ’tbox-one) :if-exists :error)

forget-tbox function

Description: Delete the specified TBox from the list of all TBoxes. Usually this enables
the garbage collector to recycle the memory used by this TBox.

Syntax: (forget-tbox tbox)

Arguments: tbox - is a TBox object or TBox name.

Values: List containing the name of the removed TBox and a list of names of option-
ally removed ABoxes

Remarks: All ABoxes referencing the specified TBox are also deleted.

Examples: (forget-tbox ’smith-family)

70

delete-tbox macro

Description: Delete the specified TBox from the list of all TBoxes. Usually this enables
the garbage collector to recycle the memory used by this TBox.

Syntax: (delete-tbox TBN)

Arguments: TBN - is a TBox name.

Values: List containing the name of the removed TBox and a list of names of option-
ally removed ABoxes

Remarks: Calls forget-tbox

Examples: (delete-tbox smith-family)

delete-all-tboxes function

Description: Delete all known TBoxes except the default TBox called default. Usu-
ally this enables the garbage collector to recycle the memory used by these
TBoxes.

Syntax: (delete-all-tboxes)

Values: List containing the names of the removed TBoxes and a list of names of
optionally removed ABoxes

Remarks: All ABoxes are also deleted.

71

create-tbox-clone function

Description: Returns a new TBox object which is a clone of the given TBox. The clone
keeps all declarations from its original but it is otherwise fresh, i.e., new
declarations can be added. This function allows one to create new TBox
versions without the need to reload the already known declarations.

Syntax: (create-tbox-clone tbox &key (new-name nil) (overwrite nil))

Arguments: tbox - is a TBox name or a TBox object.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of tbox is generated otherwise.

overwrite - if bound to t an existing TBox with the name given by new -
name is overwritten. If bound to nil an error is signaled if a TBox
with the name given by new -name is found.

Values: TBox object

Remarks: The variable *current-tbox* is set to the result of this function.

Examples: (create-tbox-clone ’my-TBox)
(create-tbox-clone ’my-TBox :new-name ’my-clone :overwrite t)

clone-tbox macro

Description: Returns a new TBox object which is a clone of the given TBox. The clone
keeps all declarations from its original but it is otherwise fresh, i.e., new
declarations can be added. This function allows one to create new TBox
versions without the need to reload the already known declarations.

Syntax: (clone-tbox TBN &key (new-name nil) (overwrite nil))

Arguments: TBN - is a TBox name.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of tbox is generated otherwise.

overwrite - if bound to t an existing TBox with the name given by new -
name is overwritten. If bound to nil an error is signaled if a TBox
with the name given by new -name is found.

Values: TBox object

Remarks: The function create-tbox-clone is called.

Examples: (clone-tbox my-TBox)
(clone-tbox my-TBox :new-name my-clone :overwrite t)

See also: Function create-tbox-clone on page 72.

72

find-tbox function

Description: Returns a TBox object with the given name among all TBoxes.

Syntax: (find-tbox TBN &optional (errorp t))

Arguments: TBN - is the name of the TBox to be found.
errorp - if bound to t an error is signaled if the TBox is not found.

Values: TBox object

Remarks: This function can also be used to get rid of TBoxes or to rename TBoxes as
shown in the examples.

Examples: (find-tbox ’my-TBox)

Getting rid of a TBox:
(setf (find-tbox ’tbox1) nil)

Renaming a TBox:
(setf (find-tbox ’tbox2) tbox1)

tbox-name function

Description: Finds the name of the given TBox object.

Syntax: (tbox-name tbox)

Arguments: tbox - TBox object

Values: TBox name

Remarks: This function is only needed in the Lisp version.

clear-default-tbox function

Description: This function initializes the default TBox.

Syntax: (clear-default-tbox)

Arguments:

associated-aboxes function

Description: Returns a list of ABoxes or ABox names which are defined wrt. the TBox
specified as a parameter.

Syntax: (associated-aboxes TBN)

Arguments: TBN - is the name of a TBox.

Values: List of ABox objects

73

xml-read-tbox-file function

Description: A file in XML format containing TBox declarations is parsed and the result-
ing TBox is returned.

Syntax: (xml-read-tbox-file pathname)

Arguments: pathname - is the pathname of a file

Values: TBox object

Remarks: Only XML descriptions which correspond the so-called FaCT DTD are
parsed, everyting else is ignored.

Examples: (xml-read-tbox-file "project:TBoxes;tbox-one.xml")

rdfs-read-tbox-file function

Description: A file in RDFS format containing TBox declarations is parsed and the re-
sulting TBox is returned. The name of the TBox is the filename without file
type.

Syntax: (rdfs-read-tbox-file pathname)

Arguments: pathname - is the pathname of a file

Values: TBox object

Remarks: If the file to be read also contains RDF descriptions, use the function
daml-read-file instead. The RDF descriptions are represented using ap-
propriate ABox assertions. The function rdfs-read-tbox-file is supported
for backward compatibility.

Examples: (rdfs-read-tbox-file "project:TBoxes;tbox-one.rdfs")

6.2 ABox Management

If RACER is started, there exists a ABox named DEFAULT, which is set to the current
ABox.

74

in-abox macro

Description: The ABox with this name is taken or generated and bound to
current-abox. If a TBox is specified, the ABox is also initialized.

Syntax: (in-abox ABN &optional (TBN (tbox-name *current-tbox*)))

Arguments: ABN - ABox name

TBN - name of the TBox to be associated with the ABox.

Values: ABox object named ABN

Remarks: If the specified TBox does not exist, an error is signaled.

Usually this macro is used at top of a file containing an ABox. This macro
can also be used to create new ABoxes. If the ABox is to be continued in
another file, the TBox must not be specified again.

The specified ABox is the *current-abox* until in-abox is called again or
the variable *current-abox* is manipulated directly. The TBox of the ABox
is made the *current-tbox*.

Examples: (in-abox peanuts-characters peanuts)
(instance Schroeder Piano-Player)

...

See also: Macro signature on page 68.

init-abox function

Description: Initializes an existing ABox or generates a new ABox and binds it to the
variable *current-abox*. During the initialization all assertions and the
link to the referenced TBox are deleted.

Syntax: (init-abox abox &optional (tbox *current-tbox*))

Arguments: abox - ABox object to initialize

tbox - TBox object associated with the ABox

Values: abox

Remarks: The tbox has to already exist before it can be referred to by init-abox.

75

ensure-abox-signature function

Description: Defines the signature for an ABox and initializes the ABox.

Syntax: (ensure-abox-signature abox &key (individuals nil) (objects nil))

Arguments: abox - ABox object
individuals - is a list of individual names.
objects - is a list of concrete domain object names.

See also: Macro signature on page 68 is the macro counterpart. It allows to specify
a signature for an ABox and a TBox with one call.

abox-signature function

Description: Gets the signature for an ABox.

Syntax: (abox-signature &optional ABN)

Arguments: ABN - is an ABox name

kb-signature function

Description: Gets the signature for a knowledge base.

Syntax: (kb-signature &optional KBN)

Arguments: KBN - is a name for a knowledge base.

current-abox special-variable

Description: The variable *current-abox* refers to the current ABox object. It is set by
the function init-abox or by the macros in-abox and in-knwoledge-base.

Remarks: The variable is only provided in the Lisp version.

See also: Definition of current-abox

current-abox function

Description: Returns the value of the variable *current-abox*

Syntax: (current-abox)

Arguments:

See also: Definition of *current-abox*

76

save-abox function

Description: If a pathname is specified, an ABox is saved to a file. In case a stream is
specified, the ABox is written to the stream (the stream must already be
open) and the keywords if -exists and if -does-not -exist are ignored.

Syntax: (save-abox pathname-or-stream &optional (abox *current-abox*)
&key (syntax :krss) (transformed nil) (if -exists :supersede)
(if -does-not-exist :create))

Arguments: pathname-or -stream - is the name of the file or an output stream.

abox - ABox object

syntax - indicates the syntax of the TBox. Possible value for the syntax
argmument are :krss (the default), :xml, or :daml.

transformed - if bound to t the ABox is saved in the format it has after
preprocessing by RACER.

if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is :supersede.

if -does-not -exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create.

Values: ABox object

Remarks: A file may contain several ABoxes.
The usual way to load an ABox file is to use the Lisp function load.
If the server version is used, it must have been started with the option -u in
order to have this function available.

Examples: (save-abox "project:ABoxes;abox-one.lisp")
(save-abox "project:ABoxes;final-abox.lisp"

(find-abox ’abox-one) :if-exists :error)

forget-abox function

Description: Delete the specified ABox from the list of all ABoxes. Usually this enables
the garbage collector to recycle the memory used by this ABox.

Syntax: (forget-abox abox)

Arguments: abox - is a ABox object or ABox name.

Values: The name of the removed ABox

Examples: (forget-abox ’family)

77

delete-abox macro

Description: Delete the specified ABox from the list of all ABoxes. Usually this enables
the garbage collector to recycle the memory used by this ABox.

Syntax: (delete-abox ABN)

Arguments: ABN - is a ABox name.

Values: The name of the removed ABox

Remarks: Calls forget-abox

Examples: (delete-abox family)

delete-all-aboxes function

Description: Delete all known ABoxes. Usually this enables the garbage collector to recycle
the memory used by these ABoxes.

Syntax: (delete-all-aboxes)

Values: List containing the names of the removed ABoxes

create-abox-clone function

Description: Returns a new ABox object which is a clone of the given ABox. The clone
keeps the assertions and the state from its original but new declarations can
be added without modifying the original ABox. This function allows one to
create new ABox versions without the need to reload (and reprocess) the
already known assertions.

Syntax: (create-abox-clone abox &key (new-name nil) (overwrite nil))

Arguments: abox - is an ABox name or an ABox object.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of abox is generated otherwise.

overwrite - if bound to t an existing ABox with the name given by new -name
is overwritten. If bound to nil an error is signaled if an ABox with
the name given by new -name is found.

Values: ABox object

Remarks: The variable *current-abox* is set to the result of this function.

Examples: (create-abox-clone ’my-ABox)
(create-abox-clone ’my-ABox :new-name ’abox-clone :overwrite t)

78

clone-abox macro

Description: Returns a new ABox object which is a clone of the given ABox. The clone
keeps the assertions and the state from its original but new declarations can
be added without modifying the original ABox. This function allows one to
create new ABox versions without the need to reload (and reprocess) the
already known assertions.

Syntax: (clone-abox ABN &key (new-name nil) (overwrite nil))

Arguments: ABN - is an ABox name.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of abox is generated otherwise.

overwrite - if bound to t an existing ABox with the name given by new -name
is overwritten. If bound to nil an error is signaled if an ABox with
the name given by new -name is found.

Values: ABox object

Remarks: The function create-abox-clone is called.

Examples: (clone-abox my-ABox)
(clone-abox my-ABox :new-name abox-clone :overwrite t)

See also: Function create-abox-clone on page 79.

find-abox function

Description: Finds an ABox object with a given name among all ABoxes.

Syntax: (find-abox ABN &optional (errorp t))

Arguments: ABN - is the name of the ABox to be found.

errorp - if bound to t an error is signaled if the ABox is not found.

Values: ABox object

Remarks: This function can also be used to delete ABoxes or rename ABoxes as shown
in the examples.

Examples: (find-tbox ’my-ABox)

Get rid of an ABox, i.e. make the ABox garbage collectible:
(setf (find-abox ’abox1) nil)

Renaming an ABox:
(setf (find-abox ’abox2) abox1)

79

abox-name function

Description: Finds the name of the given ABox object.

Syntax: (abox-name abox)

Arguments: abox - ABox object

Values: ABox name

Remarks: Only available in the Lisp version.

Examples: (abox-name (find-abox ’my-ABox))

tbox function

Description: Gets the associated TBox for an ABox.

Syntax: (tbox abox)

Arguments: abox - ABox object

Values: TBox object

Remarks: This function is provided in the Lisp version only.

associated-tbox function

Description: Gets the associated TBox for an ABox.

Syntax: (associated-tbox abox)

Arguments: abox - ABox object

Values: TBox object

Remarks: This function is provided in the server version only.

set-associated-tbox function

Description: Sets the associated TBox for an ABox.

Syntax: (set-associated-tbox ABN TBN)

Arguments: ABN - ABox name

TBN - TBox name

Values: TBox object

Remarks: This function is provided in the server version only.

80

7 Knowledge Base Declarations

Knowledge base declarations include concept axioms and role declarations for the TBox and
the assertions for the ABox. The TBox object and the ABox object must exist before the
functions for knowledge base declarations can be used. The order of axioms and assertions
does not matter because forward references can be handled by RACER.

The macros for knowledge base declarations add the concept axioms and role declarations
to the *current-tbox* and the assertions to the *current-abox*.

7.1 Built-in Concepts

top, top concept

Description: The name of most general concept of each TBox, the top concept (>).

Syntax: *top*

Remarks: The concepts *top* and top are synonyms. These concepts are elements of
every TBox.

bottom, bottom concept

Description: The name of the incoherent concept, the bottom concept (⊥).

Syntax: *bottom*

Remarks: The concepts *bottom* and bottom are synonyms. These concepts are ele-
ments of every TBox.

7.2 Concept Axioms

This section documents the macros and functions for specifying concept axioms. The dif-
ferent concept axioms were already introduced in section 3.2.

Please note that the concept axioms define-primitive-concept, define-concept and
define-disjoint-primitive-concept have the semantics given in the KRSS specification
only if they are the only concept axiom defining the concept CN in the terminology. This
is not checked by the RACER system.

81

implies macro

Description: Defines a GCI between C1 and C2.

Syntax: (implies C1 C2)

Arguments: C1, C2 - concept term

Remarks: C1 states necessary conditions for C2. This kind of facility is an addendum
to the KRSS specification.

Examples: (implies Grandmother (and Mother Female))
(implies

(and (some has-sibling Sister) (some has-sibling Twin)
(exactly 1 has-sibling))

(and Twin (all has-sibling Twin-sister)))

equivalent macro

Description: States the equality between two concept terms.

Syntax: (equivalent C1 C2)

Arguments: C1, C2 - concept term

Remarks: This kind of concept axiom is an addendum to the KRSS specification.

Examples: (equivalent Grandmother
(and Mother (some has-child Parent)))

(equivalent
(and polygon (exactly 4 has-angle))
(and polygon (exactly 4 has-edges)))

disjoint macro

Description: This axiom states the disjointness of a set of concepts.

Syntax: (disjoint CN 1 ...CN n)

Arguments: CN 1,. . . , CN n - concept names

Examples: (disjoint Yellow Red Blue)
(disjoint January February ...November December))

82

define-primitive-concept KRSS macro

Description: Defines a primitive concept.

Syntax: (define-primitive-concept CN C)

Arguments: CN - concept name

C - concept term

Remarks: C states the necessary conditions for CN .

Examples: (define-primitive-concept Grandmother (and Mother Female))
(define-primitive-concept Father Parent)

define-concept KRSS macro

Description: Defines a concept.

Syntax: (define-concept CN C)

Arguments: CN - concept name

C - concept term

Remarks: Please note that in RACER, definitions of a concept do not have to be unique.
Several definitions may be given for the same concept.

Examples: (define-concept Grandmother
(and Mother (some has-child Parent)))

define-disjoint-primitive-concept KRSS macro

Description: This axiom states the disjointness of a group of concepts.

Syntax: (define-disjoint-primitive-concept CN GNL C)

Arguments: CN - concept name

GNL - group name list, which lists all groups to which CN belongs to
(among other concepts). All elements of each group are declared to
be disjoint.

C - concept term, that is implied by CN .

Remarks: This function is just supplied to be compatible with the KRSS.

Examples: (define-disjoint-primitive-concept January
(Month) (exactly 31 has-days))

(define-disjoint-primitive-concept February
(Month) (and (at-least 28 has-days) (at-most 29 has-days)))

...

83

add-concept-axiom function

Description: This function adds a concept axiom to a TBox.

Syntax: (add-concept-axiom tbox C1 C2 &key (inclusion-p nil))

Arguments: tbox - TBox object

C1, C2 - concept term

inclusion-p - boolean indicating if the concept axiom is an inclusion axiom
(GCI) or an equality axiom. The default is to state an inclusion.

Values: tbox

Remarks: RACER imposes no constraints on the sequence of concept axiom declara-
tions with add-concept-axiom, i.e. forward references to atomic concepts
for which other concept axioms are added later are supported in RACER.

add-disjointness-axiom function

Description: This function adds a disjointness concept axiom to a TBox.

Syntax: (add-disjointness-axiom tbox CN GN)

Arguments: tbox - TBox object

CN - concept name

GN - group name

Values: tbox

7.3 Role Declarations

Roles can be declared with the following statements.

84

define-primitive-role KRSS macro (with changes)

Description: Defines a role.

Syntax: (define-primitive-role RN &key (transitive nil) (feature nil)
(symmetric nil) (reflexive nil) (inverse nil) (domain nil)
(range nil) (parents nil))

Arguments: RN - role name

transitive - if bound to t declares that the new role is transitive.

feature - if bound to t declares that the new role is a feature.

symmetric - if bound to t declares that the new role is a symmetric. This is
equivalent to declaring that the new role’s inverse is the role itself.

reflexive - if bound to t declares that the new role is reflexive (currently only
supported for ALCH). If feature is bound to t, the value of reflexive
is ignored.

inverse - provides a name for the inverse role of RN . This is equivalent to
(inv RN). The inverse role of RN has no user-defined name, if
inverse is bound to nil.

domain - provides a concept term defining the domain of role RN . This is
equivalent to adding the axiom (implies (at-least 1 RN) C)
if domain is bound to the concept term C . No domain is declared
if domain is bound to nil.

range - provides a concept term defining the range of role RN . This is
equivalent to adding the axiom (implies *top* (all RN D)) if
range is bound to the concept term D . No range is declared if range
is bound to nil.

parents - provides a list of superroles for the new role. The role RN has no
superroles, if parents is bound to nil.
If only a single superrole is specified, the keyword :parent may
alternatively be used, see the examples.

Remarks: This function combines several KRSS functions for defining properties of a
role. For example the conjunction of roles can be expressed as shown in the
first example below.

A role that is declared to be a feature cannot be transitive. A role with a
feature as a parent has to be a feature itself. A role with transitive subroles
may not be used in number restrictions.

Examples: (define-primitive-role conjunctive-role :parents (R-1 ...R-n))
(define-primitive-role has-descendant :transitive t

:inverse descendant-of :parent has-child)
(define-primitive-role has-children :inverse has-parents

:domain parent :range children))

See also: Macro signature on page 68.
Section 3.3 and Figure 29, on page 51 for domain and range restrictions.

85

define-primitive-attribute KRSS macro (with changes)

Description: Defines an attribute.

Syntax: (define-primitive-attribute AN &key (symmetric nil)
(inverse nil) (domain nil) (range nil) (parents nil))

Arguments: AN - attribute name

symmetric - if bound to t declares that the new role is a symmetric. This is
equivalent to declaring that the new role’s inverse is the role itself.

inverse - provides a name for the inverse role of AN . This is equivalent to
(inv AN). The inverse role of AN has no user-defined name, if
inverse is bound to nil.

domain - provides a concept term defining the domain of role AN . This is
equivalent to adding the axiom (implies (at-least 1 AN) C)
if domain is bound to the concept term C . No domain is declared
if domain is bound to nil.

range - provides a concept term defining the range of role AN . This is
equivalent to adding the axiom (implies *top* (all AN D)) if
range is bound to the concept term D . No range is declared if range
is bound to nil.

parents - provides a list of superroles for the new role. The role AN has no
superroles, if parents is bound to nil.
If only a single superrole is specified, the keyword :parent may
alternatively be used, see examples.

Remarks: This macro is supplied to be compatible with the KRSS specification. It is re-
dundant since the macro define-primitive-role can be used with :feature
t. This function combines several KRSS functions for defining properties of
an attribute.

An attribute cannot be transitive. A role with a feature as a parent has to
be a feature itself.

Examples: (define-primitive-attribute has-mother
:domain child :range mother :parents (has-parents))

(define-primitive-attribute has-best-friend
:inverse best-friend-of :parent has-friends)

See also: Macro signature on page 68.
Section 3.3 and Figure 29, on page 51 for domain and range restrictions.

86

add-role-axioms function

Description: Adds a role to a TBox.

Syntax: (add-role-axioms tbox RN &key (cd-attribute nil) (transitive nil)
(feature nil) (symmetric nil) (reflexive nil) (inverse nil)
(domain nil) (range nil) (parents nil))

Arguments: tbox - TBox object to which the role is added.

RN - role name

cd -attribute - may be either integer or real.

transitive - if bound to t declares that RN is transitive.

feature - if bound to t declares that RN is a feature.

symmetric - if bound to t declares that RN is a symmetric. This is equivalent
to declaring that the new role’s inverse is the role itself.

reflexive - if bound to t declares that RN is reflexive (currently only sup-
ported for ALCH). If feature is bound to t, the value of reflexive
is ignored.

inverse - provides a name for the inverse role of RN (is equivalent to (inv
RN)). The inverse role of RN has no user-defined name, if inverse
is bound to nil.

domain - provides a concept term defining the domain of role RN (equivalent
to adding the axiom (implies (at-least 1 RN) C) if domain
is bound to the concept term C . No domain is declared if domain
is bound to nil.

range - provides a concept term defining the range of role RN (equivalent
to adding the axiom (implies *top* (all RN D)) if range is
bound to the concept term D . No range is declared if range is
bound to nil.

parents - providing a single role or a list of superroles for the new role. The
role RN has no superroles, if parents is bound to nil.

Values: tbox

Remarks: For each role RN there may be only one call to add-role-axioms per TBox.

See also: Section 3.3 and Figure 29, on page 51 for domain and range restrictions.

87

functional macro

Description: States that a role is to be interpreted as functional.

Syntax: (functional RN
&optional (TBN (tbox-name *current-tbox*)))

Arguments: RN - role name

TBN - TBox name

Remarks: States that a role is to be interpreted as functional.

role-is-functional function

Description: States that a role is to be interpreted as functional.

Syntax: (role-is-functional RN
&optional (TBN (tbox-name *current-tbox*)))

Arguments: RN - role name

TBN - TBox name

transitive macro

Description: States that a role is to be interpreted as transitive.

Syntax: (transitive RN
&optional (TBN (tbox-name *current-tbox*)))

Arguments: RN - role name

TBN - TBox name

role-is-transitive function

Description: States that a role is to be interpreted as transitive.

Syntax: (role-is-transitive RN
&optional (TBN (tbox-name *current-tbox*)))

Arguments: RN - role name

TBN - TBox name

88

inverse macro

Description: Defines a name for the inverse of a role.

Syntax: (inverse RN inverse − role
&optional (TBN (tbox-name *current-tbox*)))

Arguments: RN - role name

inverse − role - inverse role of the Form (inv RN)

TBN - TBox name

inverse-of-role function

Description: Defines a name for the inverse of a role.

Syntax: (inverse-of-role RN invese − role
&optional (TBN (tbox-name *current-tbox*)))

Arguments: RN - role name

inverse − role - inverse role of the Form (inv RN)

TBN - TBox name

roles-equivalent macro

Description: Declares two roles to be equivalent.

Syntax: (roles-equivalent RN1 RN1 arguTBN)

Arguments: RN1 - role name

RN2 - role name

TBN - TBox name

roles-equivalent-1 function

Description: Declares two roles to be equivalent.

Syntax: (roles-equivalent-1 RN1 RN2 arguTBN)

Arguments: RN1 - role name

RN2 - role name

TBN - TBox name

89

domain macro

Description: Declares the domain of a role.

Syntax: (domain RN C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: RN - role name

C - concept

TBN - TBox name

role-has-domain function

Description: Declares the domain of a role.

Syntax: (role-has-domain RN C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: RN - role name

C - concept

TBN - TBox name

attribute-has-domain function

Description: Declares the domain of an attribute.

Syntax: (attribute-has-domain AN C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: AN - attribute name

C - concept

TBN - TBox name

range macro

Description: Declares the range of a role.

Syntax: (range RN C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: RN - role name

C - concept

TBN - TBox name

90

role-has-range function

Description: Declares the range of a role.

Syntax: (role-has-range RN C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: RN - role name

C - concept

TBN - TBox name

attribute-has-range function

Description: Declares the range of an attribute.

Syntax: (attribute-has-range AN D
&optional (TBN (tbox-name *current-tbox*)))

Arguments: AN - attribute name

C - concept

D - either cardinal, integer, real, complex, or string

implies-role macro

Description: Defines a parent of a role.

Syntax: (implies-role RN1 RN2

&optional (TBN (tbox-name *current-tbox*)))

Arguments: RN1 - role name

RN2 - parent role name

TBN - TBox name

role-has-parent function

Description: Defines a parent of a role.

Syntax: (role-has-parent RN1 RN2

&optional (TBN (tbox-name *current-tbox*)))

Arguments: RN1 - role name

RN2 - parent role name

TBN - TBox name

91

7.4 Concrete Domain Attribute Declaration

define-concrete-domain-attribute macro

Description: Defines a concrete domain attribute.

Syntax: (define-concrete-domain-attribute AN &key type domain)

Arguments: AN - attribute name

type - can be either bound to cardinal, integer, real, complex, or
string. The type must be supplied.

domain - a concept describing the domain of the attribute.

Remarks: Calls add-role-axioms

Examples: (define-concrete-domain-attribute has-age :type integer)
(define-concrete-domain-attribute has-weight :type real)

See also: Macro signature on page 68 and Section 3.5.

7.5 Assertions

instance KRSS macro

Description: Builds a concept assertion, asserts that an individual is an instance of a
concept.

Syntax: (instance IN C)

Arguments: IN - individual name

C - concept term

Examples: (instance Lucy Person)
(instance Snoopy (and Dog Cartoon-Character))

92

add-concept-assertion function

Description: Builds an assertion and adds it to an ABox.

Syntax: (add-concept-assertion abox IN C)

Arguments: abox - ABox object

IN - individual name

C - concept term

Values: abox

Examples: (add-concept-assertion (find-abox ’peanuts-characters)
’Lucy ’Person)

(add-concept-assertion (find-abox ’peanuts-characters)
’Snoopy ’(and Dog Cartoon-Character))

forget-concept-assertion function

Description: Retracts a concept assertion from an ABox.

Syntax: (forget-concept-assertion abox IN C)

Arguments: abox - ABox object

IN - individual name

C - concept term

Values: abox

Remarks: For answering subsequent queries the index structures for the ABox will be
recomputed, i.e. some queries might take some time (e.g. those queries that
require the realization of the ABox).

Examples: (forget-concept-assertion (find-abox ’peanuts-characters)
’Lucy ’Person)

(forget-concept-assertion (find-abox ’peanuts-characters)
’Snoopy ’(and Dog Cartoon-Character))

93

related KRSS macro

Description: Builds a role assertion, asserts that two individuals are related via a role (or
feature).

Syntax: (related IN 1 IN 2 R)

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the filler

R - a role term or a feature term.

Examples: (related Charlie-Brown Snoopy has-pet)
(related Linus Lucy (inv has-brother))

add-role-assertion function

Description: Adds a role assertion to an ABox.

Syntax: (add-role-assertion abox IN 1 IN 2 R)

Arguments: abox - ABox object

IN 1 - individual name of the predecessor

IN 2 - individual name of the filler

R - role term

Values: abox

Examples: (add-role-assertion (find-abox ’peanuts-characters)
’Charlie-Brown ’Snoopy ’has-pet)

(add-role-assertion (find-abox ’peanuts-characters)
’Linus ’Lucy ’(inv has-brother))

94

forget-role-assertion function

Description: Retracts a role assertion from an ABox.

Syntax: (forget-role-assertion abox IN 1 IN 2 R)

Arguments: abox - ABox object

IN 1 - individual name of the predecessor

IN 2 - individual name of the filler

R - role term

Values: abox

Remarks: For answering subsequent queries the index structures for the ABox will be
recomputed, i.e. some queries might take some time (e.g. those queries that
require the realization of the ABox).

Examples: (forget-role-assertion (find-abox ’peanuts-characters)
’Charlie-Brown ’Snoopy ’has-pet)

(forget-role-assertion (find-abox ’peanuts-characters)
’Linus ’Lucy ’(inv has-brother))

forget-disjointness-axiom function

Description: This function is used to forget declarations with
define-disjoint-primitive-concept.

Syntax: (forget-disjointness-axiom tbox CN group − name)

Arguments: tbox - TBox object

CN - concept-name

group − name - name of the disjointness group

forget-disjointness-axiom-statement function

Description: This function is used to forget statements of the form (disjoint a b c)

Syntax: (forget-disjointness-axiom-statement tbox &rest concepts)

Arguments: tbox - TBox object

concepts - List of concepts

95

define-distinct-individual KRSS macro

Description: This statement asserts that an individual is distinct to all other individuals
in the ABox.

Syntax: (define-distinct-individual IN)

Arguments: IN - name of the individual

Values: IN

Remarks: Because the unique name assumption holds in RACER, all individuals are
mapped to distinct domain objects by definition. Thus, the function is es-
sentially a no-op. This function is supplied to be compatible with the KRSS
specification.

state KRSS macro

Description: This macro asserts a set of ABox statements.

Syntax: (state &body forms)

Arguments: forms - is a sequence of instance or related assertions.

Remarks: This macro is supplied to be compatible with the KRSS specification. It
realizes an implicit progn for assertions.

forget macro

Description: This macro retracts a set of TBox/ABox statements. Note that statement to
be forgotten must be literally identical to the ones previously asserted, i.e.,
only explicitly given information can be forgotten.

Syntax: (forget (&key (tbox *current-tbox*) (abox *current-abox))
&body forms)

Arguments: forms - is a sequence of assertions.

Remarks: For answering subsequent queries the index structures for the TBox/ABox
will probably be recomputed, i.e. some queries might take some time (e.g.
those queries that require the reclassification of the TBox or realization of
the ABox).

Examples: (forget (:tbox family) (implies c d) (implies a b))
(forget (:abox smith-family) (instance i d))

96

forget-statement function

Description: Functional interface for the macro forget

Syntax: (forget-statement tbox abox &rest statements)

Arguments: tbox - TBox

tbox - ABox

statements - statement previously asserted

7.6 Concrete Domain Assertions

add-constraint-assertion function

Description: Builds a concrete domain predicate assertion and adds it to an ABox.

Syntax: (add-constraint-assertion abox constraint)

Arguments: abox - ABox object

constraint - constraint form

Remarks: The syntax of concrete domain constraints is described in Section 3.1, page
45, and in Figure ??, page ??.

Examples: (add-constraint-assertion (find-abox ’family)
’(= temp-eve 102.56))

constraints macro

Description: This macro asserts a set of concrete domain predicates for concrete domain
objects.

Syntax: (constraints &body forms)

Arguments: forms - is a sequence of concrete domain predicate assertions.

Remarks: Calls add-constraint-assertion. The syntax of concrete domain con-
straints is described in Section 3.1, page 45, and in Figure ??, page ??.

Examples: (constraints
(= temp-eve 102.56)
(= temp-doris 38.5)
(> temp-eve temp-doris))

97

add-attribute-assertion function

Description: Adds a concrete domain attribute assertion to an ABox. Asserts that an
individual is related with a concrete domain object via an attribute.

Syntax: (add-attribute-assertion abox IN ON AN)

Arguments: abox - ABox object

IN - individual name

ON - concrete domain object name as the filler

AN - attribute name

Examples: (add-attribute-assertion (find-abox ’family)
’eve ’temp-eve ’temperature-fahrenheit))

constrained macro

Description: Adds a concrete domain attribute assertion to an ABox. Asserts that an
individual is related with a concrete domain object via an attribute.

Syntax: (constrained IN ON AN)

Arguments: IN - individual name

ON - concrete domain object name as the filler

AN - attribute name

Remarks: Calls add-attribute-assertion

Examples: (constrained eve temp-eve temperature-fahrenheit)

8 Reasoning Modes

auto-classify special-variable

Description: Possible values are :lazy, :eager, :lazy-verbose, :eager-verbose, nil

Remarks: This variable is available in the Lisp version only.

See also: Section 3.8 on page 55.

98

auto-realize special-variable

Description: Possible values are :lazy, :eager, :lazy-verbose, :eager-verbose, nil

Remarks: This variable is available in the Lisp version only.

See also: Section 3.8 on page 55.

9 Evaluation Functions and Queries

9.1 Queries for Concept Terms

concept-satisfiable? macro

Description: Checks if a concept term is satisfiable.

Syntax: (concept-satisfiable? C &optional (tbox *current-tbox*))

Arguments: C - concept term.

tbox - TBox object

Values: Returns t if C is satisfiable and nil otherwise.

Remarks: For testing whether a concept term is satisfiable with respect to a TBox tbox .
If satisfiability is to be tested without reference to a TBox, nil can be used.

concept-satisfiable-p function

Description: Checks if a concept term is satisfiable.

Syntax: (concept-satisfiable-p C tbox)

Arguments: C - concept term.

tbox - TBox object

Values: Returns t if C is satisfiable and nil otherwise.

Remarks: For testing whether a concept term is satisfiable with respect to a TBox tbox .
If satisfiability is to be tested without reference to a TBox, nil can be used.

99

concept-subsumes? KRSS macro

Description: Checks if two concept terms subsume each other.

Syntax: (concept-subsumes? C1 C2 &optional (tbox *current-tbox*))

Arguments: C1 - concept term of the subsumer

C2 - concept term of the subsumee

tbox - TBox object

Values: Returns t if C1 subsumes C2 and nil otherwise.

concept-subsumes-p function

Description: Checks if two concept terms subsume each other.

Syntax: (concept-subsumes-p C1 C2 tbox)

Arguments: C1 - concept term of the subsumer

C2 - concept term of the subsumee

tbox - TBox object

Values: Returns t if C1 subsumes C2 and nil otherwise.

Remarks: For testing whether a concept term subsumes the other with respect to a
TBox tbox . If the subsumption relation is to be tested without reference to
a TBox, nil can be used.

See also: Function concept-equivalent-p, on page 101, and function atomic-
concept-synonyms, on page 122.

concept-equivalent? macro

Description: Checks if the two concepts are equivalent in the given TBox.

Syntax: (concept-equivalent? C1 C2 &optional (tbox *current-tbox*))

Arguments: C1, C2 - concept term

tbox - TBox object

Values: Returns t if C1 and C2 are equivalent concepts in tbox and nil otherwise.

Remarks: For testing whether two concept terms are equivalent with respect to a TBox
tbox .

See also: Function atomic-concept-synonyms, on page 122, and function
concept-subsumes-p, on page 100.

100

concept-equivalent-p function

Description: Checks if the two concepts are equivalent in the given TBox.

Syntax: (concept-equivalent-p C1 C2 tbox)

Arguments: C1, C2 - concept terms

tbox - TBox object

Values: Returns t if C1 and C2 are equivalent concepts in tbox and nil otherwise.

Remarks: For testing whether two concept terms are equivalent with respect to a TBox
tbox . If the equality is to be tested without reference to a TBox, nil can be
used.

See also: Function atomic-concept-synonyms, on page 122, and function
concept-subsumes-p, on page 100.

concept-disjoint? macro

Description: Checks if the two concepts are disjoint, e.g. no individual can be an instance
of both concepts.

Syntax: (concept-disjoint? C1 C2 &optional (tbox *current-tbox*))

Arguments: C1, C2 - concept term

tbox - TBox object

Values: Returns t if C1 and C2 are disjoint with respect to tbox and nil otherwise.

Remarks: For testing whether two concept terms are disjoint with respect to a TBox
tbox . If the disjointness is to be tested without reference to a TBox, nil can
be used.

concept-disjoint-p function

Description: Checks if the two concepts are disjoint, e.g. no individual can be an instance
of both concepts.

Syntax: (concept-disjoint-p C1 C2 tbox)

Arguments: C1, C2 - concept term

tbox - TBox object

Values: Returns t if C1 and C2 are disjoint with respect to tbox and nil otherwise.

Remarks: For testing whether two concept terms are disjoint with respect to a TBox
tbox . If the disjointness is to be tested without reference to a TBox, nil can
be used.

101

concept-p function

Description: Checks if CN is a concept name for a concept in the specified TBox.

Syntax: (concept-p CN &optional (tbox *current-tbox*))

Arguments: CN - concept name

tbox - TBox object

Values: Returns t if CN is a name of a known concept and nil otherwise.

concept? macro

Description: Checks if CN is a concept name for a concept in the specified TBox.

Syntax: (concept? CN &optional (TBN *current-tbox*))

Arguments: CN - concept name

TBN - TBox name

Values: Returns t if CN is a name of a known concept and nil otherwise.

concept-is-primitive-p function

Description: Checks if CN is a concept name of a so-called primitive concept in the
specified TBox.

Syntax: (concept-is-primitive-p CN &optional (tbox *current-tbox*))

Arguments: CN - concept name

tbox - TBox object

Values: Returns t if CN is a name of a known primitive concept and nil otherwise.

concept-is-primitive? macro

Description: Checks if CN is a concept name of a so-called primitive concept in the
specified TBox.

Syntax: (concept-is-primitive-p CN &optional (TBN (tbox-name
current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Values: Returns t if CN is a name of a known primitive concept and nil otherwise.

102

alc-concept-coherent function

Description: Tests the satisfiability of a K(m), K4(m) or S4(m) formula encoded as an ALC
concept.

Syntax: (alc-concept-coherent C &key (logic :K))

Arguments: C - concept term

logic - specifies the logic to be used.

:K - modal K(m),
:K4 - modal K4(m) all roles are transitive,
:S4 - modal S4(m) all roles are transitive and reflexive.

If no logic is specified, the logic :K is chosen.

Remarks: This function can only be used forALC concept terms, so number restrictions
are not allowed.

9.2 Role Queries

role-subsumes? KRSS macro

Description: Checks if two roles are subsuming each other.

Syntax: (role-subsumes? R1 R2

&optional (TBN (tbox-name *current-tbox*)))

Arguments: R1 - role term of the subsuming role

R2 - role term of the subsumed role

TBN - TBox name

Values: Returns t if R1 is a parent role of R2.

role-subsumes-p function

Description: Checks if two roles are subsuming each other.

Syntax: (role-subsumes-p R1 R2 tbox)

Arguments: R1 - role term of the subsuming role

R2 - role term of the subsumed role

tbox - TBox object

Values: Returns t if R1 is a parent role of R2.

103

role-p function

Description: Checks if R is a role term for a role in the specified TBox.

Syntax: (role-p R &optional (tbox *current-tbox*))

Arguments: R - role term

tbox - TBox object

Values: Returns t if R is a known role term and nil otherwise.

role? macro

Description: Checks if R is a role term for a role in the specified TBox.

Syntax: (role? R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if R is a known role term and nil otherwise.

transitive-p function

Description: Checks if R is a transitive role in the specified TBox.

Syntax: (transitive-p R &optional (tbox *current-tbox*))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is transitive in tbox and nil otherwise.

transitive? macro

Description: Checks if R is a transitive role in the specified TBox.

Syntax: (transitive? R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is transitive in TBN and nil otherwise.

104

feature-p function

Description: Checks if R is a feature in the specified TBox.

Syntax: (feature-p R &optional (tbox *current-tbox*))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is a feature in tbox and nil otherwise.

feature? macro

Description: Checks if R is a feature in the specified TBox.

Syntax: (feature? R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is a feature in TBN and nil otherwise.

cd-attribute-p function

Description: Checks if AN is a concrete domain attribute in the specified TBox.

Syntax: (cd-attribute-p AN &optional (tbox *current-tbox*))

Arguments: AN - attribute name

tbox - TBox object

Values: Returns t if AN is a concrete domain attribute in tbox and nil otherwise.

cd-attribute? macro

Description: Checks if AN is a concrete domain attribute in the specified TBox.

Syntax: (cd-attribute? AN &optional
(TBN (tbox-name *current-tbox*)))

Arguments: AN - attribute name

TBN - TBox name

Values: Returns t if the role AN is a concrete domain attribute in TBN and nil
otherwise.

105

symmetric-p function

Description: Checks if R is symmetric in the specified TBox.

Syntax: (symmetric-p R &optional (tbox *current-tbox*))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is symmetric in tbox and nil otherwise.

symmetric? macro

Description: Checks if R is symmetric in the specified TBox.

Syntax: (symmetric? R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is symmetric in TBN and nil otherwise.

reflexive-p function

Description: Checks if R is reflexive in the specified TBox.

Syntax: (reflexive-p R &optional (tbox *current-tbox*))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is reflexive in tbox and nil otherwise.

reflexive? macro

Description: Checks if R is reflexive in the specified TBox.

Syntax: (reflexive? R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is reflexive in TBN and nil otherwise.

106

atomic-role-inverse function

Description: Returns the inverse role of role term R.

Syntax: (atomic-role-inverse R tbox)

Arguments: R - role term

tbox - TBox object

Values: Role name or term for the inverse role of R.

role-inverse macro

Description: Returns the inverse role of role term R.

Syntax: (role-inverse R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: Role name or term for the inverse role of R.

Remarks: This macro uses atomic-role-inverse.

role-domain macro

Description: Returns the domain of role name RN .

Syntax: (role-domain RN &optional (TBN (tbox-name *current-tbox*)))

Arguments: RN - role name

TBN - TBox name

Remarks: This macro uses atomic-role-domain.

atomic-role-domain function

Description: Returns the domain of role name RN .

Syntax: (atomic-role-domain RN &optional (TBN (tbox-name
current-tbox)))

Arguments: RN - role name

TBN - TBox name

107

role-range macro

Description: Returns the range of role name RN .

Syntax: (role-range RN &optional (TBN (tbox-name *current-tbox*)))

Arguments: RN - role name

TBN - TBox name

Remarks: This macro uses atomic-role-range.

atomic-role-range function

Description: Returns the range of role name RN .

Syntax: (atomic-role-range RN &optional (TBN (tbox-name
current-tbox)))

Arguments: RN - role name

TBN - TBox name

attribute-domain macro

Description: Returns the domain of attribute name AN .

Syntax: (attribute-domain AN &optional (TBN (tbox-name
current-tbox)))

Arguments: AN - attribute name

TBN - TBox name

attribute-domain-1 function

Description: Returns the domain of attribute name AN .

Syntax: (attribute-domain-1 AN &optional (TBN (tbox-name
current-tbox)))

Arguments: AN - attribute name

TBN - TBox name

9.3 TBox Evaluation Functions

108

classify-tbox function

Description: Classifies the whole TBox.

Syntax: (classify-tbox &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Remarks: This function needs to be executed before queries can be posed.

check-tbox-coherence function

Description: This function checks if there are any unsatisfiable atomic concepts in the
given TBox.

Syntax: (check-tbox-coherence &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: Returns a list of all atomic concepts in tbox that are not satisfiable, i.e. an
empty list (NIL) indicates that there is no additional synonym to bottom.

Remarks: This function does not compute the concept hierarchy. It is much faster
than classify-tbox, so whenever it is sufficient for your application use
check-tbox-coherence. This function is supplied in order to check whether
an atomic concept is satisfiable during the development phase of a TBox.
There is no need to call the function check-tbox-coherence if, for instance,
a certain ABox is to be checked for consistency (with abox-consistent-p).

tbox-classified-p function

Description: It is checked if the specified TBox has already been classified.

Syntax: (tbox-classified-p &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox has been classified, otherwise it returns nil.

tbox-classified? macro

Description: It is checked if the specified TBox has already been classified.

Syntax: (tbox-classified? &optional (TBN (tbox-name *current-tbox*)))

Arguments: TBN - TBox name

Values: Returns t if the specified TBox has been classified, otherwise it returns nil.

109

tbox-prepared-p function

Description: It is checked if internal index structures are already computed for the speci-
fied TBox.

Syntax: (tbox-prepared-p &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox has been processed (to some extent), other-
wise it returns nil.

Remarks: The function is used to determine whether Racer has spent some effort in
processing the axioms of the TBox.

tbox-prepared? macro

Description: It is checked if internal index structures are already computed for the speci-
fied TBox.

Syntax: (tbox-prepared? &optional (TBN (tbox-name *current-tbox*)))

Arguments: TBN - TBox name

Values: Returns t if the specified TBox has been processed (to some extent), other-
wise it returns nil.

Remarks: The form is used to determine whether Racer has spent some effort in pro-
cessing the axioms of the TBox.

tbox-cyclic-p function

Description: It is checked if cyclic GCIs are present in a TBox

Syntax: (tbox-cyclic-p &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox contains cyclic GCIs otherwise it returns
nil.

Remarks: Cyclic GCIs can be given either directly as a GCI or can implicitly result
from processing, for instance, disjointness axioms.

110

tbox-cyclic? macro

Description: It is checked if cyclic GCIs are present in a TBox

Syntax: (tbox-cyclic? &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox contains cyclic GCIs otherwise it returns
nil.

Remarks: Cyclic GCIs can be given either directly as a GCI or can implicitly result
from processing, for instance, disjointness axioms.

tbox-coherent-p function

Description: This function checks if there are any unsatisfiable atomic concepts in the
given TBox.

Syntax: (tbox-coherent-p &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: Returns nil if there is an inconsistent atomic concept, otherwise it returns
t.

Remarks: This function calls check-tbox-coherence if necessary.

tbox-coherent? macro

Description: Checks if there are any unsatisfiable atomic concepts in the current or spec-
ified TBox.

Syntax: (tbox-coherent? &optional (TBN (tbox-name *current-tbox*)))

Arguments: TBN - TBox name

Values: Returns t if there is an inconsistent atomic concept, otherwise it returns nil.

Remarks: This macro uses tbox-coherent-p.

111

get-tbox-language function

Description: Returns a specifier indicating the description logic language used in the ax-
ioms of a given TBox.

Syntax: (get-tbox-language &optional (TBN (tbox-name
current-tbox)))

Arguments: TBN - TBox name

Values: The language is indicated with the quasi-standard scheme using letters. Note
that the language is identified for selecting optimization techniques. Since
RACER does not exploit optimization techniques for sublanguages of ALC,
the language indicator starts always with ALC. Then f indicates whether
features are used, Q indicates qualified number restrictions, N indicates simple
number restrictions, H stands for a role hierarchy, I indicates inverse roles, r+
indicates transitive roles, the suffix -D indicates the use of concrete domain
language constructs.

get-meta-constraint function

Description: Optimized DL systems perform a static analysis of given terminological ax-
ioms. The axioms of a TBox are usually transformed in such a way that pro-
cessing promises to be faster. In particular, the idea is to transform GCIs into
(primitive) concept definitions. Since it is not always possible to “absorb”
GCIs completely, a so-called meta constraint might remain. The functions
get-meta-constraint returns the remaining constraint as a concept.

Syntax: (get-meta-constraint &optional (TBN (tbox-name
current-tbox)))

Arguments: TBN - TBox name

Values: A concept term.

Remarks: The absorption process uses heuristics. Changes to a TBox might have dra-
matic effects on the value returned by get-meta-constraint.

112

get-concept-definition macro

Description: Optimized DL systems perform a static analysis of given terminological ax-
ioms. The axioms of a TBox are usually transformed in such a way that
processing promises to be faster. In particular, the idea is to transform GCIs
into (primitive) concept definitions. For a given concept name the function
get-concept-definition returns the definition compiled by RACER dur-
ing the absorption phase.

Syntax: (get-concept-definition CN &optional (TBN (tbox-name
current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Values: A concept term.

Remarks: The absorption process uses heuristics. Changes to a TBox might have dra-
matic effects on the value returned by get-concept-definition. Note that
it might be useful to test whether the definition is primitive. See the function
concept-primitive-p. RACER does not introduce new concept names for
primitive definitions.

get-concept-definition-1 function

Description: Functional interface for get-concept-definition

Syntax: (get-concept-definition-1 CN &optional (TBN (tbox-name
current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Remarks: The absorption process uses heuristics. Changes to a TBox might have dra-
matic effects on the value returned by get-concept-negated-definition.
Note that it might be useful to test whether the definition is primitive. See
the function concept-primitive-p. RACER does not introduce new con-
cept names for primitive definitions.

Examples: Assume the following TBox:

(in-tbox test)
(implies top (or a b c))

Then, (get-concept-negated-definition c) returns (OR A B). Thus,
RACER has transformed the GCI into the form (implies (not C) (OR
A B)) which can be handled more effectively be lazy unfolding. Note that
the absorption process is heuristic. RACER could also transform the GCI
into (implies (not B) (OR A C)) or something similar depending on the
current version and strategy.

113

get-concept-negated-definition macro

Description: Optimized DL systems perform a static analysis of given terminological ax-
ioms. The axioms of a TBox are usually transformed in such a way that
processing promises to be faster. In particular, the idea is to transform
GCIs into (primitive) concept definitions. For a given concept name the
function get-concept-negated-definition returns the definition of the
negated concept compiled by RACER during the absorption phase.

Syntax: (get-concept-negated-definition CN &optional (TBN (tbox-name
current-tbox)))

Arguments: CN - concept name

TBN - TBox name

get-concept-negated-definition-1 function

Description: Functional interface for get-concept-negated-definition.

Syntax: (get-concept-negated-definition-1 CN &optional (TBN
(tbox-name *current-tbox*)))

Arguments: CN - concept name

TBN - TBox name

9.4 ABox Evaluation Functions

realize-abox function

Description: This function checks the consistency of the ABox and computes the most-
specific concepts for each individual in the ABox.

Syntax: (realize-abox &optional (abox *current-abox*))

Arguments: abox - ABox object

Values: abox

Remarks: This Function needs to be executed before queries can be posed. If the TBox
has changed and is classified again the ABox has to be realized, too.

114

abox-realized-p function

Description: Returns t if the specified ABox object has been realized.

Syntax: (abox-realized-p &optional (abox *current-abox*))

Arguments: abox - ABox object

Values: Returns t if abox has been realized and nil otherwise.

abox-realized? macro

Description: Returns t if the specified ABox object has been realized.

Syntax: (abox-realized? &optional (ABN (abox-name *current-abox*))

Arguments: ABN - ABox name

Values: Returns t if ABN has been realized and nil otherwise.

abox-prepared-p function

Description: It is checked if internal index structures are already computed for the speci-
fied abox.

Syntax: (abox-prepared-p &optional (abox *current-abox*))

Arguments: abox - abox object

Values: Returns t if the specified abox has been processed (to some extent), otherwise
it returns nil.

Remarks: The function is used to determine whether Racer has spent some effort in
processing the assertions of the abox.

abox-prepared? macro

Description: It is checked if internal index structures are already computed for the speci-
fied abox.

Syntax: (abox-prepared? &optional (TBN (abox-name *current-abox*)))

Arguments: ABN - abox name

Values: Returns t if the specified abox has been processed (to some extent), otherwise
it returns nil.

Remarks: The form is used to determine whether Racer has spent some effort in pro-
cessing the assertions of the abox.

115

compute-all-implicit-role-fillers function

Description: Instruct RACER to use compute all implicit role fillers. After computing
these fillers, the function all-role-assertions returns also the implicit role
fillers.

Syntax: (compute-all-implicit-role-fillers &optional (ABN
current-abox)))

Arguments: ABN - ABox name

compute-implicit-role-fillers function

Description: Instruct RACER to use compute all implicit role fillers for the individual
specified. After computing these fillers, the function all-role-assertions re-
turns also the implicit role fillers for the individual specified.

Syntax: (compute-implicit-role-fillers individual &optional (ABN
current-abox)))

Arguments: individual - individual name

ABN - ABox name

get-abox-language function

Description: Returns a specifier indicating the description logic language used in the ax-
ioms of a given ABox.

Syntax: (get-abox-language &optional (ABN (abox-name
current-abox)))

Arguments: ABN - ABox name

Values: The language is indicated with the quasi-standard scheme using letters. Note
that the language is identified for selecting optimization techniques. Since
RACER does not exploit optimization techniques for sublanguages of ALC,
the language indicator starts always with ALC. Then f indicates whether
features are used, Q indicates qualified number restrictions, N indicates simple
number restrictions, H stands for a role hierarchy, I indicates inverse roles, r+
indicates transitive roles, the suffix -D indicates the use of concrete domain
language constructs.

9.5 ABox Queries

116

abox-consistent-p function

Description: Checks if the ABox is consistent, e.g. it does not contain a contradiction.

Syntax: (abox-consistent-p &optional (abox *current-abox*))

Arguments: abox - ABox object

Values: Returns t if abox is consistent and nil otherwise.

abox-consistent? macro

Description: Checks if the ABox is consistent.

Syntax: (abox-consistent? &optional (ABN (abox-name *current-abox*)))

Arguments: ABN - ABox name

Values: Returns t if the ABox ABN is consistent and nil otherwise.

Remarks: This macro uses abox-consistent-p.

check-abox-coherence function

Description: Checks if the ABox is consistent. If there is a contradiction, this function
prints information about the culprits.

Syntax: (check-abox-coherence &optional (abox *current-abox*)
(stream *standard-output*)

Arguments: abox - ABox object

stream - Stream object

Values: Returns t if abox is consistent and nil otherwise.

individual-instance? KRSS macro

Description: Checks if an individual is an instance of a given concept with respect to the
current-abox and its TBox.

Syntax: (individual-instance? IN C
&optional (abox (abox-name *current-abox*)))

Arguments: IN - individual name

C - concept term

abox - ABox object

Values: Returns t if IN is an instance of C in abox and nil otherwise.

117

individual-instance-p function

Description: Checks if an individual is an instance of a given concept with respect to an
ABox and its TBox.

Syntax: (individual-instance-p IN C abox)

Arguments: IN - individual name

C - concept term

abox - ABox object

Values: Returns t if IN is an instance of C in abox and nil otherwise.

constraint-entailed? macro

Description: Checks a specified constraint is entailed by an ABox (and its associated
TBox).

Syntax: (constraint-entailed? constraint &optional (abox
current-abox))

Arguments: constraint - A constraint

abox - ABox object

Values: Returns t if abox the constraint and nil otherwise.

Remarks: See Figure 3.1 for the syntax of the constraint argument.

constraint-entailed-p function

Description: Checks a specified constraint is entailed by an ABox (and its associated
TBox).

Syntax: (constraint-entailed-p constraint &optional (abox
current-abox))

Arguments: constraint - A constraint

abox - ABox object

Values: Returns t if abox the constraint and nil otherwise.

Remarks: See Figure 3.1 for the syntax of the constraint argument.

118

individuals-related? macro

Description: Checks if two individuals are directly related via the specified role.

Syntax: (individuals-related? IN 1 IN 2 R
&optional (abox *current-abox*))

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the role filler

R - role term

abox - ABox object

Values: Returns t if IN 1 is related to IN 2 via R in abox and nil otherwise.

individuals-related-p function

Description: Checks if two individuals are directly related via the specified role.

Syntax: (individuals-related-p IN 1 IN 2 R abox)

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the role filler

R - role term

abox - ABox object

Values: Returns t if IN 1 is related to IN 2 via R in abox and nil otherwise.

See also: Function retrieve-individual-filled-roles, on page 135,
Function retrieve-related-individuals, on page 134.

individual-equal? KRSS macro

Description: Checks if two individual names refer to the same domain object.

Syntax: (individual-equal? IN 1 IN 2 &optional (abox *current-abox*))

Arguments: IN 1, IN 2 - individual name

abox - abox object

Remarks: Because the unique name assumption holds in RACER this macro always
returns nil for individuals with different names. This macro is just supplied
to be compatible with the KRSS.

119

individual-not-equal? KRSS macro

Description: Checks if two individual names do not refer to the same domain object.

Syntax: (individual-not-equal? IN 1 IN 2

&optional (abox *current-abox*))

Arguments: IN 1, IN 2 - individual name

abox - abox object

Remarks: Because the unique name assumption holds in RACER this macro always
returns t for individuals with different names. This macro is just supplied to
be compatible with the KRSS.

individual-p function

Description: Checks if IN is a name of an individual mentioned in an ABox abox .

Syntax: (individual-p IN &optional (abox *current-abox*))

Arguments: IN - individual name

abox - ABox object

Values: Returns t if IN is a name of an individual and nil otherwise.

individual? macro

Description: Checks if IN is a name of an individual mentioned in an ABox ABN .

Syntax: (individual? IN &optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name

ABN - ABox name

Values: Returns t if IN is a name of an individual and nil otherwise.

cd-object-p function

Description: Checks if ON is a name of a concrete domain object mentioned in an ABox
abox .

Syntax: (cd-object-p ON &optional (abox *current-abox*))

Arguments: ON - concrete domain object name

abox - ABox object

Values: Returns t if ON is a name of a concrete domain object and nil otherwise.

120

cd-object? macro

Description: Checks if ON is a name of a concrete domain object mentioned in an ABox
ABN .

Syntax: (cd-object? ON &optional (ABN (abox-name *current-abox*)))

Arguments: ON - concrete domain object name

ABN - ABox name

Values: Returns t if ON is a name of a concrete domain object and nil otherwise.

10 Retrieval

If the retrieval refers to concept names, RACER always returns a set of names for each
concept name. A so called name set contains all synonyms of an atomic concept in the
TBox.

10.1 TBox Retrieval

taxonomy function

Description: Returns the whole taxonomy for the specified TBox.

Syntax: (taxonomy &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: A list of triples, each of it consisting of:

a name set - the atomic concept CN and its synonyms

list of concept-parents name sets - each entry being a list of a concept parent
of CN and its synonyms

list of concept-children name sets - each entry being a list of a concept child
of CN and its synonyms.

Examples: (taxonomy my-TBox)
may yield:
(((*top*) () ((quadrangle tetragon)))

((quadrangle tetragon) ((*top*)) ((rectangle) (diamond)))
((rectangle) ((quadrangle tetragon)) ((*bottom*)))
((diamond) ((quadrangle tetragon)) ((*bottom*)))
((*bottom*) ((rectangle) (diamond)) ()))

See also: Function atomic-concept-parents,
function atomic-concept-children on page 125.

121

concept-synonyms macro

Description: Returns equivalent concepts for the specified concept in the given TBox.

Syntax: (concept-synonyms CN
&optional (tbox (tbox-name *current-tbox*)))

Arguments: CN - concept name

tbox - TBox object

Values: List of concept names

Remarks: The name CN is not included in the result.

See also: Function concept-equivalent-p, on page 101.

atomic-concept-synonyms function

Description: Returns equivalent concepts for the specified concept in the given TBox.

Syntax: (atomic-concept-synonyms CN tbox)

Arguments: CN - concept name

tbox - TBox object

Values: List of concept names

Remarks: The name CN is included in the result.

See also: Function concept-equivalent-p, on page 101.

concept-descendants KRSS macro

Description: Gets all atomic concepts of a TBox, which are subsumed by the specified
concept.

Syntax: (concept-descendants C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: C - concept term

TBN - TBox name

Values: List of name sets

Remarks: This macro return the transitive closure of the macro concept-children.

122

atomic-concept-descendants function

Description: Gets all atomic concepts of a TBox, which are subsumed by the specified
concept.

Syntax: (atomic-concept-descendants C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

Remarks: Returns the transitive closure from the call of atomic-concept-children.

concept-ancestors KRSS macro

Description: Gets all atomic concepts of a TBox, which are subsuming the specified con-
cept.

Syntax: (concept-ancestors C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: C - concept term

TBN - TBox name

Values: List of name sets

Remarks: This macro return the transitive closure of the macro concept-parents.

atomic-concept-ancestors function

Description: Gets all atomic concepts of a TBox, which are subsuming the specified con-
cept.

Syntax: (atomic-concept-ancestors C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

Remarks: Returns the transitive closure from the call of atomic-concept-parents.

123

concept-children KRSS macro

Description: Gets the direct subsumees of the specified concept in the TBox.

Syntax: (concept-children C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: C - concept term

TBN - TBox name

Values: List of name sets

Remarks: Is the equivalent macro for the KRSS macro concept-offspring, which is
also supplied in RACER.

atomic-concept-children function

Description: Gets the direct subsumees of the specified concept in the TBox.

Syntax: (atomic-concept-children C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

concept-parents KRSS macro

Description: Gets the direct subsumers of the specified concept in the TBox.

Syntax: (concept-parents C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: C - concept term

TBN - TBox name

Values: List of name sets

atomic-concept-parents function

Description: Gets the direct subsumers of the specified concept in the TBox.

Syntax: (atomic-concept-parents C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

124

role-descendants KRSS macro

Description: Gets all roles from the TBox, that the given role subsumes.

Syntax: (role-descendants R
&optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

Remarks: This macro is the transitive closure of the macro role-children.

atomic-role-descendants function

Description: Gets all roles from the TBox, that the given role subsumes.

Syntax: (atomic-role-descendants R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

Remarks: This function is the transitive closure of the function
atomic-role-descendants.

role-ancestors KRSS macro

Description: Gets all roles from the TBox, that subsume the given role in the role hierar-
chy.

Syntax: (role-ancestors R
&optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

125

atomic-role-ancestors function

Description: Gets all roles from the TBox, that subsume the given role in the role hierar-
chy.

Syntax: (atomic-role-ancestors R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

role-children macro

Description: Gets all roles from the TBox that are directly subsumed by the given role in
the role hierarchy.

Syntax: (role-children R
&optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

Remarks: This is the equivalent macro to the KRSS macro role-offspring, which is
also supplied by the RACER system.

atomic-role-children function

Description: Gets all roles from the TBox that are directly subsumed by the given role in
the role hierarchy.

Syntax: (atomic-role-children R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

126

role-parents KRSS macro

Description: Gets the roles from the TBox that directly subsume the given role in the role
hierarchy.

Syntax: (role-parents R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

atomic-role-parents function

Description: Gets the roles from the TBox that directly subsume the given role in the role
hierarchy.

Syntax: (atomic-role-parents R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

role-synonyms KRSS macro

Description: Gets the synonyms of a role including the role itself.

Syntax: (role-synonyms R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

atomic-role-synonyms function

Description: Gets the synonyms of a role including the role itself.

Syntax: (atomic-role-synonyms R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

127

all-tboxes function

Description: Returns the names of all known TBoxes.

Syntax: (all-tboxes)

Values: List of TBox names

all-atomic-concepts function

Description: Returns all atomic concepts from the specified TBox.

Syntax: (all-atomic-concepts &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: List of concept names

all-equivalent-concepts function

Description: xx

Syntax: (all-equivalent-concepts &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: List of name sets

all-roles function

Description: Returns all roles and features from the specified TBox.

Syntax: (all-roles &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: List of role terms

Examples: (all-roles (find-tbox ’my-tbox))

all-features function

Description: Returns all features from the specified TBox.

Syntax: (all-features &optional (tbox *current-tbox*))

Arguments: tbox - TBox

Values: List of feature terms

128

all-attributes function

Description: Returns all attributes from the specified TBox.

Syntax: (all-attributes &optional (tbox *current-tbox*))

Arguments: tbox - TBox

Values: List of attributes names

attribute-type function

Description: Returns the attribute type declared for a given attribute name in a specified
TBox.

Syntax: (attribute-type AN &optional (tbox *current-tbox*))

Arguments: AN - attribute name

tbox - TBox

Values: Either cardinal, integer, real, or complex.

all-transitive-roles function

Description: Returns all transitive roles from the specified TBox.

Syntax: (all-transitive-roles &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: List of transitive role terms

describe-tbox function

Description: Generates a description for the specified TBox.

Syntax: (describe-tbox &optional (tbox *current-tbox*)
(stream *standard-output*))

Arguments: tbox - TBox object or TBox name

stream - open stream object

Values: tbox
The description is written to stream.

129

describe-concept function

Description: Generates a description for the specified concept used in the specified TBox
or in the ABox and its TBox.

Syntax: (describe-concept CN &optional (tbox-or-abox *current-tbox*)
(stream *standard-output*))

Arguments: tbox -or -abox - TBox object or ABox object

CN - concept name

stream - open stream object

Values: tbox -or -abox
The description is written to stream.

describe-role function

Description: Generates a description for the specified role used in the specified TBox or
ABox.

Syntax: (describe-role R &optional (tbox-or-abox *current-tbox*)
(stream *standard-output*))

Arguments: tbox -or -abox - TBox object or ABox object

R - role term (or feature term)

stream - open stream object

Values: tbox -or -abox
The description is written to stream.

10.2 ABox Retrieval

individual-direct-types KRSS macro

Description: Gets the most-specific atomic concepts of which an individual is an instance.

Syntax: (individual-direct-types IN
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name

ABN - ABox name

Values: List of name sets

130

most-specific-instantiators function

Description: Gets the most-specific atomic concepts of which an individual is an instance.

Syntax: (most-specific-instantiators IN abox)

Arguments: IN - individual name

abox - ABox object

Values: List of name sets

individual-types KRSS macro

Description: Gets all atomic concepts of which the individual is an instance.

Syntax: (individual-types IN
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name

ABN - ABox name

Values: List of name sets

Remarks: This is the transitive closure of the KRSS macro individual-direct-types.

instantiators function

Description: Gets all atomic concepts of which the individual is an instance.

Syntax: (instantiators IN abox)

Arguments: IN - individual name

abox - ABox object

Values: List of name sets

Remarks: This is the transitive closure of the function
most-specific-instantiators.

131

concept-instances KRSS macro

Description: Gets all individuals from an ABox that are instances of the specified concept.

Syntax: (concept-instances C
&optional (ABN (abox-name *current-abox*) (candidates)

Arguments: C - concept term

ABN - ABox name

candidates - a list of individual names

Values: List of individual names

retrieve-concept-instances function

Description: Gets all individuals from an ABox that are instances of the specified concept.

Syntax: (retrieve-concept-instances C abox candidates)

Arguments: C - concept term

abox - ABox object

candidates - a list of individual names

Values: List of individual names

individual-fillers KRSS macro

Description: Gets all individuals that are fillers of a role for a specified individual.

Syntax: (individual-fillers IN R
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name of the predecessor

R - role term

ABN - ABox name

Values: List of individual names

Examples: (individual-fillers Charlie-Brown has-pet)
(individual-fillers Snoopy (inv has-pet))

132

retrieve-individual-fillers function

Description: Gets all individuals that are fillers of a role for a specified individual.

Syntax: (retrieve-individual-fillers IN R abox)

Arguments: IN - individual name of the predecessor

R - role term

abox - ABox object

Values: List of individual names

Examples: (retrieve-individual-fillers ’Charlie-Brown ’has-pet
(find-abox ’peanuts-characters))

individual-attribute-fillers macro

Description: Gets all object names that are fillers of an attribute for a specified individual.

Syntax: (individual-attribute-fillers IN AN
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name of the predecessor

AN - attribute-name

ABN - ABox name

Values: List of object names

retrieve-individual-attribute-fillers function

Description: Gets all object names that are fillers of an attribute for a specified individual.

Syntax: (retrieve-individual-attribute-fillers IN AN
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name of the predecessor

AN - attribute-name

ABN - ABox name

Values: List of object names

133

told-value function

Description: Returns an explicitly asserted value for an object that is declared as filler for
a certain attribute w.r.t. an individual.

Syntax: (told-value ON
&optional (ABN (abox-name *current-abox*)))

Arguments: ON - object name

ABN - ABox name

Values: Concrete domain value

retrieve-related-individuals function

Description: Gets all pairs of individuals that are related via the specified relation.

Syntax: (retrieve-related-individuals R abox)

Arguments: R - role term

abox - ABox object

Values: List of pairs of individual names

Examples: (retrieve-related-individuals ’has-pet
(find-abox ’peanuts-characters))

may yield:
((Charlie-Brown Snoopy) (John-Arbuckle Garfield))

See also: Function individuals-related-p, on page 119.

related-individuals macro

Description: Gets all pairs of individuals that are related via the specified relation.

Syntax: (related-individuals R
&optional (ABN (abox-name *current-abox*)))

Arguments: R - role term

ABN - ABox name

Values: List of pairs of individual names

Examples: (retrieve-related-individuals ’has-pet
(find-abox ’peanuts-characters))

may yield:
((Charlie-Brown Snoopy) (John-Arbuckle Garfield))

See also: Function individuals-related-p, on page 119.

134

retrieve-individual-filled-roles function

Description: This function gets all roles that hold between the specified pair of individu-
als.

Syntax: (retrieve-individual-filled-roles IN 1 IN 2 abox).

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the role filler

abox - ABox object

Values: List of role terms

Examples: (retrieve-individual-filled-roles ’Charlie-Brown ’Snoopy
(find-abox ’peanuts-characters))

See also: Function individuals-related-p, on page 119.

retrieve-direct-predecessors function

Description: Gets all individuals that are predecessors of a role for a specified individual.

Syntax: (retrieve-direct-predecessors R IN abox)

Arguments: R - role term

IN - individual name of the role filler

abox - ABox object

Values: List of individual names

Examples: (retrieve-direct-predecessors ’has-pet ’Snoopy
(find-abox ’peanuts-characters))

all-aboxes function

Description: Returns the names of all known ABoxes.

Syntax: (all-aboxes)

Values: List of ABox names

135

all-individuals function

Description: Returns all individuals from the specified ABox.

Syntax: (all-individuals &optional (abox *current-abox*))

Arguments: abox - ABox object

Values: List of individual names

all-concept-assertions-for-individual function

Description: Returns all concept assertions for an individual from the specified ABox.

Syntax: (all-concept-assertions-for-individual IN
&optional (abox *current-abox*))

Arguments: IN - individual name

abox - ABox object

Values: List of concept assertions

See also: Function all-concept-assertions on page 137.

all-role-assertions-for-individual-in-domain function

Description: Returns all role assertions for an individual from the specified ABox in which
the individual is the role predecessor.

Syntax: (all-role-assertions-for-individual-in-domain IN
&optional (abox *current-abox*))

Arguments: IN - individual name

abox - ABox object

Values: List of role assertions

Remarks: Returns only the role assertions explicitly mentioned in the ABox, not the
inferred ones.

See also: Function all-role-assertions on page 137.

136

all-role-assertions-for-individual-in-range function

Description: Returns all role assertions for an individual from the specified ABox in which
the individual is a role successor.

Syntax: (all-role-assertions-for-individual-in-range IN
&optional (abox *current-abox*))

Arguments: IN - individual name

abox - ABox object

Values: List of assertions

See also: Function all-role-assertions on page 137.

all-concept-assertions function

Description: Returns all concept assertions from the specified ABox.

Syntax: (all-concept-assertions &optional (abox *current-abox*))

Arguments: abox - ABox object

Values: List of assertions

all-role-assertions function

Description: Returns all role assertions from the specified ABox.

Syntax: (all-role-assertions &optional (abox *current-abox*))

Arguments: abox - ABox object

Values: List of assertions

See also: Function all-concept-assertions-for-individual on page 136.

all-constraints function

Description: Returns all constraints from the specified ABox which refer to a list of object
names.

Syntax: (all-constraints &optional (abox *current-abox*) ONs)

Arguments: abox - ABox object

ONs - list of object names

Values: List of constraints

Remarks: If ONs is not specified, all constraints of the ABox are returned.

137

all-attribute-assertions function

Description: Returns all attribute assertions from the specified ABox.

Syntax: (all-attribute-assertions &optional (abox *current-abox*))

Arguments: abox - ABox object

Values: List of assertions

describe-abox function

Description: Generates a description for the specified ABox.

Syntax: (describe-abox &optional (abox *current-abox*)
(stream *standard-output*))

Arguments: abox - ABox object

stream - open stream object

Values: abox
The description is written to stream.

describe-individual function

Description: Generates a description for the individual from the specified ABox.

Syntax: (describe-individual IN &optional (abox *current-abox*)
(stream *standard-output*))

Arguments: IN - individual name

abox - ABox object

stream - open stream object

Values: IN
The description is written to stream.

138

11 Configuring Optimizations

The standard configuration of RACER ensures that only those computations are performed
that are required for answering queries. For instance, in order to answer a query for the par-
ents of a concept, the TBox must be classified. However, for answering an instance retrieval
query this is not necessary and, therefore, RACER does not classify the TBox in the stan-
dard inference mode (but see the documentation of the special variable *auto-classify*).
Nevertheless, if multiple instance retrieval queries are to be answered by RACER, it might
be useful to have the TBox classified in order to be able to compute an index for query an-
swering. Considering a single query RACER cannot determine whether computing an index
is worth the required computational ressources. Therefore, RACER can be instructed about
answering strategies for subsequent queries. The corresponding functions are documented
in this chapter.

compute-index-for-instance-retrieval function

Description: Let RACER create an index for subsequent instance retrieval queries wrt.
the specified ABox.

Syntax: (compute-index-for-instance-retrieval &optional (ABN
current-abox)))

Arguments: ABN - ABox object

Remarks: Computing an index requires the associated TBox be classified and the input
ABox be realized. Thus, it may take some time for this function to complete.
Use the function abox-realized-p to check whether index-based instance
retrieval is enabled.

ensure-subsumption-based-query-answering function

Description: Instruct RACER to use caching strateties and to exploit query subsumption
for answering instance retrieval queries.

Syntax: (ensure-subsumption-based-query-answering &optional (ABN
current-abox)))

Arguments: ABN - ABox object

Remarks: Subsumption-based query answering requires the associated TBox to be
classfied. Thus, the function might require computational ressources that
are not negligible. Instructing RACER to perform reasoning in this mode
pays back if one and the same instance retrieval query might be posed sev-
eral times or if the concepts in subsequent instance retrieval queries sub-
sumes each other (in other words: if queries are more and more refined). Use
the function tbox-classified-p to check whether index-based instance re-
trieval is enabled.

139

12 The Publish-Subscribe Mechanism

Instance retrieval (see the function concept-instances) is one of the main inference services
for ABoxes. However, using the standard mechanism there is no “efficient” way to declare
so-called hidden or auxiliary individuals which are not returned as elements of the result
set of instance retrieval queries.7 Furthermore, if some assertions are added to an ABox,
a previous instance retrieval query might have an extended result set. In this case some
applications require that this might be indicated by a certain “event”. For instance, in
a document retrieval scenario an application submitting an instance retrieval query for
searching documents might also state that “future matches” should be indicated.

In order to support these features, RACER provides the publish-subscribe facility. The idea
of the publish-subscribe system is to let users “subscribe” an instance retrieval query under
a certain name (the subscription name). A subscribed query is answered as usual, i.e. it
is treated as an instance retrieval query. The elements in the result set are by definition
are only those individuals (of the ABox in question) that have been “publised” previously.
If information about a new individuals is added to an ABox and these individuals are
published, the set of subscription queries is examined. If there are new elements in the result
set of previous queries, the publish function returns pairs of corresponding subscription and
individual names.

12.1 An Application Example

The idea is illustrated in the following example taken from a document retrieval scenario.
In some of the examples presented below, the result returned by RACER is indicated and
discussed. If the result of a statement is not discussed, then it is irrelevant for understanding
the main ideas of the publish-subscribe mechanism. First, a TBox document-ontology is
declared.

(in-tbox document-ontology)
(define-concrete-domain-attribute isbn)
(define-concrete-domain-attribute number-of-copies-sold)
(implies book document)
(implies article document)
(implies computer-science-document document)
(implies computer-science-book (and book computer-science-document))
(implies compiler-construction-book computer-science-book)
(implies (and (min number-of-copies-sold 3000) computer-science-document)

computer-science-best-seller)

7Certainly, hidden individuals can be marked as such with special concept names, and in queries they
might explicitly be excluded by conjoining the negation of the marker concept automatically to the query
concept. However, from an implementation point of view, this can be provided much more efficiently if the
mechanism is built into the retrieval machinery of RACER.

140

In order to manage assertions about specific documents, an ABox current-documents
is defined with the following statements. The ABox current-documents is the “current
ABox” to which subsequent statements and queries refer. The set of subscriptions (w.r.t.
the current ABox) is initialized.

(in-abox current-documents document-ontology)
(init-subscriptions))

With the following set of statements five document individuals are declared and published,
i.e. the documents are potential results of subscription-based instance retrieval queries.

(state
(instance document-1 article)
(publish document-1)

(instance document-2 book)
(constrained document-2 isbn-2 isbn)
(constraints (equal isbn-2 2234567))
(publish document-2)

(instance document-3 book)
(constrained document-3 isbn-3 isbn)
(constraints (equal isbn-3 3234567))
(publish document-3)

(instance document-4 book)
(constrained document-4 isbn-4 isbn)
(constraints (equal isbn-4 4234567))
(publish document-4)

(instance document-5 computer-science-book)
(constrained document-5 isbn-5 isbn)
(constraints (equal isbn-5 5234567))
(publish document-5))

Now, we assume that a “client” subscribes to a certain instance retrieval query.

(state
(subscribe client-1 book))

The answer returned by RACER is the following

((CLIENT-1 DOCUMENT-2)
(CLIENT-1 DOCUMENT-3)
(CLIENT-1 DOCUMENT-4)
(CLIENT-1 DOCUMENT-5))

RACER returns a list of pairs each of which consists of a subscriber name and an individual
name. In this case four documents are found to be instances of the query concept subscribed
und the name client-1.

141

An application receiving this message from RACER as a return result can then decide
how to inform the client appropriately. In future releases of RACER, subscriptions can be
extended with information about how the retrieval events are to be signalled to the client.
This will be done with a proxy which is currently under development.

The example is continued with the following statements and two new subscriptions.

(state
(instance document-6 computer-science-document)
(constrained document-6 isbn-6 isbn)
(constraints (equal isbn-6 6234567))
(publish document-6))

(state
(subscribe client-2 computer-science-document)
(subscribe client-3 computer-science-best-seller))

The last statement returns two additional pairs indicating the retrieval results for the in-
stance retrieval query subscription of client-2.

((CLIENT-2 DOCUMENT-5)
(CLIENT-2 DOCUMENT-6))

Next, information about another document is declared. The new document is published.

(state
(instance document-7 computer-science-document)
(constrained document-7 isbn-7 isbn)
(constraints (equal isbn-7 7234567))
(constrained document-7 number-of-copies-sold-7 number-of-copies-sold)
(constraints (equal number-of-copies-sold-7 4000))
(publish document-7))

The result of the last statement is:

((CLIENT-2 DOCUMENT-7)
(CLIENT-3 DOCUMENT-7))

The new document document-7 is in the result set of the query subscribed by client-2 and
client-3. Note that document can be considered as structured objects, not just names.
This is demonstrated with the following statement whose result is displayed just below.

(describe-individual ’document-7)

(DOCUMENT-7
:ASSERTIONS ((DOCUMENT-7 COMPUTER-SCIENCE-DOCUMENT))
:ROLE-FILLERS NIL
:TOLD-ATTRIBUTE-FILLERS ((ISBN 7234567)

(NUMBER-OF-COPIES-SOLD 4000))
:DIRECT-TYPES ((COMPUTER-SCIENCE-BEST-SELLER)

(COMPUTER-SCIENCE-DOCUMENT)))

142

Thus, RACER has determined that the individual document-7 is also an instance
of the concept computer-science-best-seller. This is due to the value of the at-
tribute number-of-copies-sold and the given sufficient conditions for the concept
computer-science-best-seller in the TBox document-ontology.

Now, we have information about seven documents declared in the ABox current-document.

(all-individuals)

(DOCUMENT-1 DOCUMENT-2 DOCUMENT-3 DOCUMENT-4 DOCUMENT-5 DOCUMENT-6 DOCUMENT-7)

In order to delete a document from the ABox, it is possible to use RACER’s forget facility.
The instance assertion can be removed from the ABox with the following statement.

(forget () (instance document-3 book))

Now, asking for all individuals reveal that there are only six individuals left.

(all-individuals)

(DOCUMENT-1 DOCUMENT-2 DOCUMENT-4 DOCUMENT-5 DOCUMENT-6 DOCUMENT-7)

With the next subscription a fourth client is introduced. The query is to retrieve the in-
stances of book. RACER’s answer is given below.

(subscribe client-4 book)

((CLIENT-4 DOCUMENT-2) (CLIENT-4 DOCUMENT-4) (CLIENT-4 DOCUMENT-5))

The query of client-4 is answered with three documents. Next, we discuss an example
demonstrating that sometimes subscriptions do not lead to an immediate answer w.r.t. the
current ABox.

(subscribe client-2 computer-science-best-seller)

The result is (). Although document-7 is an instance of computer-science-best-seller,
this individual has already been indicated as a result of a previously subscribed query. In
order to continue our example we introduce two additional documents one of which is a
computer-science-best-seller.

(state
(instance document-8 computer-science-best-seller)
(constrained document-8 isbn-8 isbn)
(constraints (equal isbn-8 8234567))

(instance document-9 book)
(constrained document-9 isbn-9 isbn)
(constraints (equal isbn-9 9234567)))

143

The publish-subscribe mechanism requires that these documents are published.

(state
(publish document-8)
(publish document-9))

The RACER system handles all publish statements within a state as a single publish
statement and answers the follwing as a single list of subscription-individual pairs.

((CLIENT-1 DOCUMENT-9)
(CLIENT-2 DOCUMENT-8)
(CLIENT-3 DOCUMENT-8)
(CLIENT-4 DOCUMENT-9))

Now client-2 also get information about intances of computer-science-best-seller.
Note that document-8 is an instance of computer-science-best-seller by definition
although the actual number of sold copies is not known to RACER.

(describe-individual ’document-8)

(DOCUMENT-8
:ASSERTIONS ((DOCUMENT-8 COMPUTER-SCIENCE-BEST-SELLER))
:ROLE-FILLERS NIL
:TOLD-ATTRIBUTE-FILLERS ((ISBN 8234567))
:DIRECT-TYPES ((COMPUTER-SCIENCE-BEST-SELLER)))

The following subscription queries indicate that the query concept must not necessarily be
a concept name but can be a concept term.

(state
(subscribe client-4 (equal isbn 7234567)))

RACER returns the following information:

((CLIENT-4 DOCUMENT-7))

Notice again that subscriptions might be considered when new information is added to the
ABox.

(state
(subscribe client-5 (equal isbn 10234567)))

The latter statement returns NIL. However, the subscription is considered if, at some time-
point later on, a document with the corresponding ISBN number is introduced (and pub-
lished).

144

(state
(instance document-10 document)
(constrained document-10 isbn-10 isbn)
(constraints (equal isbn-10 10234567))
(publish document-10))

((CLIENT-5 DOCUMENT-10))

This concludes the examples for the publish-subscribe facility offered by the RACER system.
The publish-subscribe mechanism provided with the current implementation is just a first
step. This facility will be extended significantly. Future versions will include optimization
techniques in order to speedup answering subscription based instance retrieval queries such
that reasonably large set of documents can be handled. Furthermore, it will be possible to
define how applications are to be informed about “matches” to previous subscriptons (i.e.
event handlers can be introduced).

12.2 Using JRacer for Publish and Subscribe

The following code fragment demonstrates how to interact with a Racer Server from a Java
application. The aim of the example is to demonstrate the relative ease of use that such
an API provides. In our scenario, we assume that the agent instructs the Racer system to
direct the channel to computer "mo.fh-wedel.de" at port 8080. Before the subscription is
sent to a Racer Server, the agent should make sure that at "mo.fh-wedel.de", the assumed
agent base station, a so-called listener process is started at port 8080. This can be easily
accomplished:

public class Listener {
public static void main(String[] argv) {

try {
ServerSocket server = new ServerSocket(8080);
while (true) {

Socket client = server.accept();
BufferedReader in =

new BufferedReader(
new InputStreamReader(client.getInputStream()));

String result = in.readLine();
in.close();

}
} catch (IOException e) {

...
}

}
}

145

If a message comes in over the input stream, the variable result is bound accordingly. Then,
the message can be processed as suitable to the application. We do not discuss details here.
The subscription to the channel, i.e., the registration of the query, can also be easily done
using the JRacer interface as indicated with the following code fragment (we assume Racer
runs at node "racer.fh-wedel.de" on port 8088).

public class Subscription {
public static void main(String[] argv) {

RacerSocketClient client = new RacerClient("racer.fh-wedel.de", 8088);
try {

client.openConnection();
try {

String result =
client.send

("(subscribe q_1 Book \"mo.fh-wedel.de\" 8080))");
}

catch (RacerException e) {
...
}

}
client.closeConnection();

} catch (IOException e) {
...

}
}

}

The connection to the Racer server is represented with a client object (of class
RacerSocketClient). The client object is used to send messages to the associated Racer
server (using the message send). Control flow stops until Racer acknowledges the subscrip-
tion.

12.3 Realizing Local Closed World Assumptions

Feedback from many users of the Racer system indicates that, for instance, instance retrieval
queries could profit from possibilities to “close” a knowledge base in one way or another.
Due to the non-monotonic nature of the closed-world assumption and the ambiguities about
what closing should actually mean, in description logic inference systems usually there is no
support for the closed-world assumption. However, with the publish and subscribe interface
of Racer, users can achieve a similar effect. Consider, for instance, a query for a book which
does not have an author. Because of the open-world assumption, subscribing to a channel
for (and Book (at-most 0 has-author)) does not make much sense. Nevertheless the
agent can subscribe to a channel for Book and a channel for (at-least 1 has-author).
It can accumulate the results returned by Racer into two variables A and B, respectively,
and, in order to compute the set of books for which there does not exist an author, it can
consider the complement of B wrt. A. We see this strategy as an implementation of a local
closed-world (LCW) assumption.

146

However, as time evolves, authors for documents determined by the above-mentioned query
indeed might become known. In others words, the set B will probably be extended. In
this case, the agent is responsible for implementing appropriate backtracking strategies, of
course.

The LCW example demonstrates that the Racer publish and subscribe interface is a very
general mechanism, which can also be used to solve other problems in knowledge represen-
tation.

12.4 Publish and Subscribe Functions

In the following the functions offered by the publish-subscribe facility are explained in detail.

publish macro

Description: Publish an ABox individual.

Syntax: (publish IN
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name

ABN - ABox name

Values: A list of tuples consisting of subscriber and individuals names.

publish-1 macro

Description: Functional interface for publish.

Syntax: (publish-1 IN
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name

ABN - ABox name

unpublish macro

Description: Withdraw a publish statement.

Syntax: (unpublish IN
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name

ABN - ABox name

147

unpublish-1 function

Description: Functional interface for unpublish.

Syntax: (unpublish-1 IN
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name

ABN - ABox name

subscribe macro

Description: Subscribe to an instance retrieval query.

Syntax: (subscribe subscriber-name C
&optional (ABN (abox-name *current-abox*))
host port)

Arguments: subscriber-name - subscriber name

C - concept term

ABN - ABox name

host - ip number of the host to which results are to be sent as a string

port - port number (integer)

Values: A list of tuples consisting of subscriber and individuals names.

subscribe-1 function

Description: Functional interface for subscribe.

Syntax: (subscribe-1 subscriber-name C
&optional (ABN (abox-name *current-abox*))
host port)

Arguments: subscriber-name - subscriber name

C - concept term

ABN - ABox name

host - ip number of the host to which results are to be sent as a string

port - port number (integer)

148

unsubscribe macro

Description: Retract a subscription.

Syntax: (unsubscribe subscriber-name
&optional C (ABN (abox-name *current-abox*)))

Arguments: subscriber-name - subscriber name

C - concept term

ABN - ABox name

unsubscribe-1 function

Description: Functional interface for unsubscribe.

Syntax: (unsubscribe subscriber-name
&optional C (ABN (abox-name *current-abox*)))

Arguments: subscriber-name - subscriber name

C - concept term

ABN - ABox name

init-subscriptions macro

Description: Initialize the subscription database.

Syntax: (init-subscriptions &optional (ABN (abox-name
current-abox)))

Arguments: ABN - ABox name

init-subscriptions-1 function

Description: Functional interface for init-subscriptions

Syntax: (init-subscriptions-1 &optional (ABN (abox-name
current-abox)))

Arguments: ABN - ABox name

149

init-publications macro

Description: Initialize the set of published individuals.

Syntax: (init-publications &optional (ABN (abox-name
current-abox)))

Arguments: ABN - ABox name

init-publications-1 function

Description: Functional interface for init-subscription.

Syntax: (init-publications &optional (ABN (abox-name
current-abox)))

Arguments: ABN - ABox name

check-subscriptions macro

Description: Explicitly check for new instance retrieval results w.r.t. the set of subscrip-
tions.

Syntax: (check-subscriptions ABN)

Arguments: ABN - ABox name

Values: A list of tuples consisting of subscriber and individuals names.

150

13 The Racer Persistency Services

If you load some knowledge bases into Racer and ask some queries, Racer builds internal data
structure that enables the system to provide for faster response times. However, generating
these internal data structures takes some time. So, if the Racer Server is shut down, all
this work is usually lost, and data structures have to be rebuilt when the server is restarted
again. In order to save time at server startup, Racer provides a facility to “dump” the
server state into a file and restore the state from the file at restart time. The corresponding
functions form the Persistency Services of a Racer Server. The Persistency Services can also
be used to “prepare” a knowledge base at a specific server and use it repeatedly at multiple
clients (see also the documentation about the Racer Proxy). For instance, you can classify
a TBox or realize an ABox and dump the resulting data structures into a file. The file(s)
can be reloaded and multiple servers can restart with much less computational ressources
(time and space). Starting from a dump file is usually about ten times faster than load the
corresponding text files and classifying the TBox (or realizing the ABox) again.

Since future versions of Racer might be supported by different internal data structures, it
might be the case that old dump files cannot be loaded with future Racer versions. In this
case an appropriate error message will be shown. However, you will have to create a new
dump file again. The following functions define the Racer Persistency Services.

store-tbox-image function

Description: Store an image of a TBox.

Syntax: (store-tbox-image filename &optional (TBN (tbox-name
current-tbox)))

Arguments: filename - filename

TBN - tbox name

store-tboxes-image function

Description: Store an image of a list of TBoxes.

Syntax: (store-tboxes-image tboxes filename)

Arguments: tboxes - a list of TBox names

filename - filename

restore-tbox-image function

Description: Restore an image of a TBox.

Syntax: (restore-tbox-image filename)

Arguments: filename - filename

151

restore-tboxes-image function

Description: Restore an image of a set of TBoxes.

Syntax: (restore-tboxes-image filename)

Arguments: filename - filename

store-abox-image function

Description: Store an image of an Abox.

Syntax: (store-abox-image filename &optional (ABN (abox-name
current-abox)))

Arguments: filename - filename

ABN - abox name

store-aboxes-image function

Description: Store an image of a list of Aboxes.

Syntax: (store-aboxes-image aboxes filename)

Arguments: aboxes - a list of abox names

filename - filename

restore-abox-image function

Description: Restore an image of an Abox.

Syntax: (restore-abox-image filename)

Arguments: filename - filename

restore-aboxes-image function

Description: Restore an image of a set of aboxes.

Syntax: (restore-aboxes-image filename)

Arguments: filename - filename

152

store-kb-image function

Description: Store an image of an kb.

Syntax: (store-kb-image filename &optional (KBN (tbox-name
current-tbox)))

Arguments: filename - filename

KBN - kb name

store-kbs-image function

Description: Store an image of a list of kbs.

Syntax: (store-kbs-image kbs filename)

Arguments: kbs - a list of knowledge base names

filename - filename

restore-kb-image function

Description: Restore an image of an kb.

Syntax: (restore-kb-image filename)

Arguments: filename - filename

restore-kbs-image function

Description: Restore an image of a set of kbs.

Syntax: (restore-kbs-image filename)

Arguments: filename - filename

153

14 The Racer Proxy

The Racer Proxy is a program controlling the communication between multiple client pro-
grams and a Racer Server. In addition, the Racer Proxy provides new services for client
programs. The Racer Proxy is written in Java and is provided with source code for non-
commercial research purposes.

14.1 Installation and Configuration

14.2 Multiuser-Access to a Racer Server

14.3 Load Balancing Using Multiple Racer Servers

14.4 Extension of the Publish-Subscribe Mechanism

14.5 Persistency and Logging

154

15 Reporting Errors and Inefficiencies

Although RACER has been used in some application projects and version 1.7 has been
extensively tested, it might be the case that you detect a bug. In this case, please send us
the knowledge base together with the query. It would be helpful if the knowledge base were
stripped down to the essential parts to reproduce that bug. Before submitting a bug report
please make sure to download the latest version of RACER.

Sometimes it might happen that answering times for queries do not correspond adequately
to the problem that is to be solved by RACER. If you expect faster behavior, please do not
hesitate to send us the application knowledge base and the query (or queries) that cause
problems.

The following function provide a way for you to collect the statements sent to the RACER
server.

logging-on macro

Description: Start logging of expressions to the Racer server.

Syntax: (logging-on filename)

Arguments: filename - filename

Values: None.

Remarks: RACER must have been startedin unsafe mode (option -u) to use this facility.
Logging is only available in the RACER server version.

logging-off macro

Description: Start logging of expressions to the Racer server.

Syntax: (logging-off)

Arguments:

Values: None.

Remarks: Logging is only available in the RACER server version.

155

16 What comes next?

Future releases of RACER will provide:

• Role equality (in particular for the DAML interface)

• Feature chains for ALC(D) knowledge bases

• Feature chain equality for ALCF(D) knowledge bases

• Support for default reasoning and support for iteratively finding models for concepts
and ABoxes.

• Support for (additional) datatypes in DAML and OWL

• Support for complete reasoning on SHOQ knowledge bases

• Option to switch off the unique name assumption in ABoxes.

• Support for exporting and importing knowledge bases to and from the XMI for-
mat used by UML-based software engineering tools (see Figure 30). Although UML
can represent only part of, e.g., DAML knowledge bases, even just exporting class
hiearchies using XMI might be interesting because with tools such as ArgoUML (see
Figure 30) Java code can be generated and models based on description logic may be
used in Java-based environments.

The order in this list says nothing about priority.

156

Figure 30: Concept hierarchy for the family TBox in ArgoUML.

157

A Integrated Sample Knowledge Base

This section shows an integrated version of the family knowledge base.

;;;===
;;; the following forms are assumed to be contained in a
;;; file "RACER:examples;family.racer".

(in-knowledge-base family smith-family)

(signature :atomic-concepts (person human female male woman man
parent mother father grandmother
aunt uncle sister brother)

:roles ((has-descendant :transitive t)
(has-child :parent has-descendant)
has-sibling
(has-sister :parent has-sibling)
(has-brother :parent has-sibling)
(has-gender :feature t))

:individuals (alice betty charles doris eve))

;;; domain & range restrictions for roles
(implies *top* (all has-child person))
(implies (some has-child *top*) parent)
(implies (some has-sibling *top*) (or sister brother))
(implies *top* (all has-sibling (or sister brother)))
(implies *top* (all has-sister (some has-gender female)))
(implies *top* (all has-brother (some has-gender male)))

;;; the concepts
(implies person (and human (some has-gender (or female male))))
(disjoint female male)
(implies woman (and person (some has-gender female)))
(implies man (and person (some has-gender male)))

(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent grandmother

(and mother
(some has-child

(some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

158

;;; Alice is the mother of Betty and Charles
(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)

;;; Betty is mother of Doris and Eve
(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)

;;; Charles is the brother of Betty (and only Betty)
(instance charles brother)
(related charles betty has-sibling)
;;; closing the role has-sibling for charles
(instance charles (at-most 1 has-sibling))

;;; Doris has the sister Eve
(related doris eve has-sister)

;;; Eve has the sister Doris
(related eve doris has-sister)

159

B An Excerpt of the Family Example in DAML Syntax

;;;===
;;; the following forms are assumed to be contained in a
;;; file "file:c:/ralf/family-2/family.daml".

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:ns0="file:c:/ralf/family-2/"
xmlns:oiled="http://img.cs.man.ac.uk/oil/oiled#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#">
<daml:Ontology rdf:about="">

<dc:title>FAMILY</dc:title>
<dc:date>5.6.2002 14:1</dc:date>
<dc:creator></dc:creator>
<dc:description></dc:description>
<dc:subject></dc:subject>
<daml:versionInfo></daml:versionInfo>

</daml:Ontology>
<daml:ObjectProperty rdf:about="file:c:/ralf/family-2/has-descendant">

<rdfs:label>HAS-DESCENDANT</rdfs:label>
<rdfs:comment></rdfs:comment>
<oiled:creationDate></oiled:creationDate>
<oiled:creator>RACER</oiled:creator>

</daml:ObjectProperty>
<daml:TransitiveProperty rdf:about="file:c:/ralf/family-2/has-descendant"/>
<daml:ObjectProperty rdf:about="file:c:/ralf/family-2/has-child">

<rdfs:label>HAS-CHILD</rdfs:label>
<rdfs:comment></rdfs:comment>
<oiled:creationDate></oiled:creationDate>
<oiled:creator>RACER</oiled:creator>
<rdfs:subPropertyOf rdf:resource="file:c:/ralf/family-2/has-descendant"/>
<rdfs:domain>

<daml:Class rdf:about="file:c:/ralf/family-2/parent"/>
</rdfs:domain>
<rdfs:range>

<daml:Class rdf:about="file:c:/ralf/family-2/person"/>
</rdfs:range>

</daml:ObjectProperty>

160

<daml:ObjectProperty rdf:about="file:c:/ralf/family-2/has-gender">
<rdfs:label>HAS-GENDER</rdfs:label>
<rdfs:comment></rdfs:comment>
<oiled:creationDate></oiled:creationDate>
<oiled:creator>RACER</oiled:creator>

</daml:ObjectProperty>
<daml:UniqueProperty rdf:about="file:c:/ralf/family-2/has-gender"/>
<daml:Class rdf:about="file:c:/ralf/family-2/male">

<daml:disjointWith>
<daml:Class rdf:about="file:c:/ralf/family-2/female"/>
</daml:disjointWith>

</daml:Class>
<daml:Class rdf:about="file:c:/ralf/family-2/person">

<rdfs:subClassOf>
<daml:Class>

<daml:intersectionOf>
<daml:List>

<daml:first>
<daml:Class rdf:about="file:c:/ralf/family-2/human"/>

</daml:first>
<daml:rest>

<daml:List>
<daml:first>
<daml:Restriction>

<daml:onProperty rdf:resource="file:c:/ralf/family-2/has-gender"/>
<daml:hasClass>

<daml:Class>
<daml:unionOf>

<daml:List>
<daml:first>

<daml:Class rdf:about="file:c:/ralf/family-2/female"/>
</daml:first>
<daml:rest>

<daml:List>
<daml:first>

<daml:Class rdf:about="file:c:/ralf/family-2/male"/>
</daml:first>
<daml:rest>

<daml:nil/>
</daml:rest>

</daml:List>

161

</daml:rest>
</daml:List>

</daml:unionOf>
</daml:Class>

</daml:hasClass>
</daml:Restriction>

</daml:first>
<daml:rest>

<daml:nil/>
</daml:rest>

</daml:List>
</daml:rest>

</daml:List>
</daml:intersectionOf>

</daml:Class>
</rdfs:subClassOf>

</daml:Class>

<daml:Class rdf:about="file:c:/ralf/family-2/woman">
<rdfs:subClassOf>
<daml:Class>

<daml:intersectionOf>
<daml:List>

<daml:first>
<daml:Class rdf:about="file:c:/ralf/family-2/person"/>

</daml:first>
<daml:rest>

<daml:List>
<daml:first>
<daml:Restriction>

<daml:onProperty rdf:resource="file:c:/ralf/family-2/has-gender"/>
<daml:hasClass>

<daml:Class rdf:about="file:c:/ralf/family-2/female"/>
</daml:hasClass>

</daml:Restriction>
</daml:first>
<daml:rest>
<daml:nil/>

</daml:rest>
</daml:List>

</daml:rest>
</daml:List>

</daml:intersectionOf>
</daml:Class>

</rdfs:subClassOf>
</daml:Class>

162

<rdf:Description rdf:about="file:c:/ralf/family-2/charles">
<rdf:type rdf:resource="file:c:/ralf/family-2/only-child"/>

</rdf:Description>
<rdf:Description rdf:about="file:c:/ralf/family-2/charles">

<rdf:type rdf:resource="file:c:/ralf/family-2/brother"/>
</rdf:Description>
<rdf:Description rdf:about="file:c:/ralf/family-2/betty">

<rdf:type rdf:resource="file:c:/ralf/family-2/mother"/>
</rdf:Description>
<rdf:Description rdf:about="file:c:/ralf/family-2/alice">

<rdf:type rdf:resource="file:c:/ralf/family-2/mother"/>
</rdf:Description>
<rdf:Description rdf:about="file:c:/ralf/family-2/alice">

<ns0:has-descendant rdf:resource="file:c:/ralf/family-2/eve"/>
</rdf:Description>
<rdf:Description rdf:about="file:c:/ralf/family-2/alice">

<ns0:has-descendant rdf:resource="file:c:/ralf/family-2/doris"/>
</rdf:Description>
<rdf:Description rdf:about="file:c:/ralf/family-2/eve">

<ns0:has-sister rdf:resource="file:c:/ralf/family-2/doris"/>
</rdf:Description>
<rdf:Description rdf:about="file:c:/ralf/family-2/doris">

<ns0:has-sister rdf:resource="file:c:/ralf/family-2/eve"/>
</rdf:Description>
<rdf:Description rdf:about="file:c:/ralf/family-2/charles">

<ns0:has-sibling rdf:resource="file:c:/ralf/family-2/betty"/>
</rdf:Description>
<rdf:Description rdf:about="file:c:/ralf/family-2/betty">

<ns0:has-child rdf:resource="file:c:/ralf/family-2/eve"/>
</rdf:Description>
<rdf:Description rdf:about="file:c:/ralf/family-2/betty">

<ns0:has-child rdf:resource="file:c:/ralf/family-2/doris"/>
</rdf:Description>
<rdf:Description rdf:about="file:c:/ralf/family-2/alice">

<ns0:has-child rdf:resource="file:c:/ralf/family-2/charles"/>
</rdf:Description>
<rdf:Description rdf:about="file:c:/ralf/family-2/alice">

<ns0:has-child rdf:resource="file:c:/ralf/family-2/betty"/>
</rdf:Description>

</rdf:RDF>

163

C Another Family Knowledge Base

In this section we present another family knowledge base (see the file family-2.racer in
the examles folder).

(in-knowledge-base family)

(define-primitive-role descendants :transitive t)

(define-primitive-role children :parents (descendants))

(implies (and male female) *bottom*)
(equivalent man (and male human))
(equivalent woman (and female human))
(equivalent parent (at-least 1 children))
(equivalent grandparent (some children parent))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(implies (some descendants human) human)
(implies human (all descendants human))
(equivalent father-having-only-male-children (and father human (all children male)))
(equivalent father-having-only-sons (and man

(at-least 1 children)
(all children man)))

(equivalent grandpa (and male (some children (and parent human))))
(equivalent great-grandpa (and male

(some children (some children (and parent human)))))

(instance john male)
(instance mary female)
(related john james children)
(related mary james children)
(instance james (and human male))
(instance john (at-most 1 children))

(individual-direct-types john)
(individual-direct-types mary)
(individual-direct-types james)

164

D A Knowledge Base with Concrete Domains

In this section we present another family knowledge base with concrete domains (see the
file family-3.racer in the examles folder).

(in-knowledge-base family smith-family)

(signature :atomic-concepts (human female male woman man
parent mother father
mother-having-only-female-children
mother-having-only-daughters
mother-with-children
mother-with-siblings
mother-having-only-sisters
grandpa great-grandpa
grandma great-grandma
aunt uncle
sister brother sibling
young-parent normal-parent old-parent
child teenager teenage-mother
young-human adult-human
old-human young-child
human-with-fever
seriously-ill-human
human-with-high-fever)

:roles ((has-descendant :domain human :range human
:transitive t)

(has-child :domain parent
:range child
:parent has-descendant)

(has-sibling :domain sibling :range sibling)
(has-sister :range sister

:parent has-sibling)
(has-brother :range brother

:parent has-sibling))
:features ((has-gender :range (or female male)))
:attributes ((integer has-age)

(real temperature-fahrenheit)
(real temperature-celsius))

:individuals (alice betty charles doris eve)
:objects (age-of-alice age-of-betty age-of-charles

age-of-doris age-of-eve
temperature-of-doris
temperature-of-charles))

165

;; the concepts
(disjoint female male human)
(implies human (and (at-least 1 has-gender) (a has-age)))
(implies human (= temperature-fahrenheit

(+ (* 1.8 temperature-celsius) 32)))

(equivalent young-human (and human (max has-age 20)))
(equivalent teenager (and young-human (min has-age 10)))
(equivalent adult-human (and human (min has-age 21)))
(equivalent old-human (and human (min has-age 60)))
(equivalent woman (and human (all has-gender female)))
(equivalent man (and human (all has-gender male)))
(implies child human)
(equivalent young-child (and child (max has-age 9)))

(equivalent human-with-fever
(and human (>= temperature-celsius 38.5)))

(equivalent seriously-ill-human
(and human (>= temperature-celsius 42.0)))

(equivalent human-with-high-fever
(and human (>= temperature-fahrenheit 107.5)))

(equivalent parent (at-least 1 has-child))
(equivalent young-parent (and parent (max has-age 21)))
(equivalent normal-parent (and parent (min has-age 22) (max has-age 40)))
(equivalent old-parent (and parent (min has-age 41)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent teenage-mother (and mother (max has-age 20)))

(equivalent mother-having-only-female-children
(and mother

(all has-child (all has-gender (not male)))))
(equivalent mother-having-only-daughters

(and woman
(at-least 1 has-child)
(all has-child woman)))

(equivalent mother-with-children
(and mother (at-least 2 has-child)))

(equivalent grandpa (and man (some has-child parent)))
(equivalent great-grandpa

(and man (some has-child (some has-child parent))))

166

(equivalent grandma (and woman (some has-child parent)))
(equivalent great-grandma

(and woman (some has-child (some has-child parent))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))

(equivalent sibling (or sister brother))
(equivalent mother-with-siblings (and mother (all has-child sibling)))
(equivalent brother (and man (at-least 1 has-sibling)))
(equivalent sister (and woman (at-least 1 has-sibling)))

(implies (at-least 2 has-child) (all has-child sibling))
;(implies (some has-child sibling) (at-least 2 has-child))

(implies sibling (all (inv has-child) (and (all has-child sibling)
(at-least 2 has-child))))

(equivalent mother-having-only-sisters
(and mother

(all has-child (and sister
(all has-sibling sister)))))

;; Alice is the mother of Betty and Charles
(instance alice (and woman (at-most 2 has-child)))
;; Alice’s age is 45
(constrained alice age-of-alice has-age)
(constraints (equal age-of-alice 45))
(related alice betty has-child)
(related alice charles has-child)

;; Betty is mother of Doris and Eve
(instance betty (and woman (at-most 2 has-child)))
;; Betty’s age is 20
(constrained betty age-of-betty has-age)
(constraints (equal age-of-betty 20))
(related betty doris has-child)
(related betty eve has-child)
(related betty charles has-sibling)
;; closing the role has-sibling for charles
(instance betty (at-most 1 has-sibling))

167

; Charles is the brother of Betty (and only Betty)
(instance charles brother)
;; Charles’s age is 39
(constrained charles age-of-charles has-age)
(constrained charles temperature-of-charles temperature-fahrenheit)
(constraints (equal age-of-charles 39) (= temperature-of-charles 107.6))
(related charles betty has-sibling)
;; closing the role has-sibling for charles
(instance charles (at-most 1 has-sibling))

;; Doris has the sister Eve
(related doris eve has-sister)
(instance doris (at-most 1 has-sibling))
;; Doris’s age is 2
(constrained doris age-of-doris has-age)
(constrained doris temperature-of-doris temperature-celsius)
(constraints (equal age-of-doris 2) (= temperature-of-doris 38.6))

;; Eve has the sister Doris
(related eve doris has-sister)
(instance eve (at-most 1 has-sibling))
;; Eve’s age is 1
(constrained eve age-of-eve has-age)
(constraints (equal age-of-eve 1))

168

;;; some TBox queries
;; are all uncles brothers?
(concept-subsumes? brother uncle)

;; get all super-concepts of the concept mother
(concept-ancestors mother)

;; get all sub-concepts of the concept man
(concept-descendants man)

;; get all transitive roles in the TBox family
(all-transitive-roles)

;;; some ABox queries
;; Is Doris a woman?
(individual-instance? doris woman)

;; Of which concepts is Eve an instance?
(individual-types eve)

;; get all descendants of Alice
(individual-fillers alice has-descendant)

(individual-direct-types eve)

(concept-instances sister)

(describe-individual doris)

(describe-individual charles)

169

References

[Bechhofer et al. 01] S. Bechhofer, I. Horrocks, C. Goble, R. Stevens, “OilEd: a Reason-
able Ontology Editor for the Semantic Web”, in Proceedings of KI2001, Joint Ger-
man/Austrian conference on Artificial Intelligence, September 19-21, Vienna, Springer-
Verlag LNAI Vol. 2174, pp 396–408, 2001

[Bechhofer 02] S. Bechhofer, “The DIG Description Logic Interface:
DIG/1.0”, Technical Report, University of Manchester, 2000.
http://potato.cs.man.ac.uk/dig/interface1.0.pdf

[Buchheit et al. 93] M. Buchheit, F.M. Donini & A. Schaerf, “Decidable Reasoning in Ter-
minological Knowledge Representation Systems”, in Journal of Artificial Intelligence
Research, 1, pp. 109-138, 1993.

[Haarslev and Möller 2000] Haarslev, V. and Möller, R. (2000), “Expressive ABox reasoning
with number restrictions, role hierarchies, and transitively closed roles”, in Proceedings
of Seventh International Conference on Principles of Knowledge Representation and
Reasoning (KR’2000), Cohn, A., Giunchiglia, F., and Selman, B., editors, Brecken-
ridge, Colorado, USA, April 11-15, 2000, pages 273–284.

[Horrocks 98] I. Horrocks, “Using an Expressive Description Logic: FaCT or Fiction?”, in
Proceedings of Sixth International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’98), Trento, Italy, Editors: Cohn, T. and Schubert, L. and
Shapiro, S. 1998, pages 636–647.

[Horrocks-et-al. 99a] I. Horrocks, U. Sattler, S. Tobies, “Practical Reasoning for Descrip-
tion Logics with Functional Restrictions, Inverse and Transitive Roles, and Role Hier-
archies”, Proceedings of the 1999 Workshop Methods for Modalities (M4M-1), Ams-
terdam, 1999.

[Horrocks-et-al. 99b] I. Horrocks, U. Sattler, S. Tobies, “A Description Logic with Transitive
and Converse Roles, Role Hierarchies and Qualifying Number Restrictions”, Technical
Report LTCS-99-08, RWTH Aachen, 1999.

[Horrocks et al. 2000] Horrocks, I., Sattler, U., and Tobies, S. (2000). Reasoning with indi-
viduals for the description logic SHIQ. In MacAllester, D., editor, Proceedings of the
17th International Conference on Automated Deduction (CADE-17), Lecture Notes in
Computer Science, Germany. Springer Verlag.

[Patel-Schneider and Swartout 93] P.F. Patel-Schneider, B. Swartout “Description Logic
Knowledge Representation System Specification from the KRSS Group of the ARPA
Knowledge Sharing Effort”, November 1993. The paper is available as:
http://www-db.research.bell-labs.com/user/pfps/papers/krss-spec.ps

[Rychlik 2000] Rychlik, M., Complexity and applications of parametric algorithms of com-
putational algebraic geometry. In: R. del la Llave, L. Petzold, and J. Lorenz, editors,
Dynamics of Algorithms, volume 118 of The IMA Volumes in Mathematics and its
Applications, pp. 1-29, New York, 2000. Springer-Verlag.

[Weispfenning 92] Weispfenning, V., Comprehensive Groebner Bases, Journal of Symbolic
Computation, volume 14, 1992, pp 1-29.

[Jaffar and Maher 94] Constraint Logic Programming: A Survey. J. Jaffar, M. Maher, In:
Journal of Logic Programming, Vol. 19/20, pp. 503-581, 1994.

170

Index

auto-classify, 96
auto-realize, 97
bottom, 79
current-abox, 74
current-tbox, 67
top, 79

abox-consistent-p, 115
abox-consistent?, 115
abox-name, 78
abox-prepared-p, 113
abox-prepared?, 113
abox-realized-p, 113
abox-realized?, 113
abox-signature, 74
add-attribute-assertion, 96
add-concept-assertion, 91
add-concept-axiom, 82
add-constraint-assertion, 95
add-disjointness-axiom, 82
add-role-assertion, 92
add-role-axioms, 85
alc-concept-coherent, 101
all-aboxes, 133
all-atomic-concepts, 126
all-attribute-assertions, 136
all-attributes, 127
all-concept-assertions, 135
all-concept-assertions-for-individual,

134
all-constraints, 135
all-equivalent-concepts, 126
all-features, 126
all-individuals, 134
all-role-assertions, 135
all-role-assertions-for-

-individual-in-domain, 134
all-role-assertions-for-

-individual-in-range, 135
all-roles, 126
all-tboxes, 126
all-transitive-roles, 127
assertion, 52
associated ABoxes, 72
associated-aboxes, 71

associated-tbox, 78
atomic-concept-ancestors, 121
atomic-concept-children, 122
atomic-concept-descendants, 121
atomic-concept-parents, 122
atomic-concept-synonyms, 120
atomic-role-ancestors, 124
atomic-role-children, 124
atomic-role-descendants, 123
atomic-role-domain, 105
atomic-role-inverse, 105
atomic-role-parents, 125
atomic-role-range, 106
atomic-role-synonyms, 125
attribute, 90
attribute-domain, 106
attribute-domain-1, 106
attribute-has-domain, 88
attribute-has-range, 89
attribute-type, 127

bottom, 79

cd-attribute-p, 103
cd-attribute?, 103
cd-object-p, 118
cd-object?, 119
check-abox-coherence, 115
check-subscriptions, 148
check-tbox-coherence, 107
classify-tbox, 107
clear-default-tbox, 71
clone ABox, 77
clone TBox, 70
clone-abox, 77
clone-tbox, 70
compute-all-implicit-role-fillers,

114
compute-implicit-role-fillers, 114
compute-index-for-instance-retrieval,

137
concept axioms, 48
concept definition, 48
concept equation, 48
concept term, 44
concept-ancestors, 121

171

concept-children, 122
concept-descendants, 120
concept-disjoint-p, 99
concept-disjoint?, 99
concept-equivalent-p, 99
concept-equivalent?, 98
concept-instances, 130
concept-is-primitive-p, 100
concept-is-primitive?, 100
concept-offspring, 122
concept-p, 100
concept-parents, 122
concept-satisfiable-p, 97
concept-satisfiable?, 97
concept-subsumes-p, 98
concept-subsumes?, 98
concept-synonyms, 120
concept?, 100
concrete domain attribute, 90
concrete domain restriction, 47
concrete domains, 50
conjunction of roles, 49
constrained, 96
constraint-entailed-p, 116
constraint-entailed?, 116
constraints, 95
copy ABox, 77
copy TBox, 70
create-abox-clone, 76
create-tbox-clone, 70
current-abox, 74
current-tbox, 67

daml-read-document, 61
daml-read-file, 60
define-concept, 81
define-concrete-domain-attribute,

90
define-disjoint-primitive-concept,

81
define-distinct-individual, 94
define-primitive-attribute, 84
define-primitive-concept, 81
define-primitive-role, 83
delete ABox, 76, 77
delete ABoxes, 76
delete TBox, 68, 69, 71
delete TBoxes, 69

delete-abox, 76
delete-all-aboxes, 76
delete-all-tboxes, 69
delete-tbox, 69
describe-abox, 136
describe-concept, 128
describe-individual, 136
describe-role, 128
describe-tbox, 127
disjoint, 80
disjoint concepts, 48, 80, 82
domain, 88
domain restriction, 49

ensure-abox-signature, 74
ensure-subsumption-based-query-answering,

137
ensure-tbox-signature, 66
equivalent, 80
exists restriction, 45

feature, 49, 84
feature-p, 103
feature?, 103
find-abox, 77
find-tbox, 71
forget, 94
forget-abox, 75
forget-concept-assertion, 91
forget-disjointness-axiom, 93
forget-disjointness-axiom-statement,

93
forget-role-assertion, 93
forget-statement, 95
forget-tbox, 68
functional, 86

GCI, 48, 80
get-abox-language, 114
get-concept-definition, 111
get-concept-definition-1, 111
get-concept-negated-definition, 112
get-concept-negated-definition-1,

112
get-meta-constraint, 110
get-tbox-language, 110

implies, 80
implies-role, 89

172

in-abox, 73
in-knowledge-base, 59
in-tbox, 64
include file, 60
include-kb, 60
individual-attribute-fillers, 131
individual-direct-types, 128
individual-equal?, 117
individual-fillers, 130
individual-instance-p, 116
individual-instance?, 115
individual-not-equal?, 118
individual-p, 118
individual-types, 129
individual?, 118
individuals-related-p, 117
individuals-related?, 117
inference modes, 53
init-abox, 73
init-publications, 148
init-publications-1, 148
init-subscriptions, 147
init-subscriptions-1, 147
init-tbox, 64
instance, 90
instantiators, 129
inverse, 87
inverse-of-role, 87

kb-ontologies, 62
kb-signature, 74
knowledge base ontologies, 63

load ABox, 75
logging-off, 153
logging-on, 153

mirror, 62
most-specific-instantiators, 129

name set, 119
number restriction, 45

offline access to ontologies, 62
owl-read-document, 62
owl-read-file, 61

primitive concept, 48
publish, 145

publish-1, 145

racer-read-document, 60
racer-read-file, 59
range, 88
range restriction, 49
RDFS, 72
rdfs-read-tbox-file, 72
read DAML document, 61
read DAML file, 61
read OWL document, 62
read OWL file, 61
read RACER document, 60
read RACER file, 59
read RDFS TBox file, 72
read XML TBox file, 72
realize-abox, 112
reflexive-p, 104
reflexive?, 104
related, 92
related-individuals, 132
rename ABox, 77
rename TBox, 71
restore-abox-image, 150
restore-aboxes-image, 150
restore-kb-image, 151
restore-kbs-image, 151
restore-tbox-image, 149
restore-tboxes-image, 150
retraction, 54
retrieve-concept-instances, 130
retrieve-direct-predecessors, 133
retrieve-individual-attribute-fillers,

131
retrieve-individual-filled-roles,

133
retrieve-individual-fillers, 131
retrieve-related-individuals, 132
role hierarchy, 49
role-ancestors, 123
role-children, 124
role-descendants, 123
role-domain, 105
role-has-domain, 88
role-has-parent, 89
role-has-range, 89
role-inverse, 105
role-is-functional, 86

173

role-is-transitive, 86
role-offspring, 124
role-p, 102
role-parents, 125
role-range, 106
role-subsumes-p, 101
role-subsumes?, 101
role-synonyms, 125
role?, 102
roles-equivalent, 87
roles-equivalent-1, 87

save knowledge base, 64
save TBox, 68
save-abox, 75
save-kb, 63
save-tbox, 67
set-associated-tbox, 78
signature, 44
signature, 65
state, 94
store-abox-image, 150
store-aboxes-image, 150
store-kb-image, 151
store-kbs-image, 151
store-tbox-image, 149
store-tboxes-image, 149
subrole, 84
subscribe, 146
subscribe-1, 146
superrole, 84
symmetric-p, 104
symmetric?, 104

taxonomy, 119
tbox, 78
tbox-classified-p, 107
tbox-classified?, 107
tbox-coherent-p, 109
tbox-coherent?, 109
tbox-cyclic-p, 108
tbox-cyclic?, 109
tbox-name, 71
tbox-prepared-p, 108
tbox-prepared?, 108
tbox-signature, 66
told-value, 132
top, 79

transitive, 86
transitive role, 49, 84
transitive-p, 102
transitive?, 102

unique name assumption, 53
unpublish, 145
unpublish-1, 146
unsubscribe, 147
unsubscribe-1, 147

value restriction, 45

XML, 72
xml-read-tbox-file, 72

174

	Introduction
	Features
	New Features in Version 1.7.7
	Application Areas
	About this Document
	Acknowledgments

	Obtaining and Running RACER
	System Requirements
	System Installation
	Sample Session
	Open-World Assumption and Unique Name Assumption
	The RACER Server
	The File Interface
	TCP Socket Interface: JRACER
	HTTP Interface: DIG Interface
	Additional Options for the RACER Server

	Graphical Client Interfaces
	RICE
	OilEd
	Using OilEd and Rice in Combination
	Protégé

	Naming Conventions

	RACER Knowledge Bases
	Concept Language
	Concept Axioms and Terminology
	Role Declarations
	Concrete Domains
	Concrete Domain Attributes
	Algorithms for Concrete Domains
	ABox Assertions
	Inference Modes
	Retraction and Incremental Additions

	The RDF/RDFS/DAML interface
	The RDF/OWL interface
	Knowledge Base Management Functions
	in-knowledge-base
	racer-read-file
	racer-read-document
	include-kb
	daml-read-file
	daml-read-document
	owl-read-file
	owl-read-document
	mirror
	kb-ontologies
	save-kb
	TBox Management
	in-tbox
	init-tbox
	signature
	ensure-tbox-signature
	tbox-signature
	current-tbox
	current-tbox
	save-tbox
	forget-tbox
	delete-tbox
	delete-all-tboxes
	create-tbox-clone
	clone-tbox
	find-tbox
	tbox-name
	clear-default-tbox
	associated-aboxes
	xml-read-tbox-file
	rdfs-read-tbox-file

	ABox Management
	in-abox
	init-abox
	ensure-abox-signature
	abox-signature
	kb-signature
	current-abox
	current-abox
	save-abox
	forget-abox
	delete-abox
	delete-all-aboxes
	create-abox-clone
	clone-abox
	find-abox
	abox-name
	tbox
	associated-tbox
	set-associated-tbox

	Knowledge Base Declarations
	Built-in Concepts
	top, top
	bottom, bottom

	Concept Axioms
	implies
	equivalent
	disjoint
	define-primitive-concept
	define-concept
	define-disjoint-primitive-concept
	add-concept-axiom
	add-disjointness-axiom

	Role Declarations
	define-primitive-role
	define-primitive-attribute
	add-role-axioms
	functional
	role-is-functional
	transitive
	role-is-transitive
	inverse
	inverse-of-role
	roles-equivalent
	roles-equivalent-1
	domain
	role-has-domain
	attribute-has-domain
	range
	role-has-range
	attribute-has-range
	implies-role
	role-has-parent

	Concrete Domain Attribute Declaration
	define-concrete-domain-attribute

	Assertions
	instance
	add-concept-assertion
	forget-concept-assertion
	related
	add-role-assertion
	forget-role-assertion
	forget-disjointness-axiom
	forget-disjointness-axiom-statement
	define-distinct-individual
	state
	forget
	forget-statement

	Concrete Domain Assertions
	add-constraint-assertion
	constraints
	add-attribute-assertion
	constrained

	Reasoning Modes
	auto-classify
	auto-realize

	Evaluation Functions and Queries
	Queries for Concept Terms
	concept-satisfiable?
	concept-satisfiable-p
	concept-subsumes?
	concept-subsumes-p
	concept-equivalent?
	concept-equivalent-p
	concept-disjoint?
	concept-disjoint-p
	concept-p
	concept?
	concept-is-primitive-p
	concept-is-primitive?
	alc-concept-coherent

	Role Queries
	role-subsumes?
	role-subsumes-p
	role-p
	role?
	transitive-p
	transitive?
	feature-p
	feature?
	cd-attribute-p
	cd-attribute?
	symmetric-p
	symmetric?
	reflexive-p
	reflexive?
	atomic-role-inverse
	role-inverse
	role-domain
	atomic-role-domain
	role-range
	atomic-role-range
	attribute-domain
	attribute-domain-1

	TBox Evaluation Functions
	classify-tbox
	check-tbox-coherence
	tbox-classified-p
	tbox-classified?
	tbox-prepared-p
	tbox-prepared?
	tbox-cyclic-p
	tbox-cyclic?
	tbox-coherent-p
	tbox-coherent?
	get-tbox-language
	get-meta-constraint
	get-concept-definition
	get-concept-definition-1
	get-concept-negated-definition
	get-concept-negated-definition-1

	ABox Evaluation Functions
	realize-abox
	abox-realized-p
	abox-realized?
	abox-prepared-p
	abox-prepared?
	compute-all-implicit-role-fillers
	compute-implicit-role-fillers
	get-abox-language

	ABox Queries
	abox-consistent-p
	abox-consistent?
	check-abox-coherence
	individual-instance?
	individual-instance-p
	constraint-entailed?
	constraint-entailed-p
	individuals-related?
	individuals-related-p
	individual-equal?
	individual-not-equal?
	individual-p
	individual?
	cd-object-p
	cd-object?

	Retrieval
	TBox Retrieval
	taxonomy
	concept-synonyms
	atomic-concept-synonyms
	concept-descendants
	atomic-concept-descendants
	concept-ancestors
	atomic-concept-ancestors
	concept-children
	atomic-concept-children
	concept-parents
	atomic-concept-parents
	role-descendants
	atomic-role-descendants
	role-ancestors
	atomic-role-ancestors
	role-children
	atomic-role-children
	role-parents
	atomic-role-parents
	role-synonyms
	atomic-role-synonyms
	all-tboxes
	all-atomic-concepts
	all-equivalent-concepts
	all-roles
	all-features
	all-attributes
	attribute-type
	all-transitive-roles
	describe-tbox
	describe-concept
	describe-role

	ABox Retrieval
	individual-direct-types
	most-specific-instantiators
	individual-types
	instantiators
	concept-instances
	retrieve-concept-instances
	individual-fillers
	retrieve-individual-fillers
	individual-attribute-fillers
	retrieve-individual-attribute-fillers
	told-value
	retrieve-related-individuals
	related-individuals
	retrieve-individual-filled-roles
	retrieve-direct-predecessors
	all-aboxes
	all-individuals
	all-concept-assertions-for-individual
	all-role-assertions-for-individual-in-domain
	all-role-assertions-for-individual-in-range
	all-concept-assertions
	all-role-assertions
	all-constraints
	all-attribute-assertions
	describe-abox
	describe-individual

	Configuring Optimizations
	compute-index-for-instance-retrieval
	ensure-subsumption-based-query-answering

	The Publish-Subscribe Mechanism
	An Application Example
	Using JRacer for Publish and Subscribe
	Realizing Local Closed World Assumptions
	Publish and Subscribe Functions
	publish
	publish-1
	unpublish
	unpublish-1
	subscribe
	subscribe-1
	unsubscribe
	unsubscribe-1
	init-subscriptions
	init-subscriptions-1
	init-publications
	init-publications-1
	check-subscriptions

	The Racer Persistency Services
	store-tbox-image
	store-tboxes-image
	restore-tbox-image
	restore-tboxes-image
	store-abox-image
	store-aboxes-image
	restore-abox-image
	restore-aboxes-image
	store-kb-image
	store-kbs-image
	restore-kb-image
	restore-kbs-image

	The Racer Proxy
	Installation and Configuration
	Multiuser-Access to a Racer Server
	Load Balancing Using Multiple Racer Servers
	Extension of the Publish-Subscribe Mechanism
	Persistency and Logging

	Reporting Errors and Inefficiencies
	logging-on
	logging-off

	What comes next?
	Integrated Sample Knowledge Base
	An Excerpt of the Family Example in DAML Syntax
	Another Family Knowledge Base
	A Knowledge Base with Concrete Domains

