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0 Preliminary remarks

For more than two decades Formal Concept Analysis (FCA for short) now provides
conceptual tools for the analysis of data, and FCA has already had many successful
applications. One of the main objectives of the method of FCA is to visualize the
data in form of concept lattices and thereby to make them more transparent and
more easily discussible and criticizable (see the example below of a repertory grid for
an anorectic patient in Tables 1, 2 and 3 and the corresponding Figures 1, and 4).
Another important tool provided in connection with Formal Concept Analysis is the
method of “interactive attribute exploration”, which allows knowledge acquisition
from (or by) an expert by putting very precise questions to him, which either have to
be confirmed or to be refuted by a counterexample. This method will be described in
detail in section 6. Among the programs for the support of Formal Concept Analysis
ConImp is one of those most widely spread all over the world and the most frequently
used so far, and starting from Version 4.16 from August 2001 it is also available for
Linux-platforms. ConImp allows input and “manipulation” of (so-called one-valued)
contexts and of implications between the attributes and calculations of related data
from these inputs, which are mainly needed in applications. In particular all the
data needed for the drawing of the related concept lattices by hand (and also for the
so-called geometric method) can be provided. As kernel of ConImp one may consider
the subprogram on the so-called interactive attribute exploration, which — like
many other parts — is constantly developed further — in particular w.r.t. the part
concerning incomplete data or incomplete knowledge (cf. section 6).

In the following we try to explain the basic concepts of formal concept analysis,
which is a theory that has been developed since about 1980 by R. Wille (cf. [W82])
and members of the Research Group on Formal Concept Analysis at the Technische
Hochschule Darmstadt; and we shall do this in connection with some examples. And
at the same time we want to present the main features of ConImp. In particular all
kinds of input and output, all manipulations of contexts and implications as well as all
calculations mentioned in this text can be carried out by using ConImp. And we try
to give in parenthesis the key strokes needed to reach the option under consideration
(the path is usually indicated by starting from the main menu, or, when preceded by
. . . , starting from the submenu under discussion).

All those parts which directly refer to an example are printed in slanted style; and
those parts more or less presenting output of the program on screen or printer in the
format used by ConImp are given in typewriter style.

Before we start with the basic concepts let us add some remarks concerning the
development of ConImp: The first programming on and first applications of the pro-
gram “ConImp” (the name abbreviates “Contexts and Implications”) have started
in 1986 — still under the operating system CPM on an APPLE II computer1 and

1The names of computer systems and programs mentioned here and in what follows are mainly
protected by law and copyright and used here only for the purpose of identifying and referencing
these products.
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still under the name “BAmn”2 —, mainly in order to have the so-called attribute
exploration (cf. section 6) and the necessary calculations in formal concept analysis
at hand on this type of computer. Later on there have also been compiled ver-
sions, which ran under MSDOS or PCDOS (on so-called IBM-compatible computers)
or which ran under TOS (on ATARI ST computers). As programming languages
TURBO PASCAL 3.0 and later 6.0 by BORLAND3 were used and — for ATARI ST
computers — ST PASCAL (by Creative Computer Design (CCD)) and lately Pure
PASCAL (by Application Systems Heidelberg). By and by the program was enlarged
by new features, mainly caused by requests of users and by own interests. At the
moment (September 2001) version 4.16 exists with English texts, and for DOS- and
Windows3x, -95, -98, -ME and -NT-computers as well as for the operating system
Linux (compiled with fc-Pascal (from First Publisher)).4 This text refers to this cur-
rent version 4.16.5 The programming has not been done by professional programmers,
and the surface is still quite old-fashioned, however — except for the usual minor er-
rors, which occur in every larger program, and for crashes that occur in some versions
when some of the lists of computed data become too large and the computer then runs
out of memory — the program has always worked quite reliably and is the program
which has so far been used most frequently in formal concept analysis.

1 (Formal) Contexts

In [W82] R. Wille has introduced Formal Concept Analysis — in connection with
his attempt to restructure order and lattice theory — as an application of order and
lattice theory in connection with so-called Galois connections induced by relations.
The theory is based on a set theoretical model for conceptual hierarchies. This model
mathematizes the philosophical understanding of a concept as a unit of thoughts
consisting of two parts: the extension and the intension (comprehension). The ex-
tension covers all objects (or entities) belonging to the concept, while the intension
comprises all attributes (or properties) valid for all the objects under consideration.6

In connection with this philosophical background a formal context of the form
K := (G,M, I) has become one of the basic notions of formal concept analysis. Here
G and M are sets; the elements of G are called objects, and the elements of M are

2Begriffs-Analyse handling contexts with about 10*m attributes and 10*n objects. — The almost
eqivalent role, which by and by contexts and implications began to play, when the program was
extended and modified later on, has then led to the change of the name into ConImp.

3Starting from version 4.9 up to version 4.15 there could also be provided on request a version
compiled in the so-called “protected mode” with Borland Pascal 7.0, in which the generated lists
can become much longer than in the usual version.

4Unfortunately, those versions compiled with Borland Pascal 7.0 do not run under the most recent
versions of Windows. Whoever has such a version should contact the author for a more recent and
appropriately compiled version.

5Starting from version 3.3 in 1991 only the English version has been extended, while up to then
there were also German ones. However the German mnemonics for the keystrokes are still used.

6All those who want to learn more about formal concept analysis and in particular about its
mathematical background, should read the book [GW96] by B. Ganter and R. Wille.
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called attributes. Moreover, I (⊆ G ×M) is a binary relation between the sets of
objects and attributes, respectively. In formal contexts, which usually refer to some
application, the relation (g,m) ∈ I (often also written as gIm) is read as follows:
The object g is in relation I to the attribute m, if “the object g has the attribute
m”, or, equivalently, if “the attribute m applies to the object g”.

A formal context7 can be considered as (the mathematical model of) a table,
which relates objects and attributes of a “real situation”. The entries in the table
indicate by a cross (in the program ConImp by the letter “x”) that the object, the
name of which precedes the corresponding row, has the attribute, the name of which
is at the top of the corresponding column (of the entry). And by an empty space
(blanc: “ ”) or (in the program as default) by a period (full stop: “.”) it is expressed
that the corresponding object does not have that attribute — or that it is not known,
whether or not this is the case. This refers to a so-called one-valued context.8 The
program ConImp uses in this case the usual two-valued attribute logic, i.e. points or
blanks as entries are always interpreted in the way that the corresponding attribute
does not apply to the corresponding object.

Grid O11E2V1 SE ID FA MO SI BR EL JA MA JE DI
rational – emotional 2 3 2 5 4 3 2 5 3 4 4
sincere – insincere 1 2 2 3 3 3 2 3 3 4 2
optimistic – pessimistic 5 1 3 5 3 3 4 4 3 2 2
interested – not interested 5 2 2 3 3 3 2 4 4 3 3
flexible – timid 5 1 3 3 2 3 4 4 3 2 2
materialistic – idealistic 5 5 4 2 4 2 3 1 4 3 4
not fash-consc – fash-consc 2 2 2 5 2 4 4 5 3 4 4
light hearted – depressive 6 1 3 4 3 3 3 3 4 2 2
resolute – insecure 5 2 3 4 4 3 4 4 5 2 3
unconstrained – constrained 4 2 2 3 2 3 4 5 4 3 2

Table 1: A repertory grid of a patient (example O11E2V1)

As a first example we consider a context in Table 2 which is derived from a reper-
tory grid given in Table 1 and taken from [SpWo], where it is discussed in great
detail by the involved psychotherapist. This repertory grid has been produced by an
anorectic patient in a session with her psychotherapist on relations among her family
and persons related to her:
SELF (SE – the patient herself), IDEAL (ID – her ideal, which she wants to be), FA-
THER (FA), MOTHER (MO), SISTER (SI), BROTHER (BR), ELVIS (EL), JANE
(JA), MARY (MA), JENNIFER (JE) and DIANA (DI).

7In what follows we shall usually omit the addition “formal”, since all our contexts will be formal
ones.

8That one speaks of “one-valued contexts” refers also to the fact that in the set theoretical
language used in formal concept analysis one cannot refer explicitly to the negations of attributes,
when these negations do not occur as attributes by themselves (cf. the examples in the following
sections).
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Context SE ID FA MO SI BR EL JA MA JE DI

rational × . × . . . × . . . .
emotional . . . × . . . × . . .
sincere × × × . . . × . . . ×
insincere . . . . . . . . . . .
optimistic . × . . . . . . . × ×
pessimistic × . . × . . . . . . .
interested . × × . . . × . . . .
not interested × . . . . . . . . . .
flexible . × . . × . . . . × ×
timid × . . . . . . . . . .
materialistic . . . × . × . × . . .
idealistic × × . . . . . . . . .
not fashion conscious × × × . × . . . . . .
fashion conscious . . . × . . . × . . .
light hearted . × . . . . . . . × ×
depressive × . . . . . . . . . .
resolute . × . . . . . . . × .
insecure × . . . . . . . × . .
unconstrained . × × . × . . . . . ×
constrained . . . . . . . × . . .

Table 2: The one-valued scaled context for the above grid for example O11E2V1:
“1” or “2”: a cross for the first, “5” or “6”: a cross for the second property

For samples of two persons chosen randomly among those the patient had mentioned to the

therapist she had to give a pair of “opposite” adjectives somehow distinguishing these two persons

and then to rate all the above persons on a scale from 1 to 6 with respect to all these pairs. The

result was the grid shown in Table 1, which contains these ten pairs, which are now heading the

rows of the table where “not fash-consc – fash-consc” is short for “not fashion conscious – fashion

conscious”.

In order to analyse the information hidden in the grid, the therapist “scaled” the
grid into a one-valued context by splitting each pair into the two attributes consisting
of the first adjective and the second adjective of the pair, respectively, and by making a
cross in the column for a person and the row of the first attribute, if the corresponding
pair had obtained the values “1” or “2” for this person (otherwise a period for this
first attibute), and by making a cross in the column of a person and the row for the
second attribute, when the person was rated “5” or “6” for the corresponding pair,
otherwise a period for the second attribute of the pair. For the values “3” and “4”
each row got a period, since these values were rated as a kind of undecidedness of the
patient — there are other kinds of translation (“scaling”) of the grid into a one-valued
context, but this one has been very informative to the expert and has prevented the
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analysis from becoming too complicated.9 In this way Table 2 was obtained.
Such a table can now be entered into ConImp (B . . . ). However, in general

in a formal context of Formal Concept Analysis the columns correspond to the at-
tributes and the rows to the objects, which everyone might expect to be the persons
in connection with our example. ConImp allows in the alteration menu (A . . . ) to
“interchange the roles of objects and attributes” (A V), i.e. to transpose the table
(that means to take the mirror image of the table with respect to its main diagonal
which runs from upper left to lower right).

In addition, ConImp also offers the possibility to enter question marks “?” in
order to indicate that the user does not know, whether or not the attribute applies
to the object. And such contexts are then treated by a modification of the usual
three-valued Kleene-logic (mainly in connection with the interactive subprogram of
attribute exploration (cf. section 6)). One can tell ConImp to use a three-valued logic
either when editing a new context (command: B . . . 3 . . . )10 or by changing to the
three-valued logic in the change menu (A L). If one is loading a context from a disk
or harddisk (L . . . ), then the logic is automatically chosen to be three-valued if a
question mark occurs in the context; otherwise, the two-valued logic is chosen, even
when the the context has been saved as one using a three-valued logic (then A L has
to be pressed again, if one wants to return to it). — The use of the three-valued logic
may be of particular interest if one enters counterexamples in connection with the
so-called attribute exploration11 (I I I . . . ), if one wants to enter, in connection
with the edited counterexample, only the application of those attributes which are
asolutely necessary for the answer to the actual question (possibly in addition to those
that are obvious).12 A context containing question marks (or with three-valued logic
chosen) can at the moment be transformed (by command) in at least two ways into
a “one-valued” one:13

U T converts all question marks into blanks,

U P converts all question marks into crosses.

Such a change has to be done before most computations can be carried out. Starting

9There are many ways to transform (scale) a so-called many-valued context (like the grid of
the example) into a one-valued context. There exists a public domain DOS-program “MBA.exe”,
by which such scaling can be done automatically, once the many-valued context and the scales for
the attributes have been entered into MBA.exe by the user.

10When we indicate the keystrokes necessary to start a subprogram, we usually start from the
main menu of ConImp. If it is meant to start from a menu that is clear from the surrounding text,
then the keystrokes are preceded by “ . . . ”. If the given keystrokes are just the start of some kind of
dialogue (or of several different choices following the start of the subprogram or submenu), then the
indicated keystrokes are followed by “ . . . ”. Observe that in connection with commands ConImp
does not distinguish between small and capital characters. However, under Linux for loading a file
file names have to be entered observing small and capital characters.

11Cf. section 6.
12More about this can be found e.g. in Burmeister [B91] or Holzer [H01].
13If one is lucky, also one of the transformations in connection with implications already entered

or computed may convert all question marks (see below).
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from version 4.15 one has to distinguish because of the results of Richard Holzer

in [H01] between ordinary objects and fictitious objects.14 However, before per-
forming such a transformation one can first “prepare” the present context with ques-
tionmarks as follows:
enter known implications as “background implications”15 (I H . . . ) (if it has not
been done yet), and then choose

U U to eliminate all question marks, which have to be crosses or blanks, when the
computed or entered implications including possibly existing “uncertain” impli-
cations are true in the resulting context, but such that fictitious objects remain
unchanged;

U A to eliminate all question marks, which have to be crosses or blanks, when the
computed or entered implications including possibly existing “uncertain” im-
plications are true in the resulting context, applying them also to fictitious
objects;

U C to eliminate all question marks, which have to be crosses or blanks, when the
computed or entered “certain” implications (i.e. excluding possibly existing “un-
certain” implications) are true in the resulting context, but such that fictitious
objects remain unchanged;

U F to eliminate all question marks, which have to be crosses or blanks, when the
computed or entered “certain” implications (excluding possibly existing “un-
certain” implications) are true in the resulting context, applying them also to
fictitious objects.

These options also use the “Duquenne-Guigues base” (cf. section 5), if this is has
been computed or loaded before.

The present version 4.18 of ConImpcan handle contexts with at most 255 at-
tributes and at most 255 objects.16

The connection between a table (context) and a “real situation” is mainly estab-
lished by the names for the attributes and objects; at the moment these names can
consist of at most nine characters (six in earlier versions). In order to enter names
with ConImp one calls the corresponding submenu either directly from the main menu
(N . . . ) or from the context editor (B . . . Control N).17

14Fictitious objects occur in connection with the procedure of attribute exploration in order to
encode undecided implications in connection with the option I I I . . . O. They can also be entered
directly by the user. Their name has to start with a questionmark in order that they are treated
correctly e.g. in connection with the following transformations.

15Cf. section 5.
16Earlier versions could only handle m objects and n attributes with m and n strictly less than

256 and their product less than about 25000 (e.g. 98 attributes and 255 objects or 158 ojects and
attributes).

17We shall abbreviate “Control N” by “∧N” — and analogously all other commands, where one
has to press the key of the corresponding character while pressing (holding) the control key.
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In this way the data given in Table 2 can now be entered into the context editor of
ConImp (B . . . ) — we have named the context “RepGrid” —, and it shows already
the transposed context in comparison to Table 2. Yet, because of the restrictions
on the name lenghts to nine characters one either has to allow ConImp to cut the
names after nine characters, as we have done for the context “RepGrid” (see Table 3
— the attribute names have to be read from top to bottom) or to think of good
shorthands — in particular, when the first nine characters do not distinguish all the
names. — Let us observe that in Table 3, which shows an original print-out of a
context by ConImp, we have just added in parentheses the consecutive numbers of
the objects; on the screen these numbers are shown at the beginning of the line of
the corresponding object, while its name is shown at the end of the line. In this table
we also show the “subcontext” “RepGridM” of “RepGrid” having as set of attributes
all the attributes of “RepGrid” and having as objects only the four main reference
persons SELF, IDEAL, FATHER, MOTHER (we shall discuss it later in some more
detail).

In the following we mainly use examples of contexts, where the objects are certain
positive natural numbers, and where the attributes are some properties, which we have
chosen from those which might be of interest and make sense for natural numbers.18

To begin with, we consider as objects all natural numbers from 1 to 9, i.e.
G := {1, 2, 3, 4, 5, 6, 7, 8, 9} , and as attributes we choose

even i.e. “is an even number”
resp. “ is divisible by 2”

odd i.e. “is an odd number”
resp. “is not divisible by 2 without rest”

prime i.e. “is prime”
resp. “is only divisible by 1 and by itself”

square i.e. “is square”
resp. “= a ∗ a = a2 for a natural number a”

cubic i.e. “is cubic”
resp. “= a ∗ a ∗ a = a3 for a natural number a”

Thus, M = { even, odd, prime, square, cubic } ; and the relation I applies to the
number z and the attribute m if the number z has the attribute m.

In the case that an attribute m from the set M of attributes applies to an object

18Most applications of ConImp are concerned with the analysis of tables, which have nothing
to do with mathematics — as can be seen from our introductory example of the repertory grid,
which is quite typical. However, mathematical examples are more suitable for the discussion of
the main part of ConImp — as we see it — which concerns the so-called (interactive) attribute
exploration; and there are so far only very few genuine non-mathematical examples of attribute
exploration — like finding keywords for the classification of books in a (relatively small) library —,
and in non-mathematical conceptual universes experts have to come to a consent about the validity
of the (attribute) implications (see section 5, while in mathematical conceptual universes the validity
of implications can usually be decided more objectively. In particular, we hope that every reader
can easily follow our examples concerning natural numbers and some simple properties concerning
them.
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Print-out of the Print-out of the

context RepGrid context RepGridM

e iopin minfld uc e iopin minfld uc

rm npenof adoaierino rm npenof adoaierino

aosststtl tetsgpencn aosststtl tetsgpencn

ttiiise e ea hhrssos ttiiise e ea hhrssos

iinnmirixtrlfiteoent iinnmirixtrlfiteoent

ooccimeniiiiao slcsr ooccimeniiiiao slcsr

nneesistbmassnhsuuta nneesistbmassnhsuuta

aarrtstelilth eitrri aarrtstelilth eitrri

lleeiterediiicaveean lleeiterediiicaveean

-------------------- --------------------

SELF!x.x..x.x.x.xx..x.x..! ( 1) SELF!x.x..x.x.x.xx..x.x..!

IDEAL!..x.x.x.x..xx.x.x.x.! ( 2) IDEAL!..x.x.x.x..xx.x.x.x.!

FATHER!x.x...x.....x.....x.! ( 3) FATHER!x.x...x.....x.....x.!

MOTHER!.x...x....x..x......! ( 4) MOTHER!.x...x....x..x......!

SISTER!........x...x.....x.! ( 5) ----------------------

BROTHER!..........x.........! ( 6)

ELVIS!x.x...x.............! ( 7)

JANE!.x........x..x.....x! ( 8)

MARY!.................x..! ( 9)

JENNIFER!....x...x.....x.x...! (10)

DIANA!..x.x...x.....x...x.! (11)

----------------------

Table 3: The contexts “RepGrid” and “RepGridM” concerning example O11E2V1
(see Table 2) and for the first four persons in it

g from the set G of objects of the context under consideration, one enters a cross into
the table in the row which is preceded by the object name “z”,19 and in the column
at the top of which one has the attribute name “m”.

In our example for a context, which we will call “NumE1”20 this will look as in
Table 4. — In particular we get the following: Since 2 is an even prime number,
there are crosses in the row preceded by the object name “2” and in the columns

19In the context editor the row ends with the object name and starts with the “consecutive
number” of the object under consideration.

20“NumE1” stands here as an abbreviation for “example No. 1 on natural numbers”. The context
names of the other examples below will have to be interpreted in a similar way. — Note that the
name of a context will be taken by ConImp as default name (which could be changed, but usually
it is not wise to do so, as will become obvious immediately) to save the context and data related to
it into a file of this name — with an extension hinting to the kind of the data —; therefore a context
name cannot have more than eight characters (limit for file names under DOS). Thus, our context
will be saved as “NumE1.CXT”, when we choose the option “Save context” (S . . . ).
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preceded by the attribute names “even” and “prime”, respectively. Since 2 is neither
odd nor square nor cubic (within the set of all natural numbers) the corresponding
entries are periods. — We present the context here in the same way as it will be
represented in a print-out of the program — but basically also as it will appear in the
context editor —, i.e. the attribute names must be read from top to bottom in the
columns; furthermore, we represent the clarified context “NumE1p” derived from
the context “NumE1” and the reduced context “NumE1r”, both of which will be
explained in section 4.

NumE1 NumE1p NumE1r

s s s

pqc pqc pqc

e ruu e ruu e ruu

voiab voiab voiab

edmri edmri edmri

ndeec ndeec ndeec

----- ----- -----

1!.x.xx! 1!.x.xx! 1!.x.xx!

2!x.x..! 2!x.x..! 2!x.x..!

3!.xx..! 3!.xx..! 3!.xx..!

4!x..x.! 4!x..x.! 4!x..x.!

5!.xx..! 6!x....! 8!x...x!

6!x....! 8!x...x! 9!.x.x.!

7!.xx..! 9!.x.x.! -------

8!x...x! -------

9!.x.x.!

-------

Table 4: Original formal context NumE1, and the derived
clarified context — NumE1p — and reduced context — NumE1r

In the context editor — contrary to the print-out — one has on the left of the
respective row the consecutive number of the corresponding object and on the right
the object name. And the object and attribute name belonging to the line and
column in which the curser is situated are shown again in the first line of the screen
— together with the corresponding consecutive numbers attached to them (which are
identical with the row and column number, respectively).

2 Concepts and Concept Ordering

Before we can answer e.g. the question of what is meant by a “reduced context” in
Table 4, we will first treat the formal concepts and the hierarchical relation of compa-
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rability (order relation ≤) between formal concepts. This “subconcept – superconcept
relation” belongs to the essential basic concepts of formal concept analysis:

Let K := (G,M, I) be a context. Let A be a subset of the object set G — i.e. A
consists only of objects and all these objects belong to G —, then A′ denotes the set
of all attributes from the attribute set M which apply to each object in A. Conversely,
for a subset B of the attribute set M , B′ denotes the set of all objects from G to which
each attribute from B applies.

Again, let A be a subset of the object set G and let B be a subset of the attribute
set M , then the (ordered) pair (A,B) formed with these two sets is called a (formal)
concept (for the context K) if one has A′ = B and B′ = A, i.e. if B consists of
precisely those attributes from M which apply to all objects from A, and if conversely
A consists of precisely those objects fromG which have all attributes from B. If (A,B)
is a formal concept, then A is called the extent and B is called the intent of (A,B).
Moreover, one then always has A′′ = A and B′′ = B. Frequently, formal concepts of
the form ({g}′′, {g}′) or ({m}′, {m}′′) are of special interest, which are “generated” by
a single object g from G or by a single attribute m from M , respectively. In such a case
of one-element sets, we usually omit the set brackets (braces) and write (g′′, g′) and
(m′,m′′), respectively. The first case is called an object concept, the second case an
attribute concept. In general, one can say that the formal concepts correspond to
maximal rectangles of crosses in the formal context — after appropriate permutations
of the rows and columns. ConImp is able to compute the list of all concepts of the
present context (V B) or only their number (Z . . . ) — this option should be used
first, if one does not know whether there is still enough memory left (the memory
still available for lists is shown at the bottom of the main menu21). By choosing D
B . . . B <Return> and by confirmation with Y (for “Yes”) one can see row by row
the extent on the left and intent on the right hand side of the screen — as long as the
number of objects plus the number of attributes does not exceed 69, otherwise several
lines of the screen are used and the assignment of the object or attribute names to
the crosses in the corresponding row becomes almost unrecoverable — one then might
use the option D F . . . B to write the list of concepts into a text file and view it
later with an editor (as plain ASCII text).

Thus, one can easily see that for the context NumE1 in Table 4
({3, 5, 7}, { odd, prime }) is a formal concept, having precisely the numbers “3”, “5”
and “7” in its extent and exactly the attributes “prime” and “odd” in its intent.
One can easily realize that it is an object concept which is generated by any one of
the objects in its extent (that it equals e.g. (3′′, 3′)). A further formal concept of
this context is ({2, 3, 5, 7}, { prime }), which obviously equals the attribute concept
( prime′ , prime′′, ). Furthermore, ( { 2, 4, 6, 8 }, { even } ) = ( even′ , even′′ ) is also an
attribute concept. At a close look, one will discover that in our example every concept

21Starting from version 4.16 of ConImp the available memory may be greater than shown, since in
the versions compiled by fc-pascal only that memory is shown, that is granted to the program just
at the moment, and this can dynamically be enlarged within the available memory, if necessary.
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distinct from ( Ø′′, Ø′ ) and ( Ø′, Ø′′ )22 is an object or attribute concept, but this is
not always the case, as one can see in the later example NumE2de of a context (cf.
Table 8), the “concept lattice” (cf. section 4) of which is presented in Table 5. An-
other example, where it is not the case, is the “concept lattice” (see Figure 1 below)
of the scaled repertory grid in Table 3, e.g. with the concept

( { SELF, FATHER }, { rational, sincere, not fashion conscious } ).
— In this example the psychotherapist can realize e.g. from the two object concepts
(see the corresponding lines of the context)
( { SELF }, { timid, depressive, not interested, pessimistic, insecure, idealistic, ratio-
nal, sincere, not fashion conscious } ) and
( { IDEAL }, { sincere, optimistic, interested, flexible, idealistic, not fashion conscious,
light hearted, resolute, unconstrained } )
in Table 2 or 3 that his patient identifies herself with most of the negatively rated at-
tributes and wishes to have most of the positively rated attributes, having only three
from nine attributes in common with her ideal (this can be seen more clearly from the
corresponding line diagram of the “concept lattice” (and part of it) in Figure 1 (and
Figure 4) below) — see Spangenberg, Wolff [SpWo] for a more extensive discussion
of this context and its “concept lattice”.

As already mentioned in connection with contexts, we will generally omit in the
following the addition “formal” in front of the word “concept”, if it is clear that we
are dealing with formal concepts.

In the following we denote by B(G,M, I) or B(K) the set of all concepts of
the context K := (G,M, I). We now define a binary relation ≤ — to be read as
“less or equal” or “is a subconcept of” — on the set B(G,M, I) of all concepts of
K := (G,M, I) as follows: If (A1, B1) and (A2, B2) are concepts of K, then (A1, B1) ≤
(A2, B2) (i.e. the concept (A1, B1) is less or equal to — respectively a subconcept
of — the concept (A2, B2)) if (and only if), A1 is a subset of A2 (or equivalently, if
and only if B2 is a subset of B1) 23 — (A2, B2) is then also called superconcept
of the concept (A1, B1) . This definition corresponds to the philosophical convention
that a concept always has a smaller extension and a larger intension than any of its
superconcepts.

Thus, for example, among the concepts belonging to the context NumE1 one has
that

({3, 5, 7}, { odd, prime }) ≤ ({2, 3, 5, 7}, { prime }) ,

while ({2, 4, 6, 8}, { even }) is not comparable with either of the two concepts above
w.r.t. the relation ≤.

The subconcept–superconcept relation “≤” on the set B(K) =
B(G,M, I) of all concepts of a context K := (G,M, I) is always

22Ø denotes the empty set, i.e. the set which does not contain any element, and which consequently
is contained as a subset in every set.

23Note the reversed order in connection with the intents.
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reflexive i.e. b ≤ b for all concepts b in B(K),
transitive i.e. for all concepts b1, b2 and b3 in B(K) :

b1 ≤ b2 and b2 ≤ b3 always imply b1 ≤ b3,
antisymmetric i.e. for all concepts b1 and b2 in B(K) :

b1 ≤ b2 and b2 ≤ b1 always imply b1 = b2.
A set P , on which a binary relation ≤ is defined which is reflexive, transitive

and antisymmetric, is called an ordered set, and the relation ≤ is called an order
relation on P . And in particular, the pair (P,≤) is then called an ordered set.

As we shall see in section 3 below, ordered sets can be represented by a line
diagram, and it will be explained, how to read them. Moreover, we shall learn that
the ordered sets of all concepts of a context are indeed “lattices”, and therefore one
speaks of the “concept lattice” of a given context.

The concept lattice of the context “RepGrid” is shown in Figure 124

3 Digression: Some basic notions of the theory of

ordered sets

Before entering more deeply into the different features of ConImp we first want to
explain some basic notions of order theory to those readers who are not quite familiar
with this theory, and we want to provide them with some of the relevant facts, too.

Since the program ConImp only enables the user to work on finite contexts cor-
responding to finite sets of concepts (starting from 255 attributes one can maximally
have 2255 concepts, i.e. considerably less than 1077 — a 1 with 77 zeroes), we will
(mainly) restrict ourselves to finite sets (and lattices (see below)).

In the following, let P always be a set and ≤ an order relation on P , i.e. (P,≤) is
assumed to be an ordered set.

• If p and q are elements of P , we say that p and q are comparable if p ≤ q or
q ≤ p ; otherwise, p and q are called incomparable.

• Given two elements p and q of P , we say that p is a lower neighbour of q
and accordingly that q is an upper neighbour of p if (1) and (2) below hold,
where:

(1) p ≤ q and p 6= q,

(2) for all r in P , p ≤ r ≤ q always implies r = p or r = q;

i.e. in other terms: “p is strictly less than q, and there is no element in P ,
which lies between p and q and is different both from p and q”. If p is a lower
neighbour of q, we write “p ≺ q”.

24See section 3 below, how to read the line diagram.
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Figure 1: The concept lattice for the context “RepGrid” in Table 3
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• If (P,≤) is a finite ordered set, then — due to transitivity and finiteness —
the order relation ≤ is uniquely determined by the neighbourhood relation ≺
defined by ≤ as described above.

• In ConImp there are two ways to compute the order relation of a concept lattice
corresponding to the actual context, and one has several options which really
do it:25

– V V computes for each concept a list of all lower neighbours,

– V N computes for each concept a list of all upper neighbours,

– V L computes for each concept a list of all upper neighbours as well as a
list of all lower neighbours,

– V A first computes the list of all concepts (together with aditional infor-
mation as to which concepts the attributes and objects have to be assigned
(cf. the attribute and object concepts)) and then computes for each concept
a list of all upper neighbours and a list of all lower neighbours.

• Every finite ordered set (P,≤) can be represented graphically by a so-called line
diagram (often also called Hasse diagram). The elements of P are depicted
by small circles. The drawing is to be made in such a way that in each (and
only such) case, when p is a lower neighbour of q in (P,≤), i.e. when p ≺ q
holds, then the circle for q is drawn above the circle for p, and the circle for q
is connected to the circle for p by a downward directed (mostly straight) line
(on which there is no additional circle). Then one can read the relation v ≤ w
between elements v and w of P in the respective line diagram from the existence
of a sequence of connected line segments strictly moving upwards from the circle
for v to the circle for w, or one has v = w.

• As an example see the line diagram of the concept lattice for the context “Rep-
Grid” in Figure 1. One can read from it that “SELF” has the properties “timid”,
“depressive”, “not interested”, “rational”, “sincere”, “insecure”, “idealistic”,
“not fashion conscious” and “pessimistic”.

• As a further example let us consider the set {1, 2, 3, 5, 6, 10, 15, 30} of all divisors
of the number 30, and let ≤ be the relation “is a divisor of” (in symbols: | ).
Then, obviously, 2 and 3 are lower neighbours of 6, but they are not lower
neighbours of 30. Nevertheless, 2|30 is true, as one can also read from the line
diagram for ( { 1, 2, 3, 5, 6, 10, 15, 30 }, | ) represented in Figure 2.

• Two ordered sets (P,≤) and (Q,v) are called isomorphic, if there is a one-to-
one assignment, say f , assigning to each element of P an element of Q in such a
way that p ≤ q in (P,≤), if and only if f(p) v f(q) in (Q,v), and such that to

25Observe that except for the option V A the concept lattice has to be computed in advance (by
V B).
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Figure 2: Example of a line diagram: Divisors of the number 30

each element of Q some element of P has been assigned (this last requirement
means that f has to be “onto”). This means, too, that every element of Q is
assigned by f to exactly one element of P .

• Let N be a subset of P . An element q of P is called an upper bound of N ,
if n ≤ q is true for every element n of N (by analogy p of P is called a lower
bound of N , if p ≤ n for every n in N).

If there is a least upper bound of N — that means: if there is an upper bound
q0 of N , for which q0 ≤ q for all upper bounds q of N —, then q0 is called the
supremum of the set N and it is uniquely determined by this property; the
supremum of N , if it exists, is denoted by sup N . By analogy, the infimum
p0 of N is defined as the greatest lower bound of N , if this exists, and is
denoted by inf N .

For example, in Figure 1 supremum and infimum exist for every subset of con-
cepts. In particular the attribute concept for “idealistic” is the supremum of
the object concepts for “SELF” and “IDEAL”, while the object concept for
“IDEAL” is the infimum of the attribute concepts for “idealistic” and “flexi-
ble”.

And in Figure 2 supremum and infimum exist for every subset of the set of
divisors of 30, i.e. in the ordered set ( { 1, 2, 3, 5, 6, 10, 15, 30 } , | ). For example,
one has that 10 = sup {2, 5} und 2 = inf {6, 10}.

• An ordered set (P,≤) is called a lattice, if supremum and infimum exist for
every two-element subset of P . In this case, supremum and infimum also exist
for every finite, non-empty subset of P .

Let P be finite and let Ø denote the empty subset of P ; then sup Ø and inf Ø
also exist.26

26sup Ø, if it exists in (P,≤), always is the least element of P , since every element of P is an upper
bound of the empty subset — and, analogously, inf Ø, if it exists in (P,≤), is the greatest element
of P , since every element of P is also a lower bound of Ø: sup Ø = inf P and inf Ø = sup P .
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Lattices are of interest for us in so far as for every context K the ordered set
(B(K),≤) of all its concepts is always a lattice.

The line diagram in Figure 2 also represents a lattice.

Moreover, every finite lattice (V,≤) can be represented as the lattice of all concepts
of some context — for example of the context (V, V,≤) — (i.e. there is a canonically
defined isomorphism between these lattices). And if one wants to check whether a
“small” finite ordered set (P,≤) is a lattice, one just has to enter the context (P, P,≤)
into ConImp (B . . . ) and to compute for it the number of concepts (Z . . . ). If (and
only if) this is equal to the number of elements in P , then (P,≤) is a lattice.

In particular, the lattice in Figure 2 is the concept lattice of the context

Div30 := ({1, 2, 3, 5, 6, 10, 15, 30}, {1, 2, 3, 5, 6, 10, 15, 30}, | ) ,

which is represented in Table 5. In this connection every symbol for a number must
be considered both as an object name and as an attribute name.

Div30 311 Div30ar 11 Div30cr 11
05065321 506 506
-------- --- ---

30!x.......! 30!...! 5!xx.!
15!xx......! 15!x..! 3!x.x!
10!x.x.....! 10!.x.! 2!.xx!
6!x..x....! 6!..x! -----
5!xxx.x...! 5!xx.!
3!xx.x.x..! 3!x.x!
2!x.xx..x.! 2!.xx!
1!xxxxxxxx! 1!xxx!
---------- -----

Table 5: Formal context Div30 of all divisors of the number 30 with “attribute-
reduced” and “completely reduced” contexts (Div30ar) and (Div30cr), resp.

We continue with some additional notions and facts which are of importance for
the understanding of certain operations in concept analysis — connected with the
features of ConImp. In the following let (V,≤) always be a finite lattice (that is, in
particular let V be a finite set).

• An element v of V is called join-irreducible or sup-irreducible, if v cannot
be represented as the supremum of a subset of V which does not contain v as an
element. A sup-irreducible element can also be characterized by the fact that it
has exactly one lower neighbour. J(V ) designates the set of all join-irreducible
elements of (V,≤).

By analogy, an element w of V is called meet-irreducible or inf-irreducible,
if it cannot be represented as the infimum of a subset of V which does not
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contain w, i.e. if it has exactly one upper neighbour. M(V ) designates the set
of all meet-irreducible elements of the lattice V .

In the lattice shown in Figure 1 exactly the object concepts are join-irreducible,
and except for the attribute concept generated by “timid”, “depressive” or “not
interested” all attribute concepts are meet-irreducible.

In Figure 2 one can see that in the lattice of all divisors of the number 30 pre-
cisely the concepts corresponding to the numbers 2, 3 and 5 are join-irreducible
and precisely the concepts corresponding to the numbers 6, 10 and 15 are meet-
irreducible.

• A (finite) lattice (V,v) is always uniquely determined — up to isomorphism —
by the sets J(V ) of its join-irreducible and M(V ) of its meet-irreducible el-
ements and by the restriction of the order relation from (V,v) to the set
J(V ) ∪ M(V ) comprising all elements of V which are either join- or meet-
irreducible. — In particular (V,v) is “in a canonical way” isomorphic to the
lattice (B(J(V ),M(V ),v),≤) of all concepts of the context (J(V ),M(V ),v).

The Basic Theorem of Formal Concept Analysis (see [W82], p. 449 or
[GW96], p. 20 in the English edition) says among other things that the ordered
set of all concepts of a context is always a (“complete”) lattice and that all
the join-irreducible elements in it have to be object concepts and all the meet-
irreducible elements have to be attribute concepts. This corresponds to what
we have already observed in our examples.

4 Concept Lattice, Reduction and Purification of

a Context, Subcontexts

As already mentioned, the ordered set (B(G,M, I),≤) of all concepts of a context
K = (G,M, I) is always a lattice, which is also called the concept lattice of the
context K. By convention, in its line diagram the object names are always written
below the circle which represents the object concept generated by the respective
object — the object concept (g′′, g′) being the smallest concept having the object g in
its extent. Correspondingly, the attribute names are written above the circle which
represents the attribute concept generated by the respective attribute — the attribute
concept (m′,m′′) being the largest concept having the attribute m in its intent. One
can read from the line diagram that the object g has the attribute m, since the
circle labelled with the name of the object g — i.e. representing the (object) concept
(g′′, g′) — is connected with the circle labelled with the name of the attribute m —
i.e. representing the (attribute) concept (m′,m′′) — by a sequence of line segments
moving upwards, if and only if the object g has the attribute m. Thus, the context
can be reconstructed from its line diagram.

The reader should compare Figure 1 with Table 3.
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In ConImp the concept list is calculated (V B or V A) by means of the algorithm
“next concept” developed by B. Ganter (cf. e.g. [G87] or [GW96]). After the
computation of this list, the so-called assignment lists are produced, which assign
to each object, say g, the number of the corresponding object concept (g′′, g′), and
to each attribute, say m, the number of the corresponding attribute concept (m′,m′′)
— these lists enable the user to assign the correct labels to the concepts in the line
diagram, when he/she is drawing the line diagram by hand. Furthermore, for every
concept the set of all upper and lower neighbours is calculated in the “predecessor
list” (meaning the list of all lower neighbours) and “successor list”27 (meaning the list
of all upper neighbours), if option V A has been chosen, otherwise these lists have to
be computed separately. The concept list can be saved together with the predecessor
and successor list (T . . . ) in order to reload it in a later session (K . . . ) or to use
it in other programs. — If one fears that the concept list might become too long
and that it might not fit into the memory (in this case the program would “crash”),
one can calculate only the number of concepts without keeping the list in memory
(Z . . . ). This computation can be interrupted, whenever the program shows how
many concepts it has found so far (one has to fix the size of these intervals before
the start), and after an interruption the results can be saved in order to resume the
computation at any other time — one is asked for it on leaving the subprogram.

The list of concepts by itself is not of great importance for the drawing of the
line diagram by hand, while the other lists just mentioned (i.e. of upper and lower
neighbours) are very useful for this purpose: While looking for instance, which lower
neighbours a given concept has, the list of upper neighbours is used to find out a
good position for the corresponding circle in order to produce not too long lines. In
addition, the list of concepts looses even more of its importance once one has drawn
a line diagram of the concept lattice (cf. section 4), since then extent and intent of
each concept can be read from this line diagram (see below).

For the context “NumE1” in Table 4, the assignment lists and the predecessor
and successor lists are listed in Table 6 in the format used by ConImp (“–” marks
the end of a list for one concept).

Now one can draw the respective concept lattice by hand. 28

In this connection it is useful to know that the first concept (concept no. 1) is
always the greatest one and that the last concept is always the smallest one.

A line diagram of the context NumE1 is represented in Figure 3. The small
numbers are the consecutive numbers of the concepts representing the order in which
they are produced by ConImp.

From this line diagram, one can now also realize that for example the intent
of the concept no. 8 consists of the attributes “odd” and “prime”, since from the

27The lists are referred to like that in ConImp.
28Cf. also the literature on line diagrams, in particular [W84] or [S89]. In particular there is a

method of “geometric preparation” by means of the predecessor and successor lists. For a description
of this method one can consult e.g. [GW96], p. 70ff. For this method at least one of the lists of
predecessors or successors is needed.
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List of the predecessors of List of the successors of
the concepts in the context NumE1 the concepts in the context NumE1
(first: number of the respective (first: number of the respective
concept concept
then: concept numbers of then: concept numbers of

the predecessors) the successors)
1: 2 3 4 5 9 - 1: -
2: 7 10 - 2: 1 -
3: 6 11 - 3: 1 -
4: 8 12 - 4: 1 -
5: 6 8 - 5: 1 -
6: 7 - 6: 3 5 -
7: 13 - 7: 2 6 -
8: 13 - 8: 4 5 -
9: 10 11 12 - 9: 1 -

10: 13 - 10: 2 9 -
11: 13 - 11: 3 9 -
12: 13 - 12: 4 9 -
13: - 13: 7 8 10 11 12 -

Assignment list for the context Assignment list for the context
NumE1: objects NumE1: attributes
(first: concept number) (first: concept number)
6 : 9 2 : cubic
7 : 1 3 : square
8 : 3 4 : prime
8 : 5 5 : odd
8 : 7 9 : even
9 : 6

10 : 8
11 : 4
12 : 2

Table 6: Predecessor and successor lists for the context NumE1,
and assignment lists for the objects and attributes

circle corresponding to this concept there exist ascending paths exactly to the circles
corresponding to these attribute concepts (and to no other ones). And one can see,
too, that this concept has the extent {3, 5, 7}, since from the circle corresponding to
this concept there exist descending paths exactly to the circles corresponding to these
object concepts, respectively that it corresponds by itself to these object concepts,
and that the concept no. 6 has precisely the objects “1” and “9” in its extent and
precisely the attributes “square” and “odd” in its intent.

Namely, the intent of a concept b consists of all the attributes, the names of which
are attached to a circle which can be reached by an ascending line path from the circle
which is assigned to the concept b (possibly including the circle of b), while the extent
of b consists of all objects the object concept of which is less than or equal to the
concept b (i.e. can be reached by a descending line path from the circle for b).
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Figure 3: A line diagram for the concept lattice of the context NumE1

In the line diagram in Figure 3 one can see — what one might have deduced
already from the context — even more clearly: The objects 3, 5 and 7 generate the
same object concept.

The replacement of all those lines (columns) of a context which are identical
except for the object name (attribute name) by one single line (column) is called
purification of the context (we shall discuss the different options of ConImp for
this process below in connection with the discussion of the “reduction” of a context).
What happens in this process can be found out for the attributes without drawing a
line diagram, if one computes the attribute order with ConImp (Q). As an output one
first obtains a list of lists of attributes, the induced attribute concept of which has
the same extent in each case (in the subsequent lists of predecessors or successors,
from each list only the first attribute is used further). In order to determine this
for the objects as well, one temporarily has to “exchange the role of objects and
attributes” (A V; in mathematical terms this means to “transpose” the incidence
table for I); and the attribute order which is computed in this connection is actually
the object order of the original context. The orders computed this way can often be
used sucessfully when drawing the lattices in order to distinguish certain “chains of
attribute or object concepts” by choosing the same direction for the line segments
connecting them. — In general it has turned out to be useful in connection with
drawing a line diagram to use as little directions as possible for the necessary line
segments.

Because of what we have learnt in the last section about the role of the join- and
meet-irreducible elements of a finite lattice, we know for the concept lattice of the
context K that the set J(B(K)) of join-irreducible concepts is always contained in
the set of all object concepts of K and that the set M(B(K)) of all meet-irreducible
concepts is always contained in the set of all attribute concepts. And as already
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mentioned in the last section, too, the context (J(B(K)),M(B(K)),≤ ∩(J(B(K))×
M(B(K)))) is sufficient to uniquely determine the structure of the concept lattice
(B(K),≤) except for isomorphy (some information about the original context being
lost in the process (concerning the reducible object and attribute concepts)). We
say, that an object g is reducible, if the respective object concept is join-reducible
(i.e. not join-irreducible); correspondingly, an attribute is called reducible, if the
respective attribute concept is meet-reducible.

The limitation to the irreducible objects and/or attributes is called reduction
of the context (which is usually done in accordance with certain criteria, as seen
below). The process of reduction is frequently useful or even necessary, if otherwise the
context is getting too big to be handled by ConImp. ConImp allows the purification
and reduction of the sets of objects and attributes in different combinations, the
reduction of a set always includes its purification as well:

• R R for reducing the set of objects as well as the set of attributes,

• R G for reducing the set of objects,

• R M for reducing the set of attributes,

• R H for purifying the set of objects,

• R N for purifying the set of attributes,

• R S for purifying the set of objects and the set of attributes simultaneously,

• R Q for purifying the set of objects and reducing the set of attributes,

• R P for purifying the set of attributes and reducing the set of objects.

If one wants to find out what has happened in the course of a reduction of at-
tributes, one can consider — besides the attribute order — the attribute implications
treated in the next section (by means of the “transposed context” one obtains the
corresponding “object implications”).

From the line diagram in Figure 3 one can now tell that in the concept lattice for
the context NumE1 the only join-reducible object concept is (6′′, 6′) with the number
9 (it has three lower neighbours) — however, purification is part of the reduction
process, and therefore two of the three objects “3”, “5” and “7” vanish as labels
under reduction of objects. There is no meet-reducible attribute (concept). The
clarified and reduced context for NumE1 is presented in Table 4. Table 5 presents
both, the attribute-reduced and the completely reduced context for the context Div30.
In this case there is nothing that might be clarified.

Some readers may have observed that in the concept lattice in Figure 1 some
circles are fully black. These correspond to all the concepts which are generated via
joins from the object concepts for the objects “SELF”, “IDEAL”, “FATHER” and
“MOTHER”. Namely, it has turned out for the psychotherapist that these persons
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and their relationship to the attributes used by the patient give him already most
of the information he can draw out of the whole concept lattice (the attributes then
have to be assigned to the “nearest black concept” below their attribute concept
in the whole lattice). The other persons usually only round off the picture he has
obtained from this smaller context. Since this part of the information is not so easily
seen within the whole lattice — in particular if the latter is even more complicated
than the one shown in Figure 1 —, we show the concept lattice corresponding to the
subcontext “RepGridM” of the context “RepGrid” — both are shown in Table 3 —
in Figure 4.
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Figure 4: The concept lattice for the first four persons in Table 3

In order to be able to work on parts of a given context, ConImp has several
commands in the alteration menu A . . . .29

• With A S . . . one can select a subcontext with only part of the objects of the
given one or one can change the order of the objects by successively entering
the actual (consecutive) number of the object which one wants to keep — or to
place in this special position. A “0” (zero) ends the subprogram. One then has
still the possibility to give the obtained context a new name. This subcontext
is then immediately taken as “main context” to which all the other options of
ConImp can be applied. As long as one has not yet reduced or clarified the

29Starting from version 4.16 one can also add and delete objects and attributes one by one at
wished places directly within the context editor (B . . . ). This will be discussed in more detail in
section 6.
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new context one can return to the old context with A A. This last option is
in particular quite useful, when one wants to produce several subcontexts from
the given one.

• With A R one can do this with respect to attributes (choose some attributes
for a subcontext or just change their sequence).

5 (Attribute) Implications

An attribute implication “P =⇒ C” for a context K = (G,M, I) consists of two
subsets P and C of the attribute set M of the context (G,M, I), the set P being called
the premise and C being called the conclusion of this implication. The implication
P =⇒ C is valid for (holds in) the context (G,M, I) if the following is true:

For every g from G: If every attribute from the premise P applies to the
object g, then every attribute from the conclusion C also applies to g.

This is equivalent to C being a subset of P ′′, the closure of the premise P with
respect to the context K. Furthermore, the validity of the implication P =⇒ C for
the context K can easily be read from the line diagram of the concept lattice of K,
since it is equivalent to the fact that the infimum of the set of the attribute concepts
being elements of C can be reached through an ascending line path from the infimum
of the attribute concepts being elements of P (i.e. that inf P ≤ inf C is true).

So one can read for example from Figure 3 that in the context NumE1 the impli-
cation

(*) { cubic, odd } =⇒ { square }

is true; or that the attributes “odd” and “even” together imply all other attributes
(since there is no object in the context which has both attributes at the same time)
and thus that the infimum of the two corresponding attribute concepts is the smallest
concept of the concept lattice.

In connection with the implications computed for a context with ConImp one
should be aware that one is dealing with relations between the attributes in the present
context and not necessarily with relations between the attributes “in general”.

Thus, for example in our context NumE1 of numbers the implication
“square, cubic =⇒ odd ”

holds, as one can see from the Table 7 below. This is, however, not an implication
which holds for all positive integers, since e.g. 64 is a square and a cubic number, but
not an odd one (cf. also section 6 on attribute exploration).

In the case of empirically obtained contexts it is very important for the users of
ConImp to be aware of the fact that the implications computed by ConImp heavily
depend on the actual context, and that there is no guarantee that they really hold in
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the whole (conceptual) universe of interest for the user. The display of the number
of “supporting examples” (see below) can often only provide very weak evidence for
the fact that an implication might be valid beyond the object range of the context.
Neither does the “attribute exploration” (see below) provide “absolute certainty”,
since in the case of non-mathematical problems, it will in general only be based on a
certain degree of consensus among experts, who may have cooperated in the matter.
However the method requires a totally reliable opinion (decision).

Since the set of all implications valid in a context is usually very big, it is attempted
to produce lists of implications from which all implications valid in a certain context
can be generated, i.e. derived in some prescribed way. For example, this generation
can be effected by means of rules which we do not want to describe in this paper and
for which we refer for example to [M83] or [B91].

It is, however, also possible to understand the matter without knowing about the
rules: A set T of attributes from M is said to respect an implication P =⇒ C, if
either P is not a subset of T (i.e. at least one attribute contained in P is not contained
in T ), or if C is a subset of T . We say that an implication P =⇒ C follows from a
set I of implications, if every set T of attributes respecting every implication from I
also respects the implication P =⇒ C. A set I is called

• a generating subset of the set I(K) of all implications valid (holding) in the
context K, if I is a subset of I(K) and every implication from I(K) follows
from I;

• a base of I(K), if it is a generating subset of this set of implications and looses
this property whenever any implication from I is omitted;

• a minimal base of I(K), if I is a base and no attribute can be omitted from
any implication from I — neither from a premise, nor from a conclusion —
without loosing the property to generate I(K).

Now in Formal Concept Analysis there is a canonical base for the implications
valid in a given context K, the so-called Duquenne-Guigues base (cf. [DGu86]
or [G87], who describes an algorithm for its computation, which is intensively used
in ConImp).30 This base has the property that for each implication occurring in
it the set of all attributes being part of this implication constitutes an intent of a
concept. With ConImp it is possible to compute for an existing context K both the
Duquenne-Guigues-base (I I D) and (from that) a minimal base (I B) for the

30This computation is based on the so-called pseudo-intents: A subset P of the attribute set M of
a context (G,M, I) is called a pseudo-intent of this context, if P itself is not a intent, i.e. if P 6= P ′′

but if for every pseudo-intent Q strictly contained in P it is true that Q′′ is already contained in P .
In [DGu86] Duquenne and Guiges have shown that the set

{P =⇒ C | P is a pseudo-intent of K }

is a base for the implications of the context K.
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implications valid in the context K.31

Table 7 represents the Duquenne-Guigues-base and a minimal base for the impli-
cations of the context NumE1 from Table 4.

In this example we assume that the concept list has been computed with ConImp
before one has computed the implications. In this case of a Duquenne-Guigues-base
the number in round brackets (parentheses) in front of an implication “P =⇒ Q”
shows the consecutive number of the concept the intent I of which is given by the set
of attributes contained in this implication, i.e. for which I = P ∪ Q (in the case of
other lists of implications — for example in the case of a minimal base for the set of all
implications valid in the context NumE1, which is also shown in this table — it shows
the consecutive number of that concept the intent I of which is “generated” by the
attributes of the premise P (i.e. P ′′ = I)). The number in “angular” brackets (like
< n >) placed in front of an implication denotes the number of objects in the context
for which the premise of this implication is part of the intent of the corresponding
object concept; “< 0 >” in this case means that there is no such object, i.e. the
corresponding concept is the smallest concept of the concept lattice. At the beginning
of every row there is the consecutive number of the respective implication. 32 In the
output of the program the set brackets (braces) around premise and conclusion are
being omitted.

The effect of shortening in particular the premises when using an irredundant
minimal base instead of the Duquenne-Guigues-base however does not show in the
example NumE1. Yet one may compare the minimal base of implications shown in
Table 8 for the example NumE2de with the list of the Duquenne-Guigues implications
to be found as the set of accepted implications in the minutes of the attribute explo-
ration of the context NumE2d in section 6 — which leads to the context NumE2de.

Moreover, it is possible to compute with ConImp two further generating subsets
for the set I(K) of all implications valid in K, which are substantially larger than
the Duquenne-Guiges-base, but which can nevertheless be quite useful in connection
with various problems. These are the list of proper implications (E) and the list
of implications with an independent premise (M).

Before dealing with these lists, we would like to mention that the set of intents of
a context consists of precisely those subsets of the set M of attributes which respect
all implications of a generating subset of the set I(K). For a set I of attribute
implications valid in K and for a subset T of M , let T I denote the smallest subset of
M comprising T and respecting all implications from I. Then T ′′ = T I is true for
each subset T of M , if (and only if) I is a generating subset of I(K) (i.e. then the
closure T ′′ generated with the help of the context and the closure T I of T generated
with the help of I are always equal). Therefore, the concept lattice of a context

31If I B has been chosen and a Duquenne-Guigues-base has not been computed before, then it
will also be computed in connection with this subprogram.

32For many — but not all — contexts this will mean that the premise P contains attributes con-
tradictory to one another.
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Duquenne-Guigues-base of the implications valid in the context NumE1:
1. ( 7) < 1> : square cubic ===> odd
2. ( 7) < 1> : odd cubic ===> square
3. ( 13) < 0> : prime square ===> even odd cubic
4. ( 13) < 0> : prime cubic ===> even odd square
5. ( 13) < 0> : even odd ===> prime square cubic

A minimal base of the implications valid in the context NumE1:
1. ( 7) < 1> : square cubic ===> odd
2. ( 7) < 1> : odd cubic ===> square
3. ( 13) < 0> : prime square ===> odd
4. ( 13) < 0> : prime cubic ===> even odd
5. ( 13) < 0> : even odd ===> prime cubic

Table 7: Two lists of implications for the context NumE1

can always be computed from a generating subset of the set of all implications valid
in a context — up to isomorphism, and up to knowing the assignments from the
attributes and objects, respectively, on one side, to the meet- and join-irreducible
elements, respectively, on the other side.

We call a subset U of M independent (with respect to K), if V ′′ 6= U ′′ holds for
every proper subset V of U (i.e. for every subset V of U , which contains at least one
element less than U).

The two lists of implications mentioned above can thus be described as follows:

• The list of implications with an independent premise for a context K =
(G,M, I) consists of all implications P =⇒ C which are valid in K and for
which P is an independent subset of M satisfying P 6= P ′′. Furthermore, one
always has here C = P ′′ \ P , i.e. the conclusion C consists of all attributes in
P ′′ which are not already contained in P . If the concept numbers have been
printed, too (i.e. if before computing this list of implications, the concept list
has been computed), one can read from this list all the independent subsets
which are generating the intent of a particular concept. For the concepts which
do not appear in the list, the corresponding intent is independent by itself.
However, this list of independent intents must be extracted from the list of
implications with independent premise and assigned concept numbers by hand
(cf. the example NumE2d below).

• In ConImp the list E(K) of proper implications of the context K = (G,M, I)
is obtained at present from the list of implications with an independent premise
(therefore, in the case of longer lists, problems with the memory may occur).33

33Recently a direct method for the computation of all proper implications of a context has been
found. This method uses the so-called “arrow relation” (cf. [GW96], p. 83). Neither this method
nor the computation of the arrow relation have so far been implemented in ConImp.
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The proper implications constitute a generating system for the set of all impli-
cations valid in the context, and this list is minimal with regard to the following
property:

For any subset T of the attribute set M the intent T ′′ generated by T can
be obtained adding to T all those conclusions of implications from this list for
which the premise is a subset of T , i.e.

T ∪
⋃
{C | P =⇒ C is contained in E(K) and P ⊆ T } = T ′′ = T I(K) .

We will give examples of these lists in connection with another context. For this
purpose, we will consider (a reduced version of) the context NumE2de, which in the
next section will be seen to be “representative” for the positive integers with the
attribute set

M2d := { even, odd, prime, square, cubic,
not-prime, no-square, not-cubic }.

The corresponding context together with a minimal base of implications is shown
in Table 8. In Table 9 there is a list of all “implications with an independent premise”
valid in NumE2de and in Table 11 there is shown a list of all proper implications of
the context NumE2de. It should be taken into account that these lists of implica-
tions are (minimal) bases or just “generating subsets”, respectively, for the set of all
implications between the attributes from M2d with regard to all positive integers, as
will be seen in the next section. The list of non-empty intents, which are independent
subsets of the attribute set M2d , must be composed “by hand” using print-outs of the
concept list and of the list of implications with an independent premise to obtain the
concept numbers. These intents are shown in Table 10 together with the numbers of
the corresponding concepts. In the concept lattice, these subsets generate so-called
Boolean sub-lattices (those with three elements for example a cubic structure), which
often facilitate the structuring of the line diagram.

One can deduce from the line diagram of the concept lattice NumE2de in Figure 5
that the intents

I1 := { no-square, not-prime, not-cubic, odd }
and

I2 := { no-square, not-prime, not-cubic, even }
(and all their subsets) constitute independent intents. From Table 9 — and in partic-
ular from those concept numbers of the context NumE2de not occurring in this list
(the number of the concept generated by the (premise of the) implication is shown in
parentheses) — one can infer that the independent intents for the context NumE2de
are precisely the intents of the concepts no. 1 to 8 (and these are all the subsets of
the intersection I1 ∩ I2 of the two intents I1 and I2, and this intersection is the intent
belonging to the concept no. 8), no. 15 to 22 (which are further subsets of I1, which
is the intent of the concept no. 22) and no. 29 to 36 (which are further subsets of I2,
which is the intent to the concept no. 36), since these concepts are missing in this
table.
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This means, however, that we should be interested in the maximal sets among
them, which in our case belong to the concepts no. 22 and no. 36 and are just the
intents I1 and I2.

NumE2de nnn Minimal base of the implications of the context
ooo NumE2de
t-t

s -s- 1. <4>: cubic ===> not-prime
pqcpqc 2. <4>: square ===> not-prime

e ruuruu 3. <4>: prime ===> no-square not-cubic
voiabiab 4. <0>: cubic not-cubic ===> even
edmrimri odd
ndeeceec 5. <0>: square no-square ===> even
-------- odd

1!.x.xxx..! 6. <0>: prime not-prime ===> even
2!x.x...xx! odd
3!.xx...xx! 7. <0>: even odd ===> prime
4!x..x.x.x! square
6!x....xxx! cubic
8!x...xxx.!
9!.x.x.x.x!
15!.x...xxx!
27!.x..xxx.!
64!x..xxx..!
----------

Table 8: Formal Context NumE2de (reduced)
and a minimal base of implications

When saving any of the lists of implications which can be computed or entered,
neither the numbers possibly assigned to the concepts nor the numbers of “realiza-
tions” (i.e. the numbers in angular brackets (like < n >)) will be saved. The “number
of realizations” will be computed anew for each output on the screen or on the printer
(unless this option was deactivated in the implication menu: I R . . . , where “ . . .
” stands for the toggles corresponding to the different lists of implications: D, M,
E, H and B). These numbers can be useful for example in connection with contexts
with empirical (for example medical) data, in order to determine how many objects
(for example patients) actually support the respective implication.

In the implication editor (I H . . . ) (see below) one also has the search mode ( . . .
S): after marking all the attributes of the premise of the respective implication with
a “+” (or even non-wanted attributes with a “−”) one may press . . . L in order to
get the list — however, only on the screen — of all those objects in the context having
all those positively marked attributes in their intent (and not having the negatively
marked ones), if there are any such objects in the context.

The lists of implications will not be saved (I S . . . ) in the way they are usually
printed, but with a list of the attribute names, a list of the truth values “T” or “U”
(if the corresponding implication has been accepted as true or uncertain, respectively,
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1. ( 9) < 4> : cubic ===> not-prime
2. (10) < 2> : cubic no-square ===> not-prime
3. (11) < 4> : square ===> not-prime
4. (12) < 2> : square not-cubic ===> not-prime
5. (13) < 2> : square cubic ===> not-prime
6. (14) < 4> : prime ===> no-square not-cubic
7. (23) < 2> : odd cubic ===> not-prime
8. (24) < 1> : odd cubic no-square ===> not-prime
9. (25) < 2> : odd square ===> not-prime
10. (26) < 1> : odd square not-cubic ===> not-prime
11. (27) < 1> : odd square cubic ===> not-prime
12. (28) < 3> : odd prime ===> no-square not-cubic
13. (37) < 2> : even cubic ===> not-prime
14. (38) < 1> : even cubic no-square ===> not-prime
15. (39) < 2> : even square ===> not-prime
16. (40) < 1> : even square not-cubic ===> not-prime
17. (41) < 1> : even square cubic ===> not-prime
18. (42) < 1> : even prime ===> no-square not-cubic
19. (43) < 0> : prime square ===> M_2d
20. (43) < 0> : cubic not-cubic ===> M_2d
21. (43) < 0> : square no-square ===> M_2d
22. (43) < 0> : prime not-prime ===> M_2d
23. (43) < 0> : prime cubic ===> M_2d
24. (43) < 0> : even odd ===> M_2d

Table 9: List of implications with an independent premise for the context NumE2de
(the premise and the conclusion together always constitute an intent.

If all attributes occur, “M 2d” is briefly given as conclusion)

in connection with “attribute exploration” — observe that implications entered by
the implication editor or computed directly from the context are always marked “T”)
and with an additional table, where an attribute of a premise is marked by “P”
and an attribute of a conclusion is marked by “C”, respectively, and the n-th line
corresponds to the n-th implication and the m-th column corresponds to the m-th
attribute — observe that some lists of implications can be printed into a file in a
similar form (called “block form” in the printing menu). — When printed into a
file or by a printer in this way, the implications are marked according to whether
they were regarded as certain (T) or uncertain, which is only important, however,
in connection with the results of an “attribute exploration” (see section 6). In this
connection it should also be noted that, apart from the concept, predecessor and
successor lists, all data which can be saved by the program ConImp will be saved as
“almost uncoded” texts, which means that one can always look at them with a text
editor, even if this is rather awkward in the case of the lists of implications. Concept,
predecessor and successor lists are coded by means of a binary code “in rows” and can
also be viewed at in the text editor. Direct decoding is possible but rather laborious.
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(2) { not-cubic }

(3) { no-square }

(4) { no-square, not-cubic }

(5) { not-prime }

(6) { not-prime, not-cubic }

(7) { not-prime, no-square }

(8) { not-prime, no-square, not-cubic }

(15) { odd }

(16) { odd, not-cubic }

(17) { odd, no-square }

(18) { odd, no-square, not-cubic }

(19) { odd, not-prime }

(20) { odd, not-prime, not-cubic }

(21) { odd, not-prime, no-square }

(22) { odd, not-prime, no-square, not-cubic }

(29) { even }

(30) { even, not-cubic }

(31) { even, no-square }

(32) { even, no-square, not-cubic }

(33) { even, not-prime }

(34) { even, not-prime, not-cubic }

(35) { even, not-prime, no-square }

(36) { even, not-prime, no-square, not-cubic }

Table 10: List of the non-empty intents for the context NumE2de,
which are not occurring in Table 9, and which hence are independent

6 Attribute exploration and (background-) impli-

cation editor

If one now looks at the implications listed in Table 7, one discovers — as one may have
found out already in the previous section — that the first and the second implication
are true for the context NumE1, but not for the set of all positive integers, since 64
is square and cubic but not odd, whereas 27 is odd and cubic but not square. This
means that with regard to the set of attributes which we have chosen the numbers
from 1 to 9 are “not typical of all positive integers”.

The problem of finding (sets of) “typical objects and attributes” is an important
one e.g. in knowledge processing but also in many other areas. In Formal Concept
Analysis this question also arises frequently, for example, if one intends to determine
the concept lattice of a very large or even infinite context — which may mostly only be
known in principle, but not in full detail —, having either a comparatively small set of
attributes or of objects. The concept lattice of a context with n attributes or objects
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1. ( 9) < 4> : cubic ===> not-prime
2. (11) < 4> : square ===> not-prime
3. (14) < 4> : prime ===> no-square not-cubic
4. (43) < 0> : prime square ===> even odd cubic
5. (43) < 0> : cubic not-cubic ===> even odd

prime square no-square
6. (43) < 0> : square no-square ===> even odd

prime cubic not-cubic
7. (43) < 0> : prime not-prime ===> even odd

square cubic
8. (43) < 0> : prime cubic ===> even odd square
9. (43) < 0> : even odd ===> prime square

cubic not-prime
no-square not-cubic

Table 11: List of all proper implications for the context NumE2de

can maximally comprise 2n concepts (usually much less). In Formal Concept Analysis
such a large (still unknown) context is frequently called a conceptual universe.

If U := (GU,M, IU) is a conceptual universe with a fixed set M of attributes
and a generally very large set GU of objects, a subset G of GU is called typical of
the conceptual universe (or a representative set of objects for U), if the concept
lattices (B(GU,M, IU),≤) and (B(G,M, IU ∩ (G×M)),≤)34 are isomorphic in such
a way that related concepts have the same intents: (A,B) 7→ (Ã, B). In particular
attribute concepts belonging to the same attribute will then be assigned to each other.

With the procedure of attribute exploration, sometimes also called “interactive
implication program”, Formal Concept Analysis offers a procedure for determining
a typical set of objects (if the expert who is questioned has sufficient knowledge;
compare the general remarks on implications at the beginning of the previous section).
If one changes the roles of objects and attributes (A V) — one also says that one
transposes the context or the table, respectively, and this can be carried out by
means of the alteration menu (A . . . , described in the main menu by: “Change
context data”) — it is also possible to determine a typical set of attributes with
ConImp , i.e. to carry out a so-called object exploration.35 If neither the set of
objects nor the set of attributes is fixed from the beginning, they can be extended
by alternately using attribute and object exploration — however then the procedure

34This means that we are dealing with the concept lattice of the context being formed by the
subset G of GU as the object set, the fixed attribute set M and the restriction of the incidence
relation IU to this setting.

35The question which then has to be asked in the case of a suggested implication is no longer “Do
all objects in the conceptual universe to which all the attributes of the premise apply also have all
the attributes of the conclusion?”, but “Do all attributes in the conceptual universe which apply to
all objects of the premise also apply to all objects of the conclusion?”. This type of question is for
example relevant in connection with a subject catalogue for a library program, in which the books
are regarded as objects and the (classifying) keywords as attributes (cf. [WaW92]).
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might never stop and last infinitely long.
In this procedure of attribute exploration, the program ConImp suggests impli-

cations to the expert which he/she can either accept or disprove and in the latter
case one has to enter a counterexample with all its respective attributes.36 With the
help of the implications possibly entered in advance by means of the implication edi-
tor — the so-called background implications — and with the implications already
accepted, a “candidate P for a pseudo-intent” is first examined by ConImp as to
whether the gap to the closure P ′′ of P w.r.t. the context can already be closed and
whether the suggested implication P =⇒ P ′′ \P can therefore be accepted automati-
cally. Otherwise, it will be examined which parts of the premise and and which parts
of the conclusion are “indispensable”, and this part will be highlighted (inverted) on
the screen in the next suggestion of an implication to the expert.37 The expert then
has to decide whether he can prove the implication or whether he can refute it by a
counterexample. If both is impossible for the moment, the implication can also be
accepted as uncertain ( . . . U)38, or one can automatically generate fictitious
objects by pressing O for the so-called “optimal strategy” found by Richard Holzer
(see [H01] or in a short form in [BH00]) and implemented starting from version 4.16.39

After having carried through an attribute exploration, during which only correct
and complete answers were given to all questions of ConImp (and in the case of

36If one chooses a so-called three-valued logic as discussed at the beginning of this text, one has
to disprove only part of the conclusion (at least one attribute) and one can leave the answers to the
other questions open by entering question marks; such examples can possibly be treated further on
the occasion of another suggested implication.

37However, this highlighting depends on the order in which the attributes are listed in the program;
therefore it is in general not canonical.

38This option is no longer recommended. One should use the “optimal strategy” ( . . . O) instead.
However, for those used to the old versions it is still supported. ConImp usually works with an
implication accepted as uncertain, as if it had been “accepted normally”. If, however, a candidate
for an implication could only be accepted automatically by using at least one uncertain implica-
tion (besides using accepted implications and background implications), then the expert is asked
explicitly, whether he is able to prove or disprove this one.

39If you choose O, then you will be asked for each attribute in the conclusion, whether it follows
from the premise. If you can answer Y, then it is added to a list, which — if it is non-empty at the end
of this procedure — will become the conclusion of a new accepted implication. Otherwise, if it is one
of the attributes which caused your uncertainty, answer O again, and the unknown (sub)implication
will be automatically encoded as a fictitious object. The advantage of this strategy, which includes
that during the procedure of attribute exploration the fictitious objects — whose names start with
a question mark, which therefore should not be used at the beginning “normal objects” — are
not updated w.r.t. newly accepted implications, is the following one: At the end of the attribute
exploration with correct answers the fictitious objects encode all remaining open questions: If you
can fully answer the implications encoded in the fictitious objects at some later time, then you have
full information about your universe after having added the new counterexamples to your context and
the new accepted implications to your old list. You will not have to run the interactive subprogram
again. (Using the option U or producing your fictitious counterexamples “in some arbitrary way”
will usually suppress some implications, which should be asked to get optimal information about
your universe, and you will have to run the subprogram over and over again.) If you then want
to produce the Duquenne-Guigues-base, you then only have to run the automatic procedure: I I
<Ret> again.
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three-valued logic: without any question marks remaining in the resulting context),
one obtains on the one hand a Duquenne-Guigues-base for the implications valid
in the conceptual universe, and on the other hand a context with a “typical set
of objects”. This means, in particular, that for every implication not valid in the
conceptual universe one has an example (in the set of objects obtained by the attribute
exploration) the intent of which does not respect this implication.

We now add two further objects to the list of objects of the context NumE1, i.e.
by means of the alteration menu (A M . . . ) in ConImp the number of objects is
increased from nine to eleven, with the sub-program for naming these new objects
(N M) the names “27” resp. “64” are assigned to them, and then the corresponding
attributes are marked with a cross in the context editor (B . . . ). In this way, we
obtain a context NumE2. We load (append) the list of Duquenne-Guiges-implications
of NumE1 by means of the special loading option I L S into the implication editor.

Observe that, starting from version 4.16 one can also add or delete objects and
attributes one by one within the context editor:

Ins (or Ctrl V) allows to insert before or after the actual position of the cursor
within the context a new object or attribute and give it a name immediately.

Del (or Ctrl G) allows to delete an object or attribute in the row or column of the
cursor, respectively.40

While the use of the change menu allows to recover the original context after the
deletion of an object (A S) or attribute (A R) by the option A A— as long as the
new context has not been reduced or clarified (R . . . ) —, the corresponding option
in the context editor can only be reverted by inserting a new object or attribute for
the deleted ones and entering the corresponding data.41

Observation: The option (I L S) enables the user of ConImp to load lists of
implications possibly computed or entered for a different context into the implication
editor or to add them to an existing list, as long as there are attribute names, which
occur in the actual context as well as in the list which one intends to load. If a
premise is fully represented in the current context and if additionally at least one
attribute from the conclusion makes sense in the context, the “meaningful part” of
the implication will be loaded. If necessary, the program even singles out implications
which do not respect the intent of some object in the current context. Moreover,
implications accepted “as uncertain” are also singled out at this stage, should they
occur in the list to be loaded.

40Observe that Ins (the insertion key) or Del (the delete key) may not work on every computer
in this connection, as we know by experience.

41If one wants to empty the list of objects, this can only be done via the option A S (i.e. via the
change menu). Observe that the numeric keys may be used instead of the arrow keys in order to
move in the context editor; however this may not work on every computer.
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For instance in our example NumE2 the first two implications of NumE1 do not
respect the intents of the numbers (objects) 64 resp. 27.42

If one now starts the attribute exploration for the context NumE2, using the
three remaining implications in the background, all implications will be accepted
automatically, i.e. G := {1, 2, 3, 4, 5, 6, 7, 8, 9, 27, 64} is a typical set of objects with
regard to M in the conceptual universe of positive natural numbers.

If one does not want to confirm each of the automatically accepted implications
at each occurrence, one can deactivate this option as well as a number of other
— sometimes troublesome — inquiries of the program in other parts of it (A F).
In particular, this option provides the user of ConImp with a simple possibility to
examine a given set of implications entered for a context K as to whether it is a
generating set of implications for K.

It is always checked in the implication editor (I H . . . ) whether an entered
implication is valid in the context. If it is valid, one can leave the current line (e.g. by
. . . V or . . . Z) or the editor (by . . . <ESC>), otherwise one cannot do it before
one has deleted ( . . . Y)) the wrong implication.

Having at hand a typical set of objects, one can now search the context — and
thus the conceptual universe — by means of the search mode ( . . . S) in the editor
of (background) implications (I H . . . ), for a list of all those objects which have
or do not have particular attributes. However, if one also asks for attributes which
should not apply to such an object, and if one wants to be sure to find at least one
such example, whenever there is any at all in the conceptual universe, then one has
to have applied attribute exploration to the dichotomized context (i.e. the set M of
attributes has to contain with each attribute also its negation) — and, symbolically,
to the dichotomized conceptual universe — before applying attribute exploration to
it.

In order to dichotomize e.g. the given context NumE2 with ConImp one has to
use a sub-program of the alteration menu (A D) which automatically adds as many
attributes to the old context (e.g. NumE2) as the old one already contains and fills
the new columns in such a way that the new attribute with (consecutive) number,
say, m + r applies to an object if and only if the corresponding original one (with
number r, if M has m attributes) does not apply to it (negation of the attribute).
Now the user of ConImp — by means of the naming menu (N . . . , or . . . ∧N . . . ,
if he/she is in the context editor) — assigns names to the new attributes which make
clear that this attribute is the negation of the older attribute. If the original context
K has m attributes, then the (m + r)-th attribute in the dichotomized context Kd

is the negation of the r-th attribute of the context K (for 1 ≤ r ≤ m), as already

42When transforming the context NumE1 into NumE2 it is also possible to retain the Duquenne-
Guigues-base of NumE1, if the corresponding toggle (I F) is set to “TRUE” — what is the default —
(or to load it beforehand into the implication editor (I U . . . ) and to retain this list, when ques-
tioned), load it into the implication editor and delete the two implications not valid in our new
conceptual universe. You will detect them there quite easily when passing through the implications,
since you cannot leave an implication or even the editor, when the actual implication does not hold
in the actual context.
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indicated above.

In NumE2d we introduce “not even”, “not odd”, “not-prime”, “no-square” and
“not-cubic” as new attribute names. Since, however, the attributes “not even” and
“odd” resp. “not odd” and “even” are equivalent, we delete the corresponding new
attributes by means of the sub-program “change the sequence and number of at-
tributes” (A R) in the alteration menu (A . . . ). The context is named NumE2d (N
K) and has the following attribute set, which consists of 8 elements:

M2d = { even, odd, prime, square, cubic,
not-prime, no-square, not-cubic } .

Using the option “I L S” as described above, we now load the Duqenne-Guiges-
base of NumE2 into the implication editor and add there all new attributes to the
conclusions of these three implications (I H A . . . H), since each of them has an
inconsistent premise. Then we start the attribute exploration for NumE2d (I I I . . .
). If necessary, one can obtain an output of the minutes (referred to in the dialogue
as “offprint”) of the session in a file (I I I Y . . . ). The attributes which have not
been presented in inverted mode on the screen by the program in connection with a
proposal of an implication (i.e. which might be neglected at a first glance in connection
with the decision about acceptance or refutation of the proposed implication — yet in
the case of a refutation of the implication one has to consider all occurring attributes)
will be put in parentheses below:

1. Suggested implication:
not-prime, no-square, not-cubic =⇒ even?

The answer is “No”, because 15 is an odd number, which is neither prime nor
square nor cubic.

2. Suggested implication:
cubic =⇒ not-prime?

To be accepted.

3. Suggested implication (comprises all attributes):
cubic, (not-prime), not-cubic =⇒

=⇒ even, odd, (prime), (square), (no-square)?
Here ConImp points out that the implication comprises all attributes, in order
to make the user or expert aware of the fact that the premise might be incon-
sistent.
Since here the “essential” attributes of the premise negate each other, this im-
plication must also be accepted.

4. Suggested implication:
square =⇒ not-prime?

To be accepted.

5. Suggested implication (comprises all attributes):
square, (not-prime), no-square =⇒
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=⇒ even, odd, (prime), (cubic), (not-cubic)?
This implication also has to be accepted, because the premise contains attributes
which negate each other.

6. Suggested implication:
prime =⇒ no-square, not-cubic?

Evidently, this implication also applies to our conceptual universe.

7. Suggested implication (comprises all attributes):
prime, not-prime, (no-square), (not-cubic) =⇒

=⇒ even, odd, (square), cubic?
This implication also comprises all attributes and has to be accepted, because
the premise contains attributes which negate each other.

8. Suggested implication (comprises all attributes):
even, odd =⇒

=⇒ prime, square, cubic, not-prime, not-square, not-cubic?
This implication has been accepted automatically.

The attribute exploration ends at this stage. Seven implications have been accepted
as base and one further counterexample has been generated. We name the con-
text NumE2de. { 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 27, 64 } is then an object set typical for
the current conceptual universe. However, the object reduced (R G) object set
{ 1, 2, 3, 4, 6, 8, 9, 15, 27, 64 } of the reduced context NumE2de is still typical for our
universe, too. Furthermore, as mentioned earlier, these object sets have the property
that every inquiry in the search mode yields at least one object (i.e. a number) as
output, if and only if the conceptual universe contains a number which has or does
not have the attributes marked accordingly (in this connection we could now even
omit the attributes newly introduced in comparison to NumE2 (i.e. we can omit the
negations of attributes from NumE2)). The reduced context for NumE2 and some
lists of implications connected with it have already been represented in the previous
section in Tables 8, 9 and 11. The concept lattice with fourty three concepts can be
seen in Figure 5.

In order to give a short introduction into one possible treatment of incomplete
knowledge in connection with ConImp we proceed as follows:

• We remove the attribute “cubic” from the context NumE2 (by . . . Del . . . or
. . . ∧G . . . from within the context editor, or by means of the sub-program
“Change the sequence and number of attributes” (A R . . . )), and add three
new attributes (by . . . Ins . . . or ∧V . . . from within the context editor, or by
means of the sub-program “Increase the number of attributes” (A M . . . )):

sum2even i.e. “is the sum of two even numbers”
sum2sqare i.e. “is the sum of two squares”
sum2prime i.e. “is the sum of two primes”
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Figure 5: Line diagram for the context NumE2de
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• After completing the entries and subsequently reducing the context with respect
to the set of objects (R G), we obtain the context NumE3 := (G3,M3, I3) with
the object set G3 = { 1, 2, 3, 4, 5, 7, 8, 9 } and the attribute set M3 = { even, odd,
prime, square, sum2even, sum2prime, sum2square } (cf. Table 13). In order to
work on this new context, it has to be chosen as main context (A H). In this
connection we have not introduced the attribute “sum of two odd numbers”
since it is equivalent to the attribute “even” and we do not want the list of
questions in the following attribute exploration to be too long).

• We shorten the description of the attribute exploration procedure by giving a
short representation of the questions and answers in Table 12. In this context
“Opt.strat.” stands for “The implication is accepted as uncertain by using the
optimal strategy (Ohas been pressed)”, “aut.” for “accepted automatically”.
On the left side, we state the consecutive number of an accepted implication,
in the middle the answer, and on the right a possible counterexample (here,
for some entries we give hints concerning the decision that the corresponding
number is a counterexample in the context or we just observe that a proposed
implication has been accepted automatically).

• If we do not want to enter all the implications we already know by hand, we
can for example use the option “I L S” to load the implications computed for
the context NumE2 into the implication editor (in as far as they are relevant)
and add the new attributes to the conclusion of the (two) implications with in-
consistent premises. Furthermore, we enter the following evident implications:

sum2even =⇒ even
sum2even, prime =⇒ M3

(in this connection we observe that 2 is the only even prime and the only even
number which is not the sum of two even numbers).

• Note that already the first question in the attribute exploration corresponds
to the so-called Goldbach-Conjecture of number theory, which says that every
even number which is unequal to 2 is the sum of two primes. This conjecture
has neither been proved nor refuted, so that we must accept the proposal as
uncertain. Variations of this question with larger premises come later.

• Having the explored context at hand, one can now try to eliminate question
marks (U A). This yields the context NumE2eu.

• This is the best result we can get at the moment. The theory says43 that part of
the fictitious objects correspond to actual counterexamples in the universe and
form together with the other objects a typical system of objects for the universe;
and part of the remaining ones (mostly all of them) correspond to encoded
implications such that those together with the accepted implications form an
implicational base of the universe - not necessarily the Duquenne-Guigues-base,

43Cf. [H01].
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No. Proposal of an implication Answer Kind/Counterex.
sum2even =⇒ (even), sum2prime Opt. strat.

1. sum2even =⇒ even yes
sum2even =⇒ sum2prime Opt. strat. ?Fict1
square, sum2sqare =⇒ M3 no 25=23+2

=32+62

square, sum2sqare =⇒ odd, sum2prime no 100=97+3
=62+82

square, sum2sqare =⇒ sum2prime no 289=7*41+2
=152+82

2. prime, sum2prime =⇒ odd yes
3. prime, square =⇒ M3 yes aut.

odd, prime, sum2sqare =⇒ sum2prime no 17=3*5+2
=42+12

4. even, sum2prime =⇒ sum2even yes
(even,) sum2even =⇒ sum2prime Opt. strat. ?Fict2

(even,) sum2even, sum2sqare =⇒ sum2prime Opt. strat. ?Fict3
even, square =⇒ (sum2even), sum2prime Opt. strat.

5. even, square =⇒ sum2even yes
even, square =⇒ sum2prime Opt. strat. ?Fict4

(even,) square, sum2even =⇒ sum2prime Opt. strat. ?Fict5
(even,) square, sum2even, sum2squar =⇒

=⇒ sum2prime Opt. strat. ?Fict6
6. even, prime =⇒ sum2sqare yes
7. (even,) prime, sum2even, sum2squar =⇒ M3 yes
8. even, odd =⇒ M3 yes aut.

End of program: 8 implications computed
6 open implications encoded in fictitious examples

Table 12: Attribute exploration for the context NumE3

but that can then easily be computed, once all the open questions have been
solved.

• The last observation shows that at the end of such an exploration — possibly
with open questions encoded by fictitious examples — the results provide op-
timal information in as far as also all open questions are known (cf. also foot-
note 39).

• It may however happen that in some cases the exploration ends with a mes-
sage (or has it in between) that some fictitious object contradicts some of the
accepted implications or some of its consequences. Then one should erase that
fictitious example at the end of the exploration (if it is done during the explo-
ration, this may cause additional but unnecessary questions).
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• Observe that before updating also the fictitious examples w.r.t. the accepted
implications (U A) one should save the context with the fictitious examples
directly resulting from the finished exploration, since after the updating the
open questions are no longer fully recoverable from the fictitious examples —
since then there may be more than one blank, and the conclusion is no longer
seen witout a protocol file.

It has been proved in [H01] that it is not possible to obtain more information from
our expert by means of ConImp than just described.

NumE3 ss NumE3e ss NumE3eu ss

suu suu suu

umm umm umm

sm22 sm22 sm22

pq2ps pq2ps pq2ps

e ruerq e ruerq e ruerq

voiaviu voiaviu voiaviu

edmrema edmrema edmrema

ndeener ndeener ndeener

------- ------- -------

1!.x.x...! 1!.x.x...! 1!.x.x...!

2!x.x...x! 2!x.x...x! 2!x.x...x!

3!.xx....! 3!.xx....! 3!.xx....!

4!x..xxx.! 4!x..xxx.! 4!x..xxx.!

5!.xx..xx! 5!.xx..xx! 5!.xx..xx!

7!.xx..x.! 7!.xx..x.! 7!.xx..x.!

8!x...xxx! 8!x...xxx! 8!x...xxx!

9!.x.x.x.! 9!.x.x.x.! 9!.x.x.x.!

--------- ?Fict1!????x?.! ?Fict1!x..?x?.!

25!.x.x.xx! 25!.x.x.xx!

100!x..xxxx! 100!x..xxxx!

289!.x.x..x! 289!.x.x..x!

17!.xx...x! 17!.xx...x!

?Fict2!x???x?.! ?Fict2!x..?x?.!

?Fict3!x???xx.! ?Fict3!x..?xx.!

?Fict4!x??x??.! ?Fict4!x..x??.!

?Fict5!x??xx?.! ?Fict5!x..xx?.!

?Fict6!x??xxx.! ?Fict6!x..xxx.!

--------- ---------

Table 13: Formal context NumE3 and the explored one NumE3e
and the updated context NumE3eu

So far we do not know about an attribute exploration with three-valued logic
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which has been been carried out with authentic examples — except for the case of
incomplete knowledge; moreover an authentic example would be too extensive for
this introduction —, therefore we just sketch a short “constructed” example in the
following tables, where Table 14 shows the questions and answers. The subsequent
Table 15 then shows the resulting context. Recall that one can choose a three-
valued logic, when the start context is edited (B . . . ); or, if one has already edited
a two-valued context or loaded one without question marks — which therefore is
automatically treated as two-valued —, one may change to a three-valued logic in the
change menu (A L).

The set M of attributes is given by

M := { even, odd, <>2, pr, sq, sq+sq } ,

where — in order to fit into the tables —

• “<>2” means “unequal to 2”,

• “pr”, “sq” and “sq+sq” are abbreviations for “prime”, “square” and “sum of
two squares”, respectively.

When question marks can be used, it is possible to change counterexamples already
entered earlier. As a support one is first asked, whether one wants to inspect the
counterexamples entered so far, yet at this stage one cannot make any changes. Then
one has to enter the name of the example which one really wants to change. Each time
a new implication is accepted, ConImp tests all objects entered so far, as to whether
question marks can be eliminated because of the new information — however, this
does not apply to fictitious examples in order not to lose information.44

In our example this has been done twice with “100” and once with “25” — the
intermediate entry lines have been put in parenthesis.

If one carries out this kind of attribute exploration and if all suggested implications
which are valid in the conceptual universe have been accepted as certain by the user,
one obtains a lattice which is isomorphic to the concept lattice of the conceptual
universe and in which all attributes are correctly assigned to their attribute concepts.
On the other hand, those objects in the table which still have a question mark in
their “line”, although all accepted implications have been taken into account (U C),
can be omitted according to [H01] without losing information about the structure of
the concept lattice of the universe; however, if one does not omit them but converts
there the remaining question marks into blancs (or rather periods) (U T) or crosses
(U P), — this is indicated in ConImp by adding a question mark to the beginning
of the respective object name (this may be changed in later versions such that “?”
then is appended) —, then such object names might not be assigned correctly to the
object concepts generated by them in the universe.

In the above example “169” and “45” are such objects, where question marks
remain at the end of the exploration. When all question marks are replaced by periods:

44Cf. [H01].
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No. Premise Conclusion True? Comment:
1 sq ⇒ <>2 yes Implication No. 1

2* <>2, sq, sq+sq ⇒ even, odd, pr no 10th c.-ex. := 169

3 <>2, sq, sq+sq ⇒ odd, pr no 11th c.-ex. := 100

4 <>2, sq, sq+sq ⇒ pr no 1st modific. of 100
5 <>2, pr ⇒ odd yes Implication No. 2
6 odd ⇒ <>2 yes Implication No. 3

7 odd, <>2, sq+sq ⇒ pr no 12th c.-ex. := 45

8* odd, <>2, sq, sq+sq ⇒ even, pr no 13th c.-ex. := 25
9 odd, <>2, sq, sq+sq ⇒ pr no last modific. of 25

10* odd, <>2, pr, sq ⇒ even, sq+sq yes Implication No. 4
11 even, pr ⇒ sq+sq yes Implication No. 5

12* even, <>2, sq, sq+sq ⇒ odd, pr no last modific. of 100
13* even, odd, <>2 ⇒ pr, sq, sq+sq yes Implication No. 6

Table 14: An attribute exploration using three-valued logic

“?45” — the object of the corresponding one-valued context — gets by chance into the
correct position in the concept lattice (see Figure 6), yet “?169”, which should have
the same properties as “25”, and which therefore should generate the same concept in
the final concept lattice, will not be assigned the attribute “odd”, and therefore it will
be assigned to another concept (the question mark added to the name indicates that
one should be careful).

7 Further features of ConImp

In addition to the features explained in connection with the above examples, ConImp
offers further options, which we will only briefly mention in this section.

For example one can modify an existing context in the following ways:

• One can add an attribute to the set of attributes which constitutes the “Or-
combination” of a number of existing attributes (A O). ConImp automatically
computes the respective column, one only has to enter the new name.

• One can replace the present context by its “complementary” context (A K),
i.e. all existing attributes are negated by replacing crosses by dots and dots by
crosses.

• In the case of certain modifications of the context (like A R or A S) changing
the order and/or number of attributes or objects, respectively) it is possible to
restore the original main context (A A) without having to reload the original
context from the disk (yet this only works, if the “intermediate” context has
neither been reduced nor clarified).
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K even odd <>2 prime square sq+sq Comment: entered

1 . × × . × . in advance
2 × . . × . × in advance
3 . × × × . . in advance
4 × . × . × . in advance
5 . × × × . × in advance
6 × . × . . . in advance
7 . × × × . . in advance
8 × . × . . × in advance
9 . × × . × . in advance

169 . ? × ? × × in 2nd proposal

(100 ? . × ? × × ) in 3rd proposal

(100 ? . × . × × ) in 4th p.; 1st modif.

45 ? × × . ? × in 7th proposal

(25 . × × ? × × ) in 8th proposal

25 . × × . × × in 9th p.; 1st modif.

100 × . × . × × in 12th p.; 2nd modif.

Table 15: Attribute exploration using a three-valued context:
The resulting context still contains some question marks.

• In the case of a context with the same number of objects as it has attributes,
it is possible to compute the “reflexive and transitive closure” of the incidence
relation I of the given context (i.e. the “quasi-order” generated by the present
context; however this only makes sense, when objects and attributes with the
same (consecutive) numbers can be assumed to represent the same element) (A
Q).

• Having entered some part of a context (B . . . – or at least a list of attributes
and a possibly empty list of objects) and a list of implications valid in that
context (I H E . . . ), one can generate a formal context containing the given
one and having the list of implications as generating set of all the implications
valid in the generated context (I I K). In the case when the resulting context
becomes too large (i.e. more than 255 objects), then it is reduced w.r.t. the
objects during the run of the subprogram, and this might have the effect that
some of the original objects might also be deleted. At the end of the procedure
the user is asked, whether he or she wants to reduce the context and choose the
result as main context. Any key other than <ESC> has this effect.

This subroutine is useful in particular, whenever one has some “implicational
logic” and wants to find the corresponding concept lattice or to find out which
objects would be missing to have a context having the entered implications
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Figure 6: Concept lattice belonging to the three-valued context from Table 15

generating its valid implications.

By means of the implication editor (I H . . . ) one can enter a candidate for an
implication and then one can check whether or not it is valid in the present context
( . . . H): one gets all those attributes from the entered conclusion (marked with
“U”) which do not follow from the entered premise as well as those attributes (then
marked by an “M”) which have not yet been entered but which can be inferred from
the premise (w.r.t. the context), i.e. which lie in the closure of the premise computed
w.r.t. the context.

Furthermore,

• one can modify the “scroll parameters” of the context editor (A E), i.e. the
distance of the cursor from the margin of the context sector at which at new
sector of the context is shown;

• in connection with the loading (L . . . or I L . . . ) or saving (S . . . or I S . . .
) of contexts or context data one can enter by ∧N (= Ctrl N) into a submenue,
where one can display all or parts of the contents of the folder chosen just before.
One can do this while being in the subprogram for loading or saving contexts
or implications at the place at which one has to enter the name of the file — or
to accept the default);

45



• one can change the number of characters in a printed line (default ...: 80 char-
acters); this is not only possible via the print menu (D D . . . ), but also via the
alteration menu (A Z); the latter option is particularly important in case one
has deactivated some check-backs of the program (A F), which also deactivates
the question for the length of the printed line when printing computed data);

• one can look at some parameters of the program ConImp (the maximal number
of attributes or objects and the maximal length of their names) and check
which computations have already been carried out for the current context (P).
If possible, the size of the (reduced) context, the length of the computed lists
or the form of the effected reduction are also being shown.

At some places ConImp offers the possibility to call help screens ( . . . ∧I), by
which one can get informations about what the subprograms under consideration are
supposed to do or about the effect of some key strokes allowed in the submenu you
are in.

Actually, one can use ConImp for quite a lot of further tasks. However, this short
introduction stops here.
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