
PDF 1.3 Reference Manual March 11, 1999 :

1

March 11, 1999

Adobe Systems Incorporated

Portable Document Format
Reference Manual
Version 1.3�

: March 11, 1999

2 Adobe Systems Inc.

 1993-1999 Adobe Systems Incorporated. All rights reserved. Patents Pending.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of the publisher. Any software referred to herein is furnished under
license and may only be used or copied in accordance with the terms of such license. Printed in the United States of America.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies, makes no warranty of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes and noninfringement of third party rights.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the text are references to the
PostScript language as defined by Adobe Systems Incorporated unless otherwise stated. The name PostScript also is used as a product
trademark for Adobe Systems’ implementation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers, files, and driver programs (respectively)
which are written in or support the PostScript language. The sentences in this book that use “PostScript language” as an adjective phrase are
so constructed to reinforce that the name refers to the standard language definition as set forth by Adobe Systems Incorporated.

Adobe, Acrobat, the Acrobat logo, Adobe Garamond, Carta, Distiller, FrameMaker, Illustrator, Minion, Photoshop, the Photoshop logo,
Poetica, PostScript, and the PostScript logo are registered trademarks of Adobe Systems Incorporated. AdobePS and InDesign are trademarks
of Adobe Systems Incorporated. Apple, Macintosh, Mac, and TrueType are trademarks of Apple Computer, Inc., registered in the United
States and other countries. ITC Stone and ITC Zapf Dingbats are registered trademarks of International Typeface Corporation. Helvetica and
Times are registered trademarks of Linotype–Hell AG and/or its subsidiaries. Lucida is a registered trademark of Bigelow and Holmes.
Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark of The Open Group.
All other brand or product names are the trademarks or registered trademarks of their respective holders.

Library of Congress Cataloging-in-Publication Data

Portable document format reference manual / Adobe Systems Incorporated.
p. cm.

Includes bibliographical references (p. 505) and index.
ISBN 0–201–62628–4
1. File organization (Computer science) 2. PostScript (Computer program language)
3. Text processing (Computer science) I. Adobe Systems.
QA76.9.F5P67 199393–8046
005.74—dc20CIP

1 2 3 4 5 6 7 8 9–MA–9796959493

PDF 1.3 Reference Manual March 11, 1999 :

3

Contents

Chapter 1: Introduction 9

1.1 About this book 9

1.2 Introduction to the Second Edition—PDF 1.1 11

1.3 Introduction to the Third Edition—PDF 1.2 12

1.4 Introduction to the Fourth Edition—PDF 1.3 13

1.5 Conventions used in this book 14

1.6 A note on syntax 15

1.7 Copyright permission to use PDF 15

Portable Document Format 17

Chapter 2: Overview 19

2.1 What is the Portable Document Format? 19

2.2 Using PDF 19

2.3 General properties 22

2.4 PDF and the PostScript language 25

2.5 Understanding PDF 26

Chapter 3: Coordinate Systems 29

3.1 Device space 29

3.2 User space 30

3.3 Text space 31

3.4 Character space 31

3.5 Image space 31

3.6 Form space 31

3.7 Pattern space 32

3.8 Relationships among coordinate systems 32

3.9 Transformations between coordinate systems 33

: March 11, 1999

4 Adobe Systems Inc.

3.10 Transformation matrices 35

Chapter 4: Objects 37

4.1 Introduction 37

4.2 Booleans 37

4.3 Numbers 37

4.4 Strings and text 37

4.5 Names 39

4.6 Arrays 40

4.7 Dictionaries 40

4.8 Streams 41

4.9 The null object 53

4.10 Indirect objects 53

4.11 Object references 54

Chapter 5: File Structure 55

5.12 PDF files 55

5.13 Header 56

5.14 Body 56

5.15 Cross-reference table 57

5.16 Trailer 59

5.17 Incremental update 61

5.18 Encryption 62

Chapter 6: Document Structure 65

6.1 Introduction 65

6.2 Catalog 67

6.3 Pages tree 71

6.4 Page objects 73

6.5 Thumbnails 81

6.6 Annotations 82

6.7 Outline tree 104

6.8 Actions 107

6.9 Names dictionary 119

6.10 Info dictionary 120

March 11, 1999

: 5

6.11 Articles 121

6.12 File ID 123

6.13 Encryption dictionary 124

6.14 Acrobat Forms 129

6.15 Sounds 147

6.16 Web Capture 148

6.17 Logical Structure in PDF 161

Chapter 7: Common Data Structures 183

7.1 Rectangle 183

7.2 Date 183

7.3 Destination 184

7.4 File specification 186

7.5 Resources dictionaries 195

7.6 ProcSets 198

7.7 Fonts 198

7.8 CIDFonts 210

7.9 Font encodings 213

7.10 CMaps 215

7.11 Font descriptors 222

7.12 Color spaces 230

7.13 XObjects 246

7.14 Functions 262

7.15 Extended graphics states 272

7.16 Halftones 275

7.17 Patterns 287

7.18 Smooth Shading 294

7.19 Property lists 313

7.20 Name tree 314

7.21 Number tree 316

Chapter 8: Page Descriptions 319

8.1 Overview 319

8.2 Graphics state 321

: March 11, 1999

6 Adobe Systems Inc.

8.3 Special Graphics State 322

8.4 General Graphics state 323

8.5 Color 330

8.6 Paths 333

8.7 Text state 339

8.8 External objects (XObjects) 348

8.9 In-line image objects 348

8.10 Other operators 351

Chapter 9: Linearized PDF 357

9.1 Introduction 357

9.2 Background and Assumptions 358

9.3 Linearized PDF document structure specification 360

9.4 Hint Tables 369

9.5 Access Strategies 377

Optimizing PDF Files 381

Chapter 10: General Techniques for Optimizing PDF Files 383

10.1 Use short names 383

10.2 Use direct and indirect objects appropriately 384

10.3 Take advantage of combined operators 385

10.4 Remove unnecessary clipping paths 385

10.5 Omit unnecessary spaces 386

10.6 Omit default values 386

10.7 Take advantage of Form XObjects 386

10.8 Limit the precision of real numbers 387

10.9 Write parameters only when they change 387

10.10 Don’t draw outside the crop box 387

10.11 Consider target device resolution 388

10.12 Share resources 388

10.13 Store common Page attributes in the Pages object 388

10.14 Use strings for named destinations 389

Chapter 11: Optimizing Text 391

11.1 Don’t produce unnecessary text objects 391

March 11, 1999

: 7

11.2 Use automatic leading 392

11.3 Take advantage of text spacing operators 394

11.4 Don’t replace spaces between words 395

11.5 Use the appropriate operator to draw text 395

11.6 Use the appropriate operator to position text 396

11.7 Remove text clipping 396

11.8 Consider target device resolution 398

Chapter 12: Optimizing Graphics 399

12.1 Use the appropriate color-setting operator 399

12.2 Defer path painting until necessary 399

12.3 Take advantage of the closepath operator 400

12.4 Don’t close a path more than once 401

12.5 Don’t draw zero-length lines 402

12.6 Make sure drawing is needed 402

12.7 Take advantage of rectangle and curve operators 402

12.8 Coalesce operations 403

Chapter 13: Optimizing Images 405

13.1 Preprocess images 405

13.2 Match image resolution to target device resolution 405

13.3 Use the minimum number of bits per color component 405

13.4 Take advantage of indexed color spaces 406

13.5 Use the DeviceGray color space for monochrome images 406

13.6 Use in-line images appropriately 407

13.7 Don’t compress in-line images unnecessarily 407

13.8 Choose the appropriate filters 407

13.9 Use predefined spot functions 410

Chapter 14: Clipping 413

14.1 Clipping to a path 413

14.2 Clipping to text 415

14.3 Image masks 417

Appendix A: Example PDF Files 421

A.1 Minimal PDF file 421

: March 11, 1999

8 Adobe Systems Inc.

A.2 Simple text string 423

A.3 Simple graphics 425

A.4 Pages tree 428

A.5 Outline 431

A.6 Updated file 435

Appendix B: Summary of Page Marking Operators 443

Appendix C: Predefined Font Encodings 447

C.1 Predefined encodings sorted by character name 448

C.2 Predefined encodings sorted by character code 453

C.3 MacExpert encoding 459

Appendix D: Implementation Limits 463

Appendix E: Obtaining XUIDs and Technical Notes 467

Appendix F: PDF Name Registry 469

Appendix G: Compatibility and Implementation Notes 471

G.1 Version numbers 471

G.2 Dictionary keys 472

G.3 Implementation notes 473

Appendix H: Forms Data Format 485

H.1 File Structure 485

H.2 The FDF Catalog Object 487

H.3 Use of FDF 491

H.4 Sample FDF 492

H.5 FDF for annotations 492

Appendix I: ISO 639 Language Codes 495

Appendix J: ISO 3166 Country Codes 499

Bibliography 505

Index 509

Colophon 517

PDF 1.3 Reference Manual March 11, 1999 1: Introduction

9

CHAPTER 1

Introduction

This book describes the Portable Document Format (PDF), the native file format of
the Adobe® Acrobat® family of products. The goal of these products is to enable
users to exchange and view electronic documents easily and reliably, independent
of the environment in which they were created. PDF relies on the imaging model
of the PostScript® language to describe text and graphics in a device-independent
and resolution-independent manner. To improve performance for interactive
viewing, PDF defines a more structured format than that used by most PostScript
language programs. PDF also includes objects, such as annotations and hypertext
links, that are not part of the page itself but are useful for interactive viewing.

PDF files are built from a sequence of numbered objects similar to those used in
the PostScript language. The text, graphics, and images that make up the contents
of a page are represented using operators that are based on those in the PostScript
language and that closely follow the Adobe Illustrator® 3.0 page description
operators.

A PDF file is not a PostScript language program and cannot be directly interpreted
by a PostScript interpreter. However, the page descriptions in a PDF file can be
converted into a PostScript language program.

1.1 About this book

This book provides a description of the PDF file format, as well as suggestions for
producing efficient PDF files. It is intended primarily for application developers
who wish to produce PDF files directly. This book also contains enough
information to allow developers to write applications that read and modify PDF
files. While PDF is independent of any particular application, occasionally PDF
features are best explained by the actions a particular application takes when it
encounters that feature in a file. Similarly, Appendix D discusses some
implementation limits in the Acrobat viewer applications, even though these limits
are not part of the file format itself.

The PDF specification is independent of any particular implementation of a PDF
generator (an application that creates PDF files) or consumer (an application that
reads PDF files and interprets their contents). To provide guidance to
implementors, however, Implementation Notes that accompany the specification
and Appendix G describe the behavior of Acrobat viewers when they encounter
the changes documented herein.

1: Introduction March 11, 1999

10 Adobe Systems Inc.

This book consists of two sections. The first section describes the file format and
the second lists techniques for producing efficient PDF files. In addition,
appendices provide example files, detailed descriptions of several predefined font
encodings, a summary of PDF page-marking operators, and other information.

Readers are assumed to have some knowledge of the PostScript language, as
described in the PostScript Language Reference Manual, Third Edition [1]. In
addition, some understanding of fonts, as described in the Adobe Type 1 Font
Format [5], is useful.

The first section of this book, Portable Document Format, includes Chapters 2
through 7 and describes the PDF file format.

Chapter 2 describes the motivation for creating the PDF file format and provides
an overview of its architecture. PDF is compared to the PostScript language.

Chapter 3 discusses the coordinate systems and transformations used in PDF files.
Because the coordinate systems used in PDF are very much like those used in the
PostScript language, users with substantial background in the PostScript language
may wish to read this chapter only as a review.

Chapter 4 describes the types of objects used to construct documents in PDF files.
These types are similar to those used in the PostScript language. Readers familiar
with the types of objects present in the PostScript language may wish to read this
chapter quickly as a reminder.

Chapter 5 provides a description of the format of PDF files, how they are organized
on disk, and the mechanism by which updates can be appended to a PDF file.

Chapter 6 describes the way that a document is represented in a PDF file, using the
object types presented in Chapter 4.

Chapter 7 defines the resources used in a PDF file, including fonts, color spaces,
images, and others.

Chapter 8 discusses the operators used in PDF files. These are the operators that
actually make marks on a page. Many are similar to one or more PostScript
language operators. Readers with PostScript language experience will quickly see
the similarities.

The second section of this book, Optimizing PDF Files, includes Chapters 9
through 14 and describes techniques for producing efficient PDF files. Many of the
techniques presented can also be used in the PostScript language. The techniques
are broken down into four areas: text, graphics, images, and general techniques.

Chapter 9 describes linearized PDF files. Linearized files have been organized to
work efficiently in a network environment.

Chapter 10 discusses general optimizations that may be used in a wide variety of
situations in PDF files.

Chapter 11 discusses optimizations for text.

March 11, 1999

1: Introduction 11

Chapter 12 discusses graphics optimizations.

Chapter 13 discusses optimizations that may be used on sampled images.

Finally, Chapter 14 contains techniques for using clipping paths to restrict the
region in which drawing occurs and a technique using images to make efficient
blends. (Note: The section on blends has been removed in the Fourth Edition.)

1.2 Introduction to the Second Edition—PDF 1.1

The second edition of this manual is a revision of the 1993 edition of Portable
Document Format Reference Manual. It describes version 1.1 of the Portable
Document Format.

Implementation note PDF 1.1 is the native file format of the Adobe Acrobat 2.0 family of products.

The PDF 1.1 specification, like the PDF 1.0 specification, defines a minimum
interchange level of functionality. The Portable Document Format is an extensible
format, which means that PDF files may contain objects not defined by this
specification. Consumers are expected to implement correctly the semantics of
objects that are specified by PDF 1.1 and, as gracefully as possible, to ignore any
objects that they do not understand. Appendix G provides guidance on how a
consumer should handle objects it does not understand.

Implementation note Some Acrobat 2.0 and subsequent products provide an interface that supports
plug-ins. These plug-ins can use and/or put private data objects within a PDF file.
Appendix G indicates the kinds of private data that can be used and Appendix F
defines a registry for this data. The registry can be used to avoid conflicts in
identifying data from independent plug-ins.

New features introduced in PDF 1.1 include the following:

• The ability to protect a document with a password and to restrict operations on a
document.

• The ability to tie blocks of text together into “articles,” making reading easier.

• The generalization of link and bookmark destinations to “actions,” which
include links to other PDF files and foreign files.

• The ability to define new annotation types and to provide additional attributes
for existing types.

• The ability to specify default settings and actions when a document is opened.

• Device-independent color.

• An ID included in files to make it easier to verify that a file is the correct file,
even under circumstances where the file’s name is incorrect (such as files on
some networks).

• A binary option that allows files to be smaller.

1: Introduction March 11, 1999

12 Adobe Systems Inc.

• A new date format that allows programmatic comparison of dates.

• The ability to provide additional document information.

Note In PDF 1.1, dictionary key names are often one or two letters in order to conserve
space in files. When these keys are described below, they are followed in
parentheses by a more descriptive string. However, only the actual one- or two-
letter name may be used in a PDF file.

1.3 Introduction to the Third Edition—PDF 1.2

The third edition is a revision of the March 1, 1996, edition of Portable Document
Format Reference Manual. It describes version 1.2 of the Portable Document
Format.

Implementation note PDF 1.2 is the native file format of the Adobe Acrobat 3.0 family of products.

New features introduced in PDF 1.2 include the following:

• Interactive elements with state, such as radio buttons and checkboxes.

• Support for playing movies (from external files) and sounds (either embedded
in the PDF file or from external files).

• Interactive, fill-in forms, with PDF-based format for data that can be imported,
exported, transmitted, and received from the Web.

• Support for Chinese, Korean, and Japanese text.

• Enhanced borders, highlights, and fully general appearances for annotations.

• Support for responding to mouse-events.

• Essentially unlimited number of hypertext links.

• Support for OPI (Open Prepress Interface).

• Advanced color features, such as halftone screens, transfer functions, patterns,
and separation color spaces.

Note PDF is an evolving language, and new editions of this manual will be offered on an
ongoing basis to document the changes. The most recent version will be available
on the Adobe’s Web site (http://www.adobe.com).

While many readers will use a printed copy of this manual, others will refer to it
online. With that in mind, many changes have been made to the formatting, such as
the choice and size of fonts, to make on-screen reading somewhat easier.

http://www.adobe.com

March 11, 1999

1: Introduction 13

1.4 Introduction to the Fourth Edition—PDF 1.3

The fourth edition is a revision of the 1.2 version of the Portable Document Format
of October 3, 1996. It describes version 1.3 of the Portable Document Format.

Implementation note PDF 1.3 is the native file format of the Adobe Acrobat 4.0 family of products.

PDF 1.3 adds support for the new features of the Adobe imaging model, as defined
in PostScript 3, as well as other features. These include the following:

• A facility for storing files converted from the World Wide Web in PDF files.
(Section 6.16, “Web Capture”)

• Digital signatures. (Section 6.14.12, “Signature field”)

• A facility for representing the logical structure of a document independent of its
graphic structure. (Section 6.17, “Logical Structure in PDF”)

• Alternate representations for a single image. (Section 7.13.3, “Alternate
images”)

• Embedding files of any type within a PDF document. (Section 7.4.3,
“Embedded File streams”)

• Support for JavaScript. (Section 6.14.13.4, “JavaScript Action”)

• Enhanced page numbering. (Section 6.2.2, “PageLabel dictionaries”)

• Information relating to trapping. (Section 6.6.16, “PDF Trapping”)

• Support for left-to-right and right-to-left reading direction. (Section 6.2.1,
“Viewer preferences”)

• A facility for representing color separations. (Section 6.4.2, “Separated PDF”)

• New types of functions. (Section 7.14, “Functions”)

• New colorspaces: DeviceN and ICCBased. (Section 7.12, “Color spaces”)

• Smooth shading. (Section 7.18, “Smooth Shading”) A section of Chapter 14 in
previous editions, showing how to emulate blends with images, has been
removed from the new edition, since blends are now built in to PDF.

• Masked images. (Section 7.13.5, “Masking images by position”)

• Additional support for CID fonts. (Section 7.8, “CIDFonts”)

• Data structures for efficiently mapping strings and numbers to PDF objects.
(Section 7.20, “Name tree” and Section 7.21, “Number tree”)

1: Introduction March 11, 1999

14 Adobe Systems Inc.

1.5 Conventions used in this book

Text styles are used to identify various operators, keywords, terms, and objects.
Several formatting styles are used in this book:

• PDF operators, PDF keywords, the names of keys in dictionaries, and other
predefined names are written in boldface. Examples are Tf, stream, Type, and
MacRomanEncoding.

• Operands of PDF operators are written in an italic sans serif font. An example is
linewidth.

• Object types are written with initial capital letters. An example is
FontDescriptor.

• The first occurrence of terms and the boolean values true and false are written
in italics. This style is also used for emphasis.

• Samples of code as it would appear in a PDF file are written in a monospaced
red font. Examples are: /MediaBox [0 0 612 792] and
www.adobe.com.

• Byte values are written as hex digits either preceded by 0x, as in 0x4F, or
enclosed in angle brackets, as in <4F>.

Tables containing dictionary keys are normally organized with the Type and
Subtype keys first, followed by any other keys that are required in the dictionary,
followed by any optional keys.

Note The Type key can almost always be inferred from context. The operand of the Tf
operator, for example, must be a Font object, so the Type key in a Font dictionary
serves primarily as documentation and as information for error-checking. Starting
with PDF 1.3, then, the Type key is no longer required unless stated in the table; if
it is present, however, it must have the correct value. In addition, the value of the
Type key in any dictionary, even in “private data,” must be either a name defined
in this manual or a “registered name”; see Appendix F for details.

The key names in the tables, shown in bold, are sometimes followed by descriptive
terms in parentheses, such as S (Subtype). Only the key name is used in the table;
the descriptive term is not a synonym or alternate key.

Important changes and corrections to the previous edition of this manual are
marked with change bars in the left margin (such as the one to the left of this
paragraph). Most of the changes are related to the differences between versions of
PDF. Those changes are marked with icons in the right margin:

This marks a section that specifically deals with version
1.0, normally indicating a feature that has been
superseded in a later version.

This marks a section that specifically deals with new
features in version 1.1.

PDF 1.3

PDF 1.0

PDF 1.1

March 11, 1999

1: Introduction 15

This marks a section that specifically deals with new
features in version 1.2.

This marks a section that specifically deals with new
features in version 1.3.

This marks a section for which there is a compatibility
note or implementation note in Appendix G.

Generally, new features and attributes are ignored by older viewers. An attribute
marked with a version icon may be new with that version, or may have been
substantially redefined in that version.

1.6 A note on syntax

Throughout this book, Extended Backus–Naur Form (EBNF) notation is used to
describe syntax, as in this example:

<xyz> ::= abc <def> ghi |
<k> j

A token enclosed in angle brackets names a class of document component, while
plain text appears verbatim or with some obvious substitution. The grammar rules
have two parts. The class name is on the left of the definition symbol (::=). In the
example above, the class is xyz. On the right of the definition symbol is a set of one
or more alternative forms that the class component might take in the document. A
vertical bar (|) separates alternative forms.

The right side of the definition may be on one or more lines. With only a few
exceptions, these lines do not correspond to lines in the file.

The notation [...] means that the items enclosed in brackets are optional. If an
asterisk follows an item, that item may be repeated zero or more times. If a plus
sign follows an item, that item must be repeated one or more times. Braces, {...},
are used to group items.

When an operator appears in a EBNF specification, it is shorthand for the operator
plus its operands. For example, when the operator m appears in a EBNF
specification, it means x y m, where x and y are numbers.

Note that PDF is case-sensitive. Uppercase and lowercase letters are distinct.

1.7 Copyright permission to use PDF

The general idea of utilizing an interchange format for final-form documents is in
the public domain. Anyone is free to devise his or her own set of unique commands
and data structures that define an interchange format for final-form documents.
Adobe owns the copyright in the data structures, operators, and the written
specification for the particular interchange format called the Portable Document
Format. These elements may not be copied without Adobe’s permission.

PDF 1.2

PDF 1.3

�

1: Introduction March 11, 1999

16 Adobe Systems Inc.

Adobe will enforce its copyright. Adobe’s intention is to maintain the integrity of
the Portable Document Format as a standard. This enables the public to distinguish
between the Portable Document Format and other interchange formats for final-
form documents.

However, Adobe desires to promote the use of the Portable Document Format for
information interchange among diverse products and applications. Accordingly,
Adobe gives copyright permission to anyone to:

• Prepare files in which the file content conforms to the Portable Document
Format.

• Write drivers and applications that produce output represented in the Portable
Document Format.

• Write software that accepts input in the form of the Portable Document Format
and displays the results, prints the results, or otherwise interprets a file
represented in the Portable Document Format.

• Copy Adobe’s copyrighted list of operators and data structures, as well as the
PDF sample code and PostScript language Function definitions in the written
specification, to the extent necessary to use the Portable Document Format for
the above purposes.

The only condition on such copyright permission is that anyone who uses the
copyrighted list of operators and data structures in this way must include an
appropriate copyright notice.

This limited right to use the copyrighted list of operators and data structures does
not include the right to copy the Portable Document Format Reference Manual,
other copyrighted material from Adobe, or the software in any of Adobe’s products
which use the Portable Document Format, in whole or in part, nor does it include
the right to use any Adobe patents.

PDF 1.3 Reference Manual March 11, 1999 :

17

Section I

Portable Document Format

: March 11, 1999

18 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 2: Overview

19

CHAPTER 2

Overview

Before examining the detailed structure of a PDF file, it is important to understand
what PDF is and how it relates to the PostScript language. This chapter discusses
PDF and its relationship to the PostScript language.

Chapter 3 discusses the coordinate systems used to describe various components of
a PDF file. Chapters 4 and 5 discuss the basic types of objects supported by PDF
and the structure of a PDF file. Chapters 6, 7, and 8 describe the structure of a PDF
document and the operators used to draw text, graphics, and images.

2.1 What is the Portable Document Format?

PDF is a file format used to represent a document in a manner independent of the
application software, hardware, and operating system used to create it. A PDF file
contains a PDF document and other supporting data.

A PDF document contains one or more pages. Each page in the document may
contain any combination of text, graphics, and images in a device- and resolution-
independent format. This is the page description. A PDF document may also
contain information possible only in an electronic representation, such as hypertext
links, sound, and movies.

In addition to a document, a PDF file contains the version of the PDF specification
used in the file and information about the location of important structures in the
file.

2.2 Using PDF

To understand PDF, it is important to understand how PDF documents will be
produced and used. As PDF documents and applications that read PDF files
become more prevalent, new ways of creating and using PDF files will be
invented. This is one of the goals of this book—to make the file format accessible
so that application developers can expand on the ideas behind PDF and the
applications that initially support it.

Currently, PDF files may be produced either directly from applications or from
files containing PostScript page descriptions.

2: Overview March 11, 1999

20 Adobe Systems Inc.

Macintosh
application

PDF Writer

QuickDraw

Windows
application

GDI

PDF

Acrobat Exchange or Reader

Many applications can produce PDF files directly. The PDF Writer, available on
both Apple® Macintosh® computers and computers running the Microsoft®

Windows® environment, acts as a printer driver. A printer driver normally converts
operating system graphics and text commands (QuickDraw™ for the Macintosh
and GDI for Windows) into commands understood by a printer. The driver embeds
these commands in a stream of commands sent to a printer that results in a page
being printed. Instead of sending these commands to a printer, the PDF Writer
converts them to PDF operators and embeds them in a PDF file, as shown in Figure
2.1.

Figure 2.1 Creating PDF files using PDF Writer

The resulting PDF files are platform-independent. Regardless of whether they
were generated on a Macintosh or Windows computer, they may be viewed by a
PDF viewing application on any supported platform.

Some applications produce PostScript page descriptions directly because of
limitations in the QuickDraw or GDI imaging models or because they run on DOS
or UNIX® computers, where there is no system-level printer driver. For these
applications, PostScript page descriptions can be converted into PDF files using
the Acrobat Distiller® application, as shown in Figure 2.2. The Distiller
application accepts any PostScript page description, whether created by a program
or hand-coded by a human. The Distiller application produces more efficient PDF
files than PDF Writer for some application programs.

Macintosh Application Windows Application

PDF Writer

Acrobat

QuickDraw GDI

PDF

March 11, 1999

2: Overview 21

Figure 2.2 Creating PDF files using the Distiller program

Once a PDF file has been created, the Acrobat viewer can be used to view and print
the document contained in the file, as shown in Figure 2.3. Users can navigate
through the document using thumbnail sketches, hypertext links, and bookmarks.
The document’s text may be searched and extracted for use in other applications.
In addition, an Acrobat user may modify a PDF document by creating text
annotations, hypertext links, thumbnail sketches of each page, and bookmarks that
directly access views of specific pages.

Figure 2.3 Viewing and printing a PDF document

Acrobat
Distiller

PostScript
page description

PDF

Acrobat Exchange or Reader

PDF

PDF

Acrobat Acrobat Reader

printer
commands

PostScript printer other printer

PostScript
program

2: Overview March 11, 1999

22 Adobe Systems Inc.

2.3 General properties

Given the goals and intended use of PDF, its design has several notable properties.
This section describes those properties.

2.3.1 Adobe imaging model

PDF represents text and graphics using the Adobe imaging model; this is the same
imaging model that is used by the PostScript language. Like a PostScript language
program, a PDF page description draws a page by placing “paint” on selected
areas.

• The painted figures may be letter shapes, regions defined by combinations of
lines and curves, or sampled images such as digitally sampled representations
of photographs.

• The paint may be any color.

• Any figure can be clipped to another shape, so that only portions of the figure
within the shape appear on the page.

• When a page description begins, the page is completely blank. Various
operators in the page description place marks on the page. Each new mark on
the page completely obscures any marks it may overlay.

The PDF page-marking operators are similar to the marking operators in the
PostScript language. The main reason that the PDF marking operators differ from
the PostScript language marking operators is that PDF is not a programming
language and does not contain procedures, variables, or control constructs. PDF
trades reduced flexibility for improved efficiency. A typical PostScript language
program defines a set of high-level operators using the PostScript language
marking operators. PDF defines its own set of high-level operators that is sufficient
for describing most pages. Because these operators are implemented directly in
machine code rather than PostScript language code, PDF page descriptions can be
drawn more quickly. Because arbitrary programming constructs are not permitted,
applications can more efficiently and reliably locate text strings in a PDF
document.

2.3.2 Portability

A PDF file is a binary file; the entire 8-bit range of characters may be used.

Unfortunately, some agents treat files that happen to use only the printable subset
of the 7-bit ASCII code and whitespace characters as “text,” and take unreasonable
liberties with the contents. For example, mail-transmission systems may not
preserve certain 7-bit characters and may change line endings. This can cause
damage to PDF files.

Therefore, in situations where it is possible to label PDF files as “binary,” we
recommend that this be done. One method for encouraging such treatment is to
include a few binary characters (codes greater than 127) in a comment near the
beginning of the file, as described in Section 5.12 on page 55, even if the rest of the

PDF 1.1

March 11, 1999 2.3.3

2: Overview 23

file is ASCII. This ensures that a PDF file will be treated as binary when this is
possible, while still allowing it to be transferred through a non-binary channel
without damage.

Implementation note Acrobat applications produce PDF files with a comment that includes binary
characters.

Note PDF 1.0 files are ASCII files, and all binary data in them must be represented in 7-
bit ASCII by means of ASCII filters or escape characters in strings. No line in a
PDF 1.0 file may be longer than 255 characters.

2.3.3 Compression

To reduce file size, PDF supports a number of industry-standard compression
filters:

• JPEG compression of color and grayscale images.

• CCITT Group 3, CCITT Group 4, LZW (Lempel-Ziv-Welch), and Run Length
compression of monochrome images.

• LZW and Flate compression of text, graphics, and indexed image data.

Using JPEG compression, color and grayscale images can be compressed by a
factor of 10 or more. Effective compression of monochrome images depends upon
the compression filter used and the properties of the image, but reductions of 2:1 to
8:1 are common. LZW or Flate compression of text and graphics comprising the
balance of the document results in compression ratios of approximately 2:1. All of
these compression filters produce binary data, which may then be encoded in the
ASCII base-85 encoding to maintain portability.

2.3.4 Font independence

Managing fonts is a fundamental challenge in document exchange. Generally, the
receiver of a document must have the same fonts the sender used to create the
document. Otherwise, a default font is substituted, producing unexpected and
undesirable effects because the default font has different character metrics (widths)
than the intended font. Differing font-widths may cause lines to extend into
margins or overlap graphics.

The sender could include the fonts with the document, but this can easily make
even a short document quite large—a typical two-page memo using four fonts
might grow from 10K to 250K. Another possibility is that the sender could convert
each page of the document to a fixed-resolution image like a facsimile. Even when
compressed, however, the image of a single page can be quite large (45–60K when
sampled at 200 dpi). In addition, there is no intelligence left in the file, preventing
the receiver from searching for or extracting text from the document.

�

PDF 1.2

2: Overview March 11, 1999

24 Adobe Systems Inc.

PDF provides a new solution that makes a document independent of the fonts used
to create it. A PDF file contains a font descriptor for each font used in a document.
The font descriptor includes the font name, character metrics, and style
information. This is the information needed to simulate missing fonts and is
typically only 1–2K per font.

If a font used in a document is available on the computer where the document is
viewed, it is used. If it is not available, a multiple master font is used to simulate on
a character-by-character basis the weight and width of the original font, to
maintain the overall “color” and formatting of the document. This solution applies
to both Adobe Type 1 fonts and fonts in the TrueType™ format [32] developed by
Apple Computer, Inc.

Symbolic fonts must be handled in a special way. A symbolic font is any font that
does not use the standard ISOLatin1 character set. Fonts such as Carta®, Adobe
Caslon™ Swash Italic, Minion® Ornaments, and Lucida® Math fall into this
category. It is not possible to simulate a symbolic font effectively.

For symbolic fonts, a font descriptor (including metrics and style information) is
not sufficient; the actual character shapes (or glyphs) are required to accurately
display and print the document. For all symbolic fonts other than Symbol and ITC
Zapf Dingbats®, a compressed version of the Type 1 font program for the font is
included in the PDF file. Symbol and ITC Zapf Dingbats, the most widely used
symbolic fonts, ship with Acrobat and do not need to be included in a PDF file.

2.3.5 Single-pass file generation

Because of system limitations and efficiency considerations, it may be desirable or
necessary for an implementation of a program that produces PDF to create a PDF
file in a single pass. This may be, for example, because the application has access
to limited memory or is unable to open temporary files. For this reason, PDF
supports single-pass generation of files. While PDF requires certain objects to
contain a number specifying their length in bytes, a mechanism is provided
allowing the length to be located in the file after the object. In addition,
information such as the number of pages in the document can be written into the
file after all pages have been written into the file.

2.3.6 Random access

Tools that extract and display a selected page from a PostScript language program
must scan the program from its beginning until the desired page is found. On
average, the time needed to view a page depends not only on the complexity of the
page but also on the total number of pages in the document. This is problematic for
interactive document viewing, where it is important that the time needed to view a
page be independent of the total number of pages in the document.

Every PDF file contains a cross-reference table that can be used to locate and
directly access pages and other important objects in the file. The location of the
cross-reference table is stored at the end of the file, allowing applications that
produce PDF files in a single pass to store it easily and allowing applications that

March 11, 1999 2.3.7

2: Overview 25

read PDF files to locate it easily. Using the cross-reference table, the time needed
to view a page in a PDF file can be nearly independent of the total number of pages
in the document.

2.3.7 Incremental update

Applications may allow users to modify PDF documents, which can contain
hundreds of pages or more. Users should not have to wait for the entire file to be
rewritten each time modifications to the document are saved. PDF allows
modifications to be appended to a file, leaving the original data intact. The
addendum appended when a file is incrementally updated contains only the objects
that were modified or added, and includes an update to the cross-reference table.
Support for incremental update allows an application to save modifications to a
PDF document in an amount of time proportional to the size of the modification
instead of the size of the file. In addition, because the original contents of the file
are still present in the file, it is possible to undo saved changes by deleting one or
more addenda.

2.3.8 Extensibility

PDF is designed to be extensible. Undoubtedly, developers will want to add
features to PDF that have not yet been implemented or thought of.

The design of PDF is such that not only can new features be added, but
applications that understand earlier versions of the format will not completely
break when they encounter features that they do not implement. Appendix G,
“Compatibility and Implementation Notes,” specifies how a PDF viewer should
behave when it reads a file that does not conform to the specification it was
expecting.

2.4 PDF and the PostScript language

The preceding sections mentioned several ways in which PDF differs from the
PostScript language. This section summarizes these differences and describes the
process of converting a PDF file into a PostScript language program.

While PDF and the PostScript language share the same imaging model, there are
some important differences between them:

• A PDF file may contain objects such as hypertext links that are useful only for
interactive viewing.

• To simplify the processing of page descriptions, PDF provides no programming
language constructs.

• PDF enforces a strictly defined file structure that allows an application to access
parts of a document randomly.

• PDF files contain information such as font metrics, to ensure viewing fidelity.

2: Overview March 11, 1999

26 Adobe Systems Inc.

Because of these differences, a PDF file cannot be downloaded directly to a
PostScript printer for printing. An application that prints a PDF file to a PostScript
printer must carry out the following steps:

1. Insert procsets, sets of PostScript language procedure definitions that
implement the PDF page description operators.

2. Extract the content for each page. Pages are not necessarily stored in
sequential order in the PDF file. Each page description is essentially the
script portion of a traditional PostScript language program using very
specific procedures, such as “m” for moveto and “l” for lineto.

3. Decode compressed text, graphics, and image data. Except for data
encoded with the Flate filter, this is not required for PostScript Level 2
printers, which can accept compressed data in a PostScript language file.

4. Insert any resources, such as fonts, into the PostScript language file.
Substitute fonts are defined and inserted as needed, based on the font
metrics in the PDF file.

5. Put the information in the correct order. The result is a traditional
PostScript language program that fully represents the visual aspects of the
document, but no longer contains PDF elements such as hypertext links,
annotations, and bookmarks.

6. Send the PostScript language program to the printer.

2.5 Understanding PDF

PDF is best understood by thinking of it in four parts, as shown in Figure 2.4.

Figure 2.4 PDF components

The first component is the set of basic object types used by PDF to represent
objects. These types, with only a few exceptions, correspond to the data types used
in the PostScript language. Chapter 4 discusses these object types.

Objects

File
structure

Document
structure

Page
description

March 11, 1999 2.3.8

2: Overview 27

The second component is the PDF file structure. The file structure determines how
objects are stored in a PDF file, how they are accessed, and how they are updated.
This structure is independent of the semantics of the objects. Chapter 5 explains
the file structure.

The third component is the PDF document structure. The document structure
specifies how the basic object types are used to represent components of a PDF
document: pages, annotations, hypertext links, fonts, and more. Chapter 6 explains
the PDF document structure.

The fourth and final component is the PDF page description. A PDF page
description, while part of a PDF page object, can be explained independently of the
other components. A PDF page description has only limited interaction with other
parts of a PDF document. This simplifies its conversion into a PostScript language
program. Chapter 8 discusses PDF page descriptions.

2: Overview March 11, 1999

28 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 3: Coordinate Systems

29

CHAPTER 3

Coordinate Systems

Coordinate systems define the canvas on which all drawing in a PDF document
occurs; that is, the position, orientation, and size of the text, graphics, and images
that appear on a page are determined by coordinate systems.

PDF supports a number of coordinate systems, most of them identical to those
used in the PostScript language. This chapter describes each of the coordinate
systems used in PDF, how they are related, and how transformations among
coordinate systems are specified. At the end of the chapter is a description of the
mathematics involved in coordinate transformations. It is not necessary to read this
section to use coordinate systems and transformations. It is presented for those
readers who wish to gain a deeper understanding of the mechanics of coordinate
transformations.

3.1 Device space

The contents of a page ultimately appear on a display or a printer. Each type of
device on which a PDF page can be drawn has its own built-in coordinate system,
and, in general, each type of device has a different coordinate system. Coordinates
specified in a device’s native coordinate system are said to be in device space. On
pixel-based devices such as computer screens and printers, coordinates in device
space generally specify a particular pixel.

If coordinates in PDF files were specified in device space, the files would be
device-dependent and would accordingly appear differently on different devices.
For example, images drawn in the typical device space of a 72 pixel per inch
display and on a 600 dpi printer differ in size by more than a factor of 8; an eight-
inch line segment on a display would appear as a one-inch segment on the printer.
Different devices also have different orientations of their coordinate systems. On
one device, the origin of the coordinate system may be at the upper left corner of
the page, with the positive direction of the y-axis pointing downward. On another
device, the origin may be in the lower left corner of the page with the positive
direction of the y-axis pointing upward. Figure 3.1 shows an object that is two
units high in device space, and illustrates the fact that coordinates specified in
device space are device-dependent.

3: Coordinate Systems March 11, 1999

30 Adobe Systems Inc.

Figure 3.1 Device space

3.2 User space

PDF, like the PostScript language, defines a coordinate system that appears the
same, regardless of the device on which output occurs. This allows PDF
documents to be independent of the resolution of the output device. This
resolution-independent coordinate system is called user space and provides the
overall coordinate system for a page.

The transformation from user space to device space is specified by the current
transformation matrix (CTM). Figure 3.2 shows an object that is two units high in
user space and indicates that the CTM provides the resolution-independence of the
user space coordinate system.

Figure 3.2 User space

Device space for
72-dpi screen

Device space for
300-dpi printer

User space

Device space for
72-dpi screen

Device space for
300-dpi printer

CTM

March 11, 1999

3: Coordinate Systems 31

The user space coordinate system is initialized to a default state for each page of a
document. By default, user space coordinates have 72 units per inch,
corresponding roughly to the various definitions of the typographic unit of
measurement known as the point. The positive direction of the y-axis points
upward, and the positive direction of the x-axis to the right. The region of the
default coordinate system that is viewed or printed can be different for each page,
and is described on page 73.

3.3 Text space

The coordinates of text are specified in text space. The transformation from text
space to user space is provided by a matrix called the text matrix.

3.4 Character space

Characters in a font are defined in character space. The transformation from
character space to text space is defined by a matrix. For most types of fonts, this
matrix is predefined except for an overall scale factor. (For details, see page 339.)
This scale factor changes when a user selects the font size for text.

3.5 Image space

All images are defined in image space. The transformation from image space to
user space is predefined and cannot be changed. All images are one unit by one
unit in user space, regardless of the number of samples in the image.

This is different from images in PostScript. In PostScript, an image has an
ImageMatrix that maps image space (the width and height in samples) to user
space (e.g., a rotated 20×35 rectangle in the middle of the page). In PDF, image
space always maps to the 1×1 square whose lower left corner is at (0,0). The CTM
then maps that wherever it wants (e.g., the rotated 20×35 rectangle in the middle of
the page). This makes the image more “portable”: the same image can be used
multiple times in the same document.

3.6 Form space

PDF provides an object known as a Form XObject, discussed on page 255. Form
XObjects contain sequences of operations and are the same as forms in the
PostScript language. The space in which a Form XObect is defined is form space.
The transformation from form space to user space is specified by a matrix
contained in the Form XObject.

3: Coordinate Systems March 11, 1999

32 Adobe Systems Inc.

Note Beginning with version 1.2, PDF defines a feature that allows a PDF document to
represent a form, called an AcroForm. By “form” we mean the PDF equivalent of
the familiar paper instrument. Any unqualified use of the term “form” refers to an
AcroForm described on page 129; the other is referred to explicitly as a Form
XObject.

3.7 Pattern space

PDF defines a type of color known as a pattern, discussed on page 287. Like
forms, patterns can contain sequences of marking operations; they are the same as
patterns in the PostScript language. The space in which a pattern is defined is
pattern space. The transformation from pattern space to user space is specified by
a matrix contained in the pattern.

3.8 Relationships among coordinate systems

PDF defines a number of interrelated coordinate systems, described in the previous
sections. Figure 3.3 shows the relationships among the coordinate systems. Each
line in the figure represents a transformation from one coordinate system to
another. PDF allows modifications to many of these transformations. Such
transformations are described in Section 3.9 on page 33.

Figure 3.3 Relationships among PDF coordinate systems

Because PDF coordinate systems are defined relative to each other, changes made
to one transformation can affect the appearance of objects drawn in several
coordinate systems. For example, a change in the CTM, which defines the map
from User space to Device space, will affect forms, text, images, and patterns,
since they're “upstream” of User space.

PDF 1.2

User
space

Device
space

Form
space

Character
space

Text
space

Image
space

Pattern
space

March 11, 1999

3: Coordinate Systems 33

3.9 Transformations between coordinate systems

Transformation matrices specify the relationship between two coordinate systems.
By modifying a transformation matrix, objects can be scaled, rotated, translated, or
transformed in other ways.

A transformation matrix in PDF, as in the PostScript language, is specified by six
numbers, usually in the form of an array containing six elements. This section lists
the arrays that specify the most common transformations. The following section
contains more mathematical details of transformations, including information on
specifying transformations that are combinations of those listed in this section.

• Translations are specified as [1 0 0 1 tx ty], where tx and ty are the
distances to translate the origin of the coordinate system in x and y, respectively.

• Scaling is obtained by [sx 0 0 sy 0 0]. This scales the coordinates so that
one unit in the x and y directions of the new coordinate system is the same size
as sx and sy units in the previous coordinate system, respectively.

• Rotations are carried out by [cos θ sinθ –sinθ cos θ 0 0], which has the
effect of rotating the coordinate system axes by an angle θ counterclockwise.

• Skew is specified by [1 tanα tanβ 1 0 0], which skews the x-axis by an
angle α and the y-axis by an angle β.

Figure 3.4 shows examples of each transformation. The directions of translation,
rotation, and skew shown in the figure correspond to positive values of the array
elements.

Figure 3.4 Effects of coordinate transformations

Translation Scaling

ty

tx

sy

sx

3: Coordinate Systems March 11, 1999

34 Adobe Systems Inc.

Rotation Skewing

If several transformations are applied, the order in which they are applied is
important. For example, scaling the x-axis followed by a translation of the x-axis is
not the same as first translating the x-axis, then performing the scaling. In general,
to obtain the expected results, transformations should be done in the order:
translate, rotate, scale/skew.

Figure 3.5 shows the effect of the order in which transformations are applied. The
figure shows two sequences of transformations applied to a coordinate system.
After each successive transformation, an outline of the letter “n” is drawn. The
transformations in the figure are a translation of 10 units in the x-direction and 20
units in the y-direction, a rotation of 30 degrees, and a scaling by a factor of 3 in
the x-direction. In the figure, the axes are drawn with a dash-pattern having two
units dash, two units gap. In addition, the untransformed coordinate system is
drawn in a lighter color in each section. Notice that the scale–rotate–translate
ordering results in a distortion of the coordinate system leaving the x- and y-axes
no longer perpendicular, while the recommended translate–rotate–scale ordering
does not.

Figure 3.5 Effect of the order of transformations

θ
β

α

Original Step 1: Translate Step 2: Rotate Step 3: Scale

March 11, 1999

3: Coordinate Systems 35

3.10 Transformation matrices

Note This section describes the mathematics of transformation matrices, which is
identical to that underlying the PostScript language. It is not necessary to read this
section to use the transformations discussed in previous sections.

To understand coordinate system transformations in PDF, it is vital to understand
two points:

• Transformations in PDF alter coordinate systems, not objects. All objects drawn
before a transformation is specified are unchanged by the transformation.
Objects drawn after the transformation is specified will be drawn in the
transformed coordinate system.

• Transformation matrices in PDF specify the transformation from the
transformed (new) coordinate system to the untransformed (old) coordinate
system. All coordinates used after the transformation are specified in the
transformed coordinate system. PDF applies the transformation matrix to
determine the coordinates in the untransformed coordinate system.

Note Many computer graphics textbooks consider transformations of objects instead of
coordinate systems. Although these are formally equivalent, some results differ
depending on which point of view is taken.

PDF represents coordinates in a two-dimensional space. The point (x, y) in such a
space can be expressed in vector form as [x y 1]. Although the third element of this
vector (1) is not strictly necessary, it provides a convenient way to specify
translations of the coordinate system’s origin.

The transformation between two coordinate systems is represented by a 3×3
transformation matrix written as:

Note Because a transformation matrix has only six entries that may be changed, for
convenience it is often written as the six-element array [a b c d e f].

Coordinate transformations are expressed as:

Original Step 1: Scale Step 2: Rotate Step 3: Translate

a b 0

c d 0

e f 1

3: Coordinate Systems March 11, 1999

36 Adobe Systems Inc.

Because PDF transformation matrices specify the conversion from the transformed
coordinate system to the original (untransformed) coordinate system, x′ and y′ in
this equation are the coordinates in the untransformed coordinate system, while x
and y are the coordinates in the transformed system. Carrying out the
multiplication, we have:

If a series of transformations is carried out, the transformation matrices
representing each of the transformations can be multiplied together to produce a
single equivalent transformation matrix.

Matrix multiplication is not commutative—the order in which matrices are
multiplied is significant. It is not a priori obvious in which order the
transformation matrices should be multiplied. Matrices representing later
transformations could either be multiplied before those representing earlier
transformations (premultiplied) or after (postmultiplied).

To determine whether premultiplication or postmultiplication is appropriate,
consider a sequence of two transformations. Specifically, apply a scaling
transformation to the user space coordinate system, and consider the conversion
from this scaled coordinate system to device space. The two transformation
matrices in this example are the matrix specifying the scaling (MS) and the matrix
specifying the transformation from user space to device space (the CTM, called
MC here). Recalling that coordinates are always specified in the transformed space,
it is clear that the correct order of transformations must first convert the scaled
coordinates to those in default user space, and then convert the default user space
coordinates to device space coordinates. This can be expressed:

where XD is the coordinate in device space and XU is the coordinate in default user
space. This shows that when a new transformation is added, the matrix
representing it must be premultiplied onto the existing transformation matrix.

This result is true in general for PDF—when a sequence of transformations is
carried out, the matrix representing the combined transformation (M′) is calculated
by premultiplying the matrix representing the transformation being added (MT)
onto the matrix representing any existing transformations (M):

x′ y′ 1 x y 1

a b 0

c d 0

e f 1

=

x′ ax cy e+ +=

y′ bx dy f+ +=

XD XUMC XSMS()MC XS MSMC()= = =

M′ MTM=

PDF 1.3 Reference Manual March 11, 1999 4: Objects

37

CHAPTER 4

Objects

4.1 Introduction

PDF supports seven basic types of objects: booleans, numbers, strings, names,
arrays, dictionaries, and streams. In addition, PDF provides a null object. Objects
may be labeled so that they can be referred to by other objects. A labeled object is
called an indirect object.

The following sections describe each object type and the null object. A discussion
of creating and referring to indirect objects in PDF files follows.

Note PDF is case-sensitive. Uppercase and lowercase letters are different.

4.2 Booleans

The keywords true and false represent boolean objects with values true and false.

4.3 Numbers

PDF provides two types of numbers, integer and real. Integers may be specified by
signed or unsigned constants. Reals may only be in decimal format. Throughout
this book, number means an object whose type is either integer or real.

Note Exponential format for numbers (such as 1.0E3) is not supported.

4.4 Strings and text

A string is a series of unsigned 8-bit bytes, written as a sequence of characters
delimited by parentheses. If a string is too long to be conveniently placed on a
single line, it may be split across multiple lines by using the backslash (\)
character at the end of a line to indicate that the string continues on the following
line. When this occurs, the backslash and end-of-line characters are not considered
part of the string. Examples of strings are:

(This is string number 1?)

(strangeonium spectroscopy)

4: Objects March 11, 1999

38 Adobe Systems Inc.

(This string is split \

across \

three lines)

Within a string, the backslash character is used as an escape character to specify
unbalanced parentheses, non-printing ASCII characters, and the backslash
character itself. This is the same as for PostScript language strings, described in
Section 3.2.2 of the PostScript Language Reference Manual, Second Edition. Table
4.1 lists the escape sequences for PDF.

Table 4.1 Escape sequences in strings

\n linefeed

\r carriage return

\t horizontal tab

\b backspace

\f formfeed

\\ backslash

\(left parenthesis

\) right parenthesis

\ddd character code ddd (octal)

The \ddd escape sequence provides a way to represent characters outside the
printable ASCII character set. (This mechanism is not needed in binary PDF files;
see Section 5.12 on page 55.) The number ddd may contain one, two, or three
octal digits. An example of a string with octal characters in it is:

(string with \245two octal characters\307)

It is recommended that three octal characters always be used, in order to prevent
any ambiguity with the subsequent characters. For example, (\0053) denotes a
string that contains two characters, ASCII 5 (control E), and the digit 3, whereas
(\053) and (\53) denote strings that contain a single character, a plus-sign (+).

As in the PostScript language, strings may also be represented in hexadecimal
form. A hexadecimal string is written as a sequence of hexadecimal characters (the
digits 0–9 and the letters A–F or a–f) enclosed within angle brackets (< and >).
Each pair of hexadecimal digits defines one byte of the string. If the final digit of a
given string is missing—in other words, if there is an odd number of digits—the
final digit is assumed to be zero. Whitespace characters (space, tab, carriage return,
linefeed, and formfeed) are ignored. For example,

<901fa3>

is a three-byte string consisting of the characters whose hexadecimal codes are 90,
1f, and a3. But

March 11, 1999 4.4.1

4: Objects 39

<901fa>

is a three-byte string containing the characters whose hexadecimal codes are 90,
1f, and a0.

Any 8-bit value may appear in a string. In particular, when a document is
encrypted (see page 62), all its strings are encrypted and often contain arbitrary 8-
bit values. Note that the backslash character is still required as an escape to specify
unbalanced parentheses and the backslash character itself.

Strings can be used for many purposes and can be formatted in different ways.
When a string is used for a specific purpose, to represent a date, for example, it is
useful to have a standard format for that purpose; see Section 7.2 on page 183.
Such formats are conventions for interpreting strings and are not types themselves.
The use of a particular format is indicated with the definition of the string object
that uses the format.

4.4.1 Text

Certain strings contain information that is intended to be human-readable. These
strings include text annotations, bookmark names, article names, document
information, etc. They are referred to as text. Text is encoded in either
PDFDocEncoding or Unicode. PDFDocEncoding, which is a superset of
ISOLatin1, is compatible with Unicode in that all Unicode codes less than 256
match PDFDocEncoding.

If text is encoded in Unicode, the first two bytes of the text must be the Unicode
Byte Order marker, <FE FF>. This sequence collides with the character sequence
thorn ydieresis, which is not likely to be a meaningful beginning of a word or
phrase. The high-order byte of a Unicode character appears first in the text.

The text may also contain an escape sequence to indicate the language of the text.
This is useful when the language cannot be determined from the character codes
used in the text. The escape sequence uses the Unicode hex value U+001B
followed by the two ASCII codes for the language identifiers defined by ISO 639
(see Appendix I), optionally followed by the two ASCII codes for country defined
by IS0 3166 (see Appendix J), followed by U+001B.

4.5 Names

A name, like a string, is written as a sequence of characters. It must begin with a
slash (/) followed by a sequence of ASCII characters in the range ! (<21>)
through ~ (<7E>) except %, (,), <, >, [,], {, }, /, and #. Examples of names
are:

/Name1

/ASomewhatLongerName2

/A;Name_With-various***Characters?.

/1.2

/.notdef

4: Objects March 11, 1999

40 Adobe Systems Inc.

Any character except null (<00>) may be included in a name by writing its two-
character hex code, preceded by #. Examples:

/Adobe#20Green

/PANTONE#205757#20CV

/paired#28#29parentheses

/TheKeyOfF#23Minor

/A#42

Note that /A#42 is another way of writing the name /AB.

Note In PDF 1.1 (and 1.0), the character # could be used as part of a name, (e.g.,
/A#B), and the specs didn't specifically outlaw blanks (although Adobe generators
did not provide a way to write names containing blanks). In PDF 1.2, the
character # became an escape character, preceding two hex digits. Thus to create
a 3-character name A-space-B, you write /A#20B, since 0x20 is the hex code for
space. This means that /A#B is no longer legal, since the # is not followed by two
hex digits. You can create the name A-sharp-B by writing /A#42B, since 0x42 is
the hex code for sharp (#). There was no escape character for names in PDF 1.1.

Note The maximum number of characters in a name is 127. This limit refers to the
internal representation of the name. For example, the name /A#20B has four
characters (/, A, space, and B), not six.

4.6 Arrays

An array is a sequence of PDF objects. An array may contain a mixture of object
types. An array is written as a left square bracket ([), followed by a sequence of
objects, followed by a right square bracket (]). An example of an array is:

[0 (Higgs) false 3.14 3 549 /SomeName]

4.7 Dictionaries

A dictionary is an associative table containing pairs of objects. The first element of
each pair is called the key and the second element is called the value. The key must
be a name (unlike keys in dictionaries in the PostScript language). A value can be
any kind of object, including a dictionary. A dictionary is generally used to collect
and tie together the attributes of a complex object, with each key–value pair
specifying the name and value of an attribute.

A dictionary is written as two left angle brackets (<<), followed by a sequence of
key–value pairs, followed by two right angle brackets (>>). For example:

Example 4.1 Dictionary

<< /Type /Example /Key2 12 /Key3 (a string) >>

PDF 1.2

�

PDF 1.2

March 11, 1999 4.4.1

4: Objects 41

Example 4.2 Dictionary within a dictionary

<<

/Type /AlsoAnExample

/Subtype /Bad

/Reason (unsure)

/Version 0.01

/MyInfo

<<

/Item1 0.4

/Item2 true

/LastItem (not!)

/VeryLastItem (OK)

>>

>>

Dictionary objects are the main building blocks of a PDF document. Many parts of
a PDF document, such as pages and fonts, are represented using dictionaries. By
convention, the Type key of such a dictionary specifies the type of object being
described by the dictionary. Its value is always a name. In some cases, the
Subtype key is used to describe a specialization of a particular type. Its value is
always a name. For example, in a font, the value of the Type key is Font and
several subtypes exist, including Type1, MMType1, Type3, TrueType, and
others. See the note on page 14 for additional restrictions on the Type key.

4.8 Streams

A stream, like a string, is a sequence of characters. However, an application can
read a small portion of a stream at a time, while a string must be read in its entirety.
For this reason, objects with potentially large amounts of data, such as images and
page descriptions, are represented as streams.

A stream consists of a dictionary that describes a sequence of characters, followed
by the keyword stream, followed by zero or more lines of characters, followed by
the keyword endstream.

<stream> ::= <dictionary>
stream
{ <lines of characters> }*
endstream

All streams must be indirect objects (see page 53). The stream dictionary must be a
direct object. The keyword stream that follows the stream dictionary should be
followed by a carriage return and linefeed or just a linefeed.

Note Without this restriction, it is not possible to differentiate a stream that uses
carriage return as end of line and whose first byte of data is a linefeed from a
stream that uses carriage return-linefeed pairs as end of line.

PDF 1.1

4: Objects March 11, 1999

42 Adobe Systems Inc.

The sequence of characters that make up a stream may be found between the
stream and endstream keywords or, in PDF 1.2, may be contained in an
external file. If the data is in an external file, the stream dictionary specifies the
file. When a stream’s data is external, the characters between stream and
endstream are ignored.

Table 4.2 shows the attributes of a stream.

Table 4.2 Stream attributes

Key Type Description

Length integer (Required) Number of characters from the first line after the line containing the
stream keyword to the endstream keyword.

Filter
name or array of names (Optional) Filters to be applied in processing the stream. The value of the Filter

key can be either the name of a single decode filter or an array of decode filter
names. Specify multiple filters in the order they should be applied to decode the
data. For example, data encoded using LZW and ASCII base-85 filters (in that
order) can be decoded by providing the following key and value in the stream
dictionary:

/Filter [/ASCII85Decode /LZWDecode]

DecodeParms various (Optional) Parameters used by the decoding filters specified with the Filter key.
The number and types of the parameters supplied must match those needed by the
specified filters. For example, if two filters are used, the decode parameters must
be specified by an array of two objects, one corresponding to each filter. Use the
null object for a filter’s entry in the DecodeParms array if that filter does not
need any parameters. If none of the filters specified requires any parameters, omit
the DecodeParms key.

F (File) File specification (Optional) The file containing the stream data. If this key is present, the characters
between stream and endstream are ignored. However, the Length key should
still specify the number of those characters. (Usually there are no characters and
the Length is zero.)

FFilter
name or array of names (Optional) Filters to be applied in processing the data found in the stream’s

external file. The same rules apply as for the Filter key.

FDecodeParms various (Optional) Parameters used by the decoding filters specified with the FFilter key.

Streams may be filtered to compress them or to convert binary streams into ASCII
form. These filters and their parameters are listed in Table 4.3 and described in the
following sections.

PDF 1.2

PDF 1.2

PDF 1.2

PDF 1.2

March 11, 1999 4.4.1

4: Objects 43

Table 4.3 Standard filters

Filter name Parameters Semantics

ASCIIHexDecode none Decodes binary data in an ASCII hexadecimal representation.

ASCII85Decode none Decodes binary data in an ASCII base-85 representation.

LZWDecode dictionary (Parameters optional) Decompresses text or binary data using LZW adaptive
compression method.

RunLengthDecode
none Decompresses binary data using a byte-oriented run-length decoding algorithm.

CCITTFaxDecode
dictionary (Parameters optional) Decompresses binary data using a bit-oriented decoding

algorithm, the CCITT facsimile standard.

DCTDecode dictionary (Parameters optional) Decompresses sampled image data using a discrete cosine
transform technique based on the JPEG standard.

FlateDecode dictionary (Parameters optional) Decompresses text or binary data using the Flate
decompression method.

Example 4.3 shows a stream that contains the marking instructions for a page. This
stream has been compressed using LZW and then encoded using ASCII85.
Example 4.4 shows the same stream without any encoding.

Example 4.3 Stream that has been LZW and ASCII85 encoded

<<

/Length 528

/Filter [/ASCII85Decode /LZWDecode]

>>

stream

J..)6T`?p&<!J9%_[umg"B7/Z7KNXbN'S+,*Q/&"OLT'F

LIDK#!n`$"<Atdi`\Vn%b%)&'cA*VnK\CJY(sF>c!Jnl@

RM]WM;jjH6Gnc75idkL5]+cPZKEBPWdR>FF(kj1_R%W_d

&/jS!;iuad7h?[L-F$+]]0A3Ck*$I0KZ?;<)CJtqi65Xb

Vc3\n5ua:Q/=0$W<#N3U;H,MQKqfg1?:lUpR;6oN[C2E4

ZNr8Udn.'p+?#X+1>0Kuk$bCDF/(3fL5]Oq)^kJZ!C2H1

'TO]Rl?Q:&'<5&iP!$Rq;BXRecDN[IJB`,)o8XJOSJ9sD

S]hQ;Rj@!ND)bD_q&C\g:inYC%)&u#:u,M6Bm%IY!Kb1+

":aAa'S`ViJglLb8<W9k6Yl\\0McJQkDeLWdPN?9A'jX*

al>iG1p&i;eVoK&juJHs9%;Xomop"5KatWRT"JQ#qYuL,

JD?M$0QP)lKn06l1apKDC@\qJ4B!!(5m+j.7F790m(Vj8

8l8Q:_CZ(Gm1%X\N1&u!FKHMB~>

endstream

�

PDF 1.2

4: Objects March 11, 1999

44 Adobe Systems Inc.

Example 4.4 Unencoded stream

(The operators used in this example are described in Chapter 8.)

<<

/Length 558

>>

stream

2 J

BT

/F1 12 Tf

0 Tc 0 Tw 72.5 712 TD

[(Unencoded streams can be read easily)65 (,)] TJ

0 -14 TD

[(b)20 (ut generally tak)10

(e more space than \311)] TJ

T* (encoded streams.)Tj

0 -28 TD

[(Se) 25 (v) 15 (eral encoding methods are a) 20 (v)

25 (ailable in PDF)80 (.)] TJ

0 -14 TD

(Some are used for compression and others simply)

Tj

T* [(to represent binary data in an) 55

(ASCII format.)] TJ

T*

(Some of the compression encoding methods are \

suitable)

Tj

T*

(for both data and images, while others are \

suitable only) Tj

T* (for continuous-tone images.)Tj

ET

endstream

4.8.1 ASCIIHexDecode filter

This filter decodes data that has been encoded as ASCII hexadecimal. ASCII
hexadecimal encoding and ASCII base-85 encoding (described in the following
section) convert binary data such as images to 7-bit data. In general, ASCII base-
85 encoding is preferred to ASCII hexadecimal encoding because it is more
compact.

ASCII hexadecimal encoding produces a 1:2 expansion in the size of the data.
Each pair of ASCII hexadecimal digits (0–9 and A–F or a–f) produces one byte
of binary data. All whitespace characters are ignored. The right angle bracket (>)
indicates the end of data (EOD). Any other character causes an error. If the filter
encounters the EOD marker after reading an odd number of hexadecimal digits, it
behaves as if a zero followed the last digit.

March 11, 1999 4.8.2

4: Objects 45

4.8.2 ASCII85Decode filter

This filter decodes data that has been encoded in the ASCII base-85 encoding and
produces binary data.

ASCII base-85 encoding produces five ASCII printing characters from every four
bytes of binary data. Each group of four binary bytes (b1 b2 b3 b4) is converted to a
group of five encoded characters (c1 c2 c3 c4 c5) using the relation:

The five “digits” of the encoded base-85 number are converted to printable ASCII
characters by adding 33 (the ASCII code for !) to each. The resulting data contains
only printable ASCII characters with codes in the range 33 (!) to 117 (u).

Two special cases occur during encoding. First, if all five encoded digits are zero,
they are represented by the character code 122 (z), instead of by a series of five
exclamation points (!!!!!). In addition, if the length of the binary data to be
encoded is not a multiple of four bytes, the last partial 4-tuple is used to produce a
last, partial output 5-tuple. Given n (1, 2, or 3) bytes of binary data, the encoding
first appends 4 − n zero bytes to make a complete 4-tuple. This 4-tuple is encoded
in the usual way, but without applying the special z case. Finally, only the first
n + 1 characters of the resulting 5-tuple are written out. Those characters are
immediately followed by the EOD marker, which is the two-character sequence
~>.

The following conditions are errors during decoding:

• The value represented by a 5-tuple is greater than 232 − 1.

• A z character occurs in the middle of a 5-tuple.

• A final partial 5-tuple contains only one character.

These conditions never occur in the output produced from a correctly encoded byte
sequence.

4.8.3 LZWDecode filter

This filter decodes data encoded using the LZW data compression method, which
is a variable-length, adaptive compression method. LZW encoding compresses
binary and ASCII text data but always produces binary data, even if the original
data was ASCII text.

LZW compression can discover and exploit many patterns in its input data,
whether that input is text or image data. The compression obtained using the LZW
method varies from file to file; the best case (a file of all zeros) provides a

b1 256
3×() b2 256

2×() b3 256×() b4+ + +

c1 85
4×()= c2 85

3×() c3 85
2×() c4 85×() c5+ + + +

4: Objects March 11, 1999

46 Adobe Systems Inc.

compression approaching 1365:1 for long files, while the worst case (a file in
which no pair of adjacent characters appears twice) can produce an expansion of
approximately 50%.

Data encoded using LZW consist of a sequence of codes that are 9 to 12 bits long.
Each code represents a single character of input data (0–255), a clear-table marker
(256), an EOD marker (257), or a table entry representing a multi-character
sequence that has been encountered previously in the input (258 and greater).

Initially, the code length is 9 bits and the table contains only entries for the 258
fixed codes. As encoding proceeds, entries are appended to the table, associating
new codes with longer and longer input character sequences. The encoding and
decoding filters maintain identical copies of this table.

Whenever both encoder and decoder independently (but synchronously) realize
that the current code length is no longer sufficient to represent the number of
entries in the table, they increase the number of bits per code by one. The first
output code that is 10 bits long is the one following creation of table entry 511, and
similarly for 11 (1023) and 12 (2047) bits. Codes are never longer than 12 bits, so
entry 4095 is the last entry of the LZW table.

The encoder executes the following sequence of steps to generate each output
code:

1. Accumulate a sequence of one or more input characters matching a
sequence already present in the table. For maximum compression, the
encoder looks for the longest such sequence.

2. Output the code corresponding to that sequence.

3. Create a new table entry for the first unused code. Its value is the sequence
found in step 1 followed by the next input character.

To adapt to changing input sequences, the encoder may at any point issue a clear-
table code, which causes both the encoder and decoder to restart with initial tables
and a 9-bit code. By convention, the encoder begins by issuing a clear-table code.
It must issue a clear-table code when the table becomes full; it may do so sooner.

The LZW filter can be used to compress text or images. When compressing
images, several techniques reduce the size of the resulting compressed data. For
example, image data frequently change very little from sample to sample. By
subtracting the values of adjacent samples (a process called differencing) and
LZW-encoding the differences rather than the raw sample values, the size of the
output data may be reduced. Further, when the image data contains several color
components (red–green–blue or cyan–magenta–yellow–black) per sample, taking
the difference between the values of like components in adjacent samples, rather
than between different color components in the same sample, often reduces the
output data size. In order to control these and other options, the LZW filter accepts
several optional parameters, shown in Table 4.4. All values supplied to the decode
filter by any optional parameters must match those used when the data was
encoded.

March 11, 1999 4.8.4

4: Objects 47

Table 4.4 Optional parameters for LZW filter

Key Type Semantics

Predictor integer If Predictor is 1, the file is decoded assuming that it was encoded using the
normal LZW algorithm. If Predictor > 1, decoding is performed assuming that
prior to encoding, the data was differenced. The default value is 1. For details on
this value, see Section 4.8.5 on page 48.

Columns integer Has an effect only if Predictor > 1. Columns is the number of samples in a
sampled row. The first sample in each row is not differenced; all subsequent
samples in a row are differenced with the prior sample. Each row begins on a byte
boundary. Any extra bits needed to complete a byte at the end of a row (consisting
of Columns × Colors × BitsPerComponent bits) are not differenced. The
default value is 1.

Colors integer Has an effect only if Predictor > 1. Number of interleaved color components per
sample in a sampled image. Each color component is differenced with the value of
the same color component in the previous sample. Allowed values are 1, 2, 3, and
4. The default value is 1.

BitsPerComponent
integer Has an effect only if Predictor > 1. BitsPerComponent is the number of bits

used to represent each color component in a pixel. Allowed values are 1, 2, 4, and
8. The default value is 8.

EarlyChange integer If EarlyChange is 0, increases in the length of the code are postponed as long as
possible. If it is 1, they occur one code word early. The value of EarlyChange
used in decoding must match that used during encoding. This parameter is
included because LZW sample code distributed by some vendors increases the
code word length one word earlier than necessary. The default value is 1.

The LZW compression method is the subject of United States patent number
4,558,302 owned by the Unisys Corporation. Adobe Systems has licensed this
patent for use in its Acrobat products. However, independent software vendors
may be required to license this patent directly from Unisys to develop software
using LZW. For information on Unisys licensing policies for products using LZW
(GIF, TIFF-LZW, PostScript, Portable Document Format (PDF), V.42bis, etc.),
please send E-mail to lzw_info@unisys.com, or visit the Unisys web server
at http://www.unisys.com/.

4.8.4 FlateDecode Filter

This filter decodes data that has been encoded with the Flate compression method,
which encodes binary or ASCII data, optionally after transformation by a predictor
function. It is based on the public-domain zlib/deflate compression method, which
is a variable-length Lempel-Ziv adaptive compression method cascaded with
adaptive Huffman coding. See references [21] and [22] for details. The optional
Predictor functions are discussed in the following text.

PDF 1.2

http://www.unisys.com/

4: Objects March 11, 1999

48 Adobe Systems Inc.

The output produced by Flate encoding is always binary, even if the input is ASCII
text.

Table 4.5 Optional parameters for FlateDecode filter

Key Type Semantics

Predictor integer If Predictor is 1, the file is decoded assuming that it was encoded using the
normal Flate algorithm. If Predictor > 1, decoding is performed assuming that
prior to encoding, the data was differenced. The default value is 1. For details on
this value, see Section 4.8.5, “LZW and Flate predictor functions.”

Columns integer Has an effect only if Predictor > 1. Columns is the number of samples in a
sampled row. The first sample in each row is not differenced; all subsequent
samples in a row are differenced with the prior sample. Each row begins on a byte
boundary. Any extra bits needed to complete a byte at the end of a row (consisting
of Columns × Colors × BitsPerComponent bits) are not differenced. The
default value is 1.

Colors integer Has an effect only if Predictor > 1. Colors is the number of interleaved color
components per sample in a sampled image. Each color component is differenced
with the value of the same color component in the previous sample. Allowed
values are 1, 2, 3, and 4. The default value is 1.

BitsPerComponent
integer Has an effect only if Predictor > 1. BitsPerComponent is the number of bits

used to represent each color component in a pixel. Allowed values are 1, 2, 4, and
8. The default value is 8.

4.8.5 LZW and Flate predictor functions

LZW and Flate encoding filters compress more compactly if their input data are
highly predictable. One way of increasing the predictability of many continuous-
tone sampled images is to replace each pixel with the difference between that pixel
and some predictor function applied to earlier neighboring pixels. If the predictor
function works well, the postprediction data will cluster toward 0.

Two predictor function groups are supported. The first, the TIFF group, consists of
the single function that is Predictor 2 in the TIFF standard. (In TIFF 6.0, it applies
only to LZW compression, but here it applies to Flate compression as well.) TIFF
predictor 2 predicts that each color component of a pixel will be the same as the
corresponding color component of the pixel immediately to the left.

The second supported predictor function group, the PNG group, consists of the
“filters” of the World Wide Web Consortium’s Portable Network Graphics (PNG)
recommendation. The term predictors is used here instead of filters, to avoid
confusion. There are five basic PNG predictor algorithms, and a sixth one that
invites an optimum hybrid of the first five. The first five are None, Sub (predicting
the same as the pixel to the left), Up (predicting the same as the pixel above),

PDF 1.2

March 11, 1999 4.8.6

4: Objects 49

Average (predicting the average of the pixel to the left and the pixel above), and
Paeth (a nonlinear function of the pixel above, the pixel to the left, and the pixel to
the upper left).

The two predictor function groups have some commonalities. Both assume that
data are presented in order, from top row to bottom row, and within a row, from left
to right. Both assume that a row occupies a whole number of bytes, rounded
upward if necessary. Both assume that pixels and their components are packed into
bytes from high- to low-order bits. Both assume that all color components of pixels
outside the image (which are necessary for predictions near the boundaries) are 0.

Table 4.6 Predictor values

1 No prediction (Default value)

2 TIFF predictor 2

10 PNG prediction (on encode, PNG None on all rows)

11 PNG prediction (on encode, PNG Sub on all rows)

12 PNG prediction (on encode, PNG Up on all rows)

13 PNG prediction (on encode, PNG Average on all rows)

14 PNG prediction (on encode, PNG Paeth on all rows)

15 PNG prediction (on encode, PNG optimum)

The two predictor function groups also differ in significant ways. First, the
postprediction data for each PNG-predicted row begins with an explicit algorithm
tag, so different rows can be predicted with different algorithm to improve
compression. TIFF 2 prediction has no such identifier; the same algorithm applies
to all rows. Second, the TIFF function group predicts each color component from
the prior instance of that color component, without regard to the width of the color
component or the number of colors. In contrast, the PNG function group predicts
each byte from the corresponding byte of the prior pixel (and/or the same pixel on
the prior line and/or the prior pixel on the prior line), regardless of whether there
are multiple color components in a byte, or whether a single color component
spans multiple bytes. This can yield significantly better speed at a cost somewhat
worse compression.

4.8.6 Comparison of LZW and Flate encoding

Flate encoding, like LZW encoding, discovers and exploits many patterns in its
input data, whether text or images. Thanks to its cascaded adaptive Huffman
coding, Flate-encoded output is usually substantially more compact than LZW-
encoded output for the same input. Flate and LZW decoding speeds are
comparable, but Flate encoding speed is considerably slower than LZW encoding
speed. Usually, both Flate and LZW compress their inputs substantially. In the
worst case, however, Flate encoding expands its input by no more than 11 bytes,
plus the effects of algorithm tags added by PNG predictors. LZW encoding has a
worst-case expansion of at least a factor of 1.125, which can increase to a factor of
nearly 1.5 in some implementations (plus PNG tags effects, as with Flate
encoding).

PDF 1.2

4: Objects March 11, 1999

50 Adobe Systems Inc.

4.8.7 RunLengthDecode filter

This filter decodes data that has been encoded in a simple byte-oriented, run-
length-encoded format. Run-length encoding produces binary data, even if the
original data was ASCII text.

The compression achieved by run-length encoding depends on the input data. In
the best case, a file of all zeros, a compression of approximately 64:1 is achieved
for long files. The worst case, the hexadecimal sequence of alternating <00 FF 00
FF …>, results in an expansion of 127:128.

The encoded data is a sequence of runs, where each run consists of a length byte
followed by 1 to 128 bytes of data. If length is in the range 0 to 127, the following
length + 1 (1 to 128 bytes) are copied literally during decompression. If length is in
the range 129 to 255, the following single byte is to be copied 257 − length times
(2 to 128 times) during decompression. The value 128 is placed at the end of the
compressed data, as an EOD marker.

4.8.8 CCITTFaxDecode filter

This filter decodes image data that has been encoded using either Group 3 or
Group 4 CCITT facsimile (fax) encoding. This filter is useful only for bitmap
image data, not for color images, grayscale images, or text. Group 3 and Group 4
CCITT encoding produce binary data that may be converted, if necessary, to 7-bit
data using either the ASCII hexadecimal or ASCII base-85 encodings, described in
previous sections.

The compression achieved using CCITT encodings depends on the data, as well as
on the value of various optional parameters. For Group 3 one-dimensional
encoding, the best case is a file of all zeros. In this case, each scan line compresses
to 4 bytes, and the compression factor depends on the length of a scan line. If the
scan line is 300 bytes long, a compression ratio of approximately 75:1 is achieved.
The worst case, an image of alternating ones and zeros, produces an expansion of
2:9.

The Comité Consultatif Internationale de Télégraphie et Téléphonie (International
Coordinating Committee for Telephony and Telegraphy, or CCITT) is an
international standards organization that defines CCITT encoding. The encoding is
designed to achieve efficient compression of monochrome (1 bit per sample)
image data at relatively low resolutions. The algorithm is not described in detail
here, but can be found in the CCITT standards, [19] and [20], listed in the
Bibliography on page 506.

The fax encoding method is bit-oriented, rather than byte-oriented. This means
that, in principle, encoded or decoded data may not end on a byte boundary. The
filter addresses this in the following ways:

• Encoded data are ordinarily treated as a continuous, unbroken bit stream.
However, the EncodedByteAlign parameter (described in Table 4.7) can be
used to cause each encoded scan line to be filled to a byte boundary. Although
this is not prescribed by the CCITT standard and fax machines don’t do this,
some software packages find it convenient to encode data this way.

March 11, 1999 4.8.8

4: Objects 51

• When a filter reaches EOD, it always skips to the next byte boundary following
the encoded data.

Both Group 3 and Group 4 encoding, as well as optional features of the CCITT
standard, are supported. The optional parameters that can be used to control the
decoding are listed in Table 4.7. Except as noted, all values supplied to the decode
filter by the optional parameters must match those used when the data was
encoded.

Table 4.7 Optional parameters for CCITTFaxDecode filter

Key Type Semantics

K integer Selects the encoding scheme used. A negative value indicates pure two-
dimensional (Group 4) encoding. Zero indicates pure one-dimensional (Group 3,
1-D) encoding. A positive value indicates mixed one- and two-dimensional
encoding (Group 3, 2-D) in which a line encoded one-dimensionally can be
followed by at most K − 1 lines encoded two-dimensionally. The decoding filter
distinguishes between negative, zero, and positive values of K, but does not
distinguish between different positive K values. The default value is 0.

EndOfLine boolean End-of-line bit patterns are always accepted, but they are required if EndOfLine
is true. The default value is false.

EncodedByteAlign
boolean If true, each encoded line must begin on a byte boundary. The default value is

false.

Columns integer Specifies the width of the image in samples. If Columns is not a multiple of 8, the
width of the unencoded image is adjusted to the next multiple of 8, so that each
line starts on a byte boundary. The default value is 1728.

Rows integer Specifies the height of the image in scan lines. If this parameter is zero or is absent,
the height of the image is not predetermined and the encoded data must be
terminated by an end-of-block bit pattern or by the end of the filter’s data source.
The default value is 0.

EndOfBlock boolean If true, the data is expected to be terminated by an end-of-block, overriding the
Rows parameter. If false, decoding stops when Rows lines have been decoded or
when the data has been exhausted, whichever occurs first. The end-of-block
pattern is the CCITT end-of-facsimile-block (EOFB) or return-to-control (RTC)
appropriate for the K parameter. The default value is true.

Blackls1 boolean If true, causes bits with value 1 to be interpreted as black pixels and bits with value
zero to be interpreted as white pixels. The default value is false.

DamagedRowsBeforeError
integer If DamagedRowsBeforeError is positive, EndOfLine is true, and K is non-

negative, then up to DamagedRowsBeforeError rows of data are tolerated
before an error is generated. Tolerating a damaged row means locating its end in

4: Objects March 11, 1999

52 Adobe Systems Inc.

the encoded data by searching for an EndOfLine pattern, and then substituting
decoded data from the previous row if the previous row was not damaged or a
white scan line if the previous row was damaged. The default value is 0.

4.8.9 DCTDecode filter

This filter decodes grayscale or color image data that has been encoded in the
JPEG baseline format. JPEG encoding produces binary data.

JPEG is a lossy compression method, meaning that some of the information
present in the original image is lost when the image is encoded. Because of the
information loss, only images (never text) should be encoded in this format. The
compression achieved using the JPEG algorithm depends on the image being
compressed and the amount of loss that is acceptable. In general, a compression of
15:1 can be achieved without a perceptible loss of information, and 30:1
compression causes little impairment of the image.

During encoding, several optional parameters control the algorithm and the
information loss. The values of these parameters are stored in the encoded data,
and the decoding filter generally obtains the parameter values it requires directly
from the encoded data. A description of the parameters accepted by the encoding
filter can be found in Section 3.13.3 of the PostScript Language Reference Manual,
Third Edition [1].

JPEG stands for the ISO/CCITT Joint Photographic Experts Group, an
organization responsible for developing an international standard for compression
of color image data. The encoding method uses the discrete cosine transform
(DCT). Data to be encoded consists of a stream of image samples, each containing
one, two, three, or four color components. The color component values for a
particular sample must appear consecutively. Each component value occupies an
8-bit byte.

The details of the encoding algorithm are not presented here but can be found in
the references [30] and [34] listed in the Bibliography. Briefly, the JPEG algorithm
breaks an image up into blocks of 8×8 samples. Each color component in an image
is treated separately. A two-dimensional DCT is performed on each block. This
operation produces 64 coefficients, which are then quantized. Each coefficient may
be quantized with a different step size. It is the quantization that results in the loss
of information in the JPEG algorithm. The quantized coefficients are then
compressed.

The amount of loss incurred in JPEG encoding is controlled by the encoding filter,
which can reduce the loss by making the step size in the quantization smaller at the
expense of reducing the amount of compression achieved by the algorithm. The
JPEG filter implementation in the Acrobat products does not support features of
the JPEG standard that are not relevant. In addition, certain choices regarding
reserved marker codes and other optional features of the standard have been made.

March 11, 1999 4.8.9

4: Objects 53

In addition to the baseline JPEG format, in PDF 1.3 the DCTDecode filter supports
the progressive JPEG extension. This extension does not entail any additional
attributes in the DCTDecode parameter dictionary; the distinction between
baseline and progressive JPEG is represented in the encoded data.

Note There is no benefit from using progressive JPEG for stream data that is embedded
in a PDF file. Decoding progressive JPEG is slower and consumes more memory
than baseline JPEG. The purpose of this feature is to enable a stream to refer to an
external file whose data happens to be encoded in progressive JPEG already.

4.9 The null object

The keyword null represents the null object.

Note The value of a dictionary key can be specified as null. A simpler but equivalent
way to express this is to omit the key from the dictionary.

4.10 Indirect objects

A direct object is a boolean, number, string, name, array, dictionary, stream, or
null, as described in the previous sections. An indirect object is an object that has
been labeled so that it can be referenced by other objects. Any type of object may
be labeled as an indirect object. Indirect objects are very useful; for example, the
value of the stream’s Length key may be specified as an indirect object that is
stored in the file after the stream. This is useful for applications that generate PDF
in a single pass.

An indirect object consists of an object identifier, a direct object, and the endobj
keyword. The object identifier consists of an integer object number, an integer
generation number, and the obj keyword:

<indirect object> ::=
<object ID>
<direct object>
endobj

<object ID> ::=<object number>
<generation number>
obj

The combination of object number and generation number serves as a unique
identifier for an indirect object. Throughout its existence, an indirect object retains
the object number and generation number it was initially assigned, even if the
object is modified.

Each indirect object has a unique object number, and indirect objects are often but
not necessarily numbered sequentially in the file, beginning with 1. Until an object
in the file is deleted, all generation numbers are 0.

PDF 1.3

�

4: Objects March 11, 1999

54 Adobe Systems Inc.

4.11 Object references

Any object used as an element of an array or as a value in a dictionary may be
specified by either a direct object or an indirect reference. An indirect reference is
a reference to an indirect object, and consists of the indirect object’s object
number, generation number, and the R keyword:

<indirect reference> ::=
<object number>
<generation number>
R

Using an indirect reference to the stream’s length, a stream could be written in this
way:

Example 4.5 Indirect reference

7 0 obj

<<

/Length 8 0 R An indirect reference to object 8.
>>

stream

BT

/F1 12 Tf

72 712 Td (A stream with an indirect Length) Tj

ET

endstream

endobj

8 0 obj

64 This is the Length of the previous stream.
endobj

Note An indirect reference to an undefined object is not an error; it is treated as a
reference to the null object. For example, if a PDF file contains the indirect
reference (12 0 R) but does not contain the definition (12 0 obj ... endobj),
then the indirect reference is null.

PDF 1.3 Reference Manual March 11, 1999 5: File Structure

55

CHAPTER 5

File Structure

This chapter describes the overall organization of a PDF file. A PDF file provides a
structure that represents a document. This structure provides a way to rapidly
access any part of a document and a mechanism for updating it.

The body of a PDF file contains a sequence of PDF objects that are used to
construct a document.

A particular arrangement of the object in a PDF file, optimized for incremental
access in network environments, is known as Linearized PDF. It is described in
Chapter 9.

5.12 PDF files

A canonical PDF file consists of four sections: a one-line header, a body, a cross-
reference table, and a trailer. Figure 5.1 shows this structure:

<PDF file> ::= <header>
<body>
<cross-reference table>
<trailer>

A line in a PDF file is terminated by a carriage return (<0D>), a linefeed (<0A>),
or a carriage return followed by a linefeed. Updates may be appended to a PDF
file, as described in Section 5.17, “Incremental update.”

PDF files with binary data may have arbitrarily long lines. However, to increase
compatibility with other applications that process PDF files, all lines that are not
part of stream object data shall be no longer than 255 characters. An exception is
made in the case of the Contents string of a Signature dictionary in PDF 1.3. (See
page 141.)

PDF 1.2

5: File Structure March 11, 1999

56 Adobe Systems Inc.

5.13 Header

The first line of a PDF file specifies the version number of the PDF specification to
which the file adheres. The current version is 1.3; the first line of a 1.3-conforming
PDF file should be %PDF-1.3. However, a PDF file that conforms to an earlier
version also conforms to 1.3, so an application that understands PDF 1.3 also
accepts a file whose first line is either %PDF-1.0, %PDF-1.1, or %PDF-1.2.

<header> ::= <PDF version>

5.14 Body

The body of a PDF file consists of a sequence of indirect objects representing a
document. The objects, which are of the basic types described in Chapter 4,
represent components of the document such as fonts, pages, and sampled images.

Comments can appear anywhere in the body section of a PDF file. Comments have
the same syntax as those in the PostScript language; they begin with a % character
and may start at any point on a line. All text between the % character and the end of
the line is treated as a comment. Occurrences of the % character within strings or
streams are not treated as comments.

Header

Body

Cross-reference
table

Trailer

Figure 5.1 Structure of a PDF file that has not been updated

March 11, 1999

5: File Structure 57

5.15 Cross-reference table

The cross-reference table contains information that permits random access to
indirect objects in the file, so that the entire file need not be read to locate any
particular object. For each indirect object in the file, the table contains a one-line
entry describing the location of the object in the file.

A PDF file contains one cross-reference table, consisting of one or more sections.
If no updates have been appended to the file, the cross-reference table contains a
single section. One section is added each time updates are appended to the file.

The cross-reference section is the only part of a PDF file with a fixed format. This
permits random access to entries in the cross-reference table. The section begins
with a line containing the keyword xref. Following this line are one or more cross-
reference subsections:

<cross-reference section> ::=
xref
<cross-reference subsection>+

Note If no updates have been appended to the file, the cross-reference section may
contain only one subsection.

Each subsection contains entries for a contiguous range of object numbers. The
organization of the cross-reference section into subsections is useful for
incremental updates, because it allows a new cross-reference section to be added to
the PDF file, containing entries only for objects that have been added or deleted.
Each cross-reference subsection begins with a header line containing two numbers:
the first object number in that subsection and the number of entries in the
subsection. Following the header are the entries, one per line:

<cross-reference subsection> ::=
<object number of first entry in subsection>
<number of entries in subsection>
<cross-reference entry>+

Each entry is exactly 20 bytes long, including the end-of-line marker. There are
two formats for cross-reference table entries: one for objects that are in use and
another for objects that have been deleted and so are free:

<cross-reference entry> ::= <in-use entry> | <free entry>

For an object that is in use, the entry contains a byte offset specifying the number
of bytes from the beginning of the file to the beginning of the object, the generation
number of the object, and the n keyword:

<in-use entry> ::= <byte offset> <generation number> n <end-of-line>

5: File Structure March 11, 1999

58 Adobe Systems Inc.

The byte offset is a ten-digit number, padded with leading zeros if necessary. It is
separated from the generation number by a single space. The generation number is
a five-digit number, also padded with leading zeros if necessary. Following the
generation number is a single space and the n keyword. Following the keyword is
the end-of-line sequence. If the end-of-line is a single character (either a carriage
return or linefeed), it is preceded by a single space. If the end-of-line sequence is
two characters (a carriage return followed by a linefeed), it is not preceded by a
space.

<end-of-line> ::= <space> <carriage return>
| <space> <linefeed>
| <carriage return> <linefeed>

For an object that is free, the entry contains the object number of the next free
object, a generation number, and the f keyword:

<free entry> ::=
<object number of next free object>
<generation number> f <end-of-line>

The entry has the same format as that for an object that is in use: a ten-digit object
number, a space, a five-digit generation number, a space, the f keyword, and an
end-of-line sequence.

The free objects in the cross-reference table form a linked list, with the entry for
each free object containing the object number of the next free object. The first
entry in the table (object number 0) is always free and has a generation number of
65535. It is the head of the linked list of free objects. The last free entry in the
cross-reference table (the tail of the linked list) uses 0 as the object number of the
next free object.

When an indirect object is deleted, its cross-reference entry is marked free, and the
generation number in the entry is incremented by one to record the generation
number to be used the next time an object with that object number is created. Each
time the entry is reused, its generation number is incremented. The maximum
generation number is 65535. Once that number is reached, that entry in the cross-
reference table will not be reused.

The cross-reference table (comprising the original table and all the updates) must
contain one entry for each object number between zero and the maximum object
number used in the file, even if one or more object numbers are never used in the
file.

Example 5.1 shows a cross-reference section containing a single subsection with
six entries; four that are in use (object numbers 1, 2, 4, and 5) and two that are free
(object numbers 0 and 3). Object number 3 has been deleted, and the next object
created with an object number of 3 will be given the generation number of 7.

March 11, 1999

5: File Structure 59

Example 5.1 Cross-reference section with a single subsection

xref

0 6

0000000003 65535 f

0000000017 00000 n

0000000081 00000 n

0000000000 00007 f

0000000331 00000 n

0000000409 00000 n

Example 5.2 shows a cross-reference section with four subsections containing a
total of five entries. The first subsection contains one entry, for object number 0,
which is free. The second subsection contains one entry, for object number 3,
which is in use. The third subsection contains two entries, for objects number 23
and 24, both of which are in use. Object number 23 has been reused, as can be seen
from the fact that it has a generation number of 2. The fourth subsection contains
one entry, for object number 30, which is in use.

Example 5.2 Cross-reference section with multiple subsections

xref

0 1

0000000000 65535 f

3 1

0000025325 00000 n

23 2

0000025518 00002 n

0000025635 00000 n

30 1

0000025777 00000 n

Appendix A contains a more extensive example of the structure of a PDF file after
several updates have been made to it.

5.16 Trailer

The trailer enables an application reading a PDF file to quickly find the cross-
reference table and certain special objects. Applications should read a PDF file
from its end. The last line of a PDF file contains only the end-of-file marker,
%%EOF. The two preceding lines contain the keyword startxref and the byte
offset from the beginning of the file to the beginning of the word xref in the last
cross-reference section in the file. The trailer dictionary precedes this line.

The trailer dictionary, shown in Table 5.1, consists of the keyword trailer followed
by a set of key–value pairs enclosed in double angle brackets:

<trailer> ::= trailer
<<
<trailer key–value pair>+

5: File Structure March 11, 1999

60 Adobe Systems Inc.

>>
startxref
<cross-reference table start address>
%%EOF

Table 5.1 Trailer attributes

Key Type Semantics

Size integer (Required) Total number of entries in the file’s cross-reference table, including the
original table and all updates.

Prev integer (Present only if the file has more than one cross-reference section) Byte offset from
the beginning of file to the location of the previous cross-reference section. If the
file has never been updated, it will not contain the Prev key.

Root dictionary (Required; must be indirect reference) Catalog object for the document, described
on page 67.

Info dictionary (Optional; must be indirect reference) Info dictionary for the document, described
on page 120.

ID array (Optional) An array of two strings, each of which is an ID. The first ID is
established when the file is created and the second ID is changed each time the file
is updated. IDs are described on page 123.

Encrypt dictionary (Required if document is encrypted) Information used to decrypt a document,
described on page 124.

An example trailer for a file that has not been updated is shown in Example 5.3.
The fact that the file has not been updated is determined from the absence of a
Prev key in the trailer dictionary.

Example 5.3 Trailer

trailer

<<

/Size 22

/Root 2 0 R

/Info 1 0 R

>>

startxref

18799

%%EOF

PDF 1.1

PDF 1.1

March 11, 1999

5: File Structure 61

5.17 Incremental update

The contents of a PDF file can be updated without rewriting the entire file.
Changes can be appended to the end of the file, leaving completely intact the
original contents of the file. When a PDF file is updated, any new or changed
objects are appended, a cross-reference section is added, and a new trailer is
inserted. The resulting file has the structure shown in Figure 5.2:

<Updated PDF file> ::=
<PDF file>
{<update>}*

<update> ::= <body>
<cross-reference section>
<trailer>

A complete example of an updated file is shown in Appendix A.

The cross-reference section added when a PDF file is updated contains entries only
for objects that have been changed, replaced, or deleted, plus the entry for object 0.
Deleted objects are left unchanged in the file, but are marked as deleted in their
cross-reference entries. The trailer that is added contains all the information in the
previous trailer, as well as a Prev key specifying the location of the previous
cross-reference section. As shown in Figure 5.2, after a file has been updated
several times it contains several trailers, as well as several %%EOF lines.

Because updates are appended to PDF files, it is possible to end up with several
copies of an object with the same object ID (object number and generation
number) in a file. This occurs, for example, if a text annotation is changed several
times, with the file being saved between changes. Because the text annotation
object is not deleted, it retains the same object number and generation number.
Because it has been changed, however, an updated copy of the object is included in
the update section added to the file. The cross-reference section added includes a
pointer to this new changed version, overriding the information contained in the
original cross-reference section. When a program such as Acrobat reads the file, it
must build cross-reference information in such a way that the most recent version
of an object is accessed in the file.

5: File Structure March 11, 1999

62 Adobe Systems Inc.

Figure 5.2 Structure of a PDF file after changes have been appended several
times

5.18 Encryption

Documents can be encrypted to protect their contents from unauthorized access.
Access to a protected document’s contents is controlled by the security handler
specified in the Encryption dictionary. The Encryption dictionary is the value of
the Encrypt key in the trailer dictionary. Section 6.13, “Encryption dictionary,”
describes the Encryption dictionary and security handlers.

Strings and streams in a protected document are encrypted. Other data types (such
as integers and booleans) that are used primarily for structural information in a
PDF file are not encrypted. This combination protects a document’s contents,
while allowing random access to the objects within a PDF file.

Header

Original
body

Original
cross-reference

section

Updated trailer n

Body update 1

Cross-reference
section 1

Body update n

Cross-reference
section n

Original trailer

Updated trailer 1

PDF 1.1

�

March 11, 1999

5: File Structure 63

All strings and streams in a protected document, except those in the Encryption
dictionary, are encrypted using the RC4 encryption algorithm. This prevents
unauthorized users from simply removing the password from a PDF file to gain
access to it. Strings in the Encryption dictionary are encrypted and decrypted by
the security handler itself, using whatever encryption algorithm it chooses.

Note External stream data is not encrypted, since it is not part of the PDF document.
However, if an external stream refers to a file descriptor for a file that is embedded
within the PDF file, the embedded file stream will be encrypted.

RC4 is a copywritten, proprietary algorithm of RSA Data Security, Inc. Adobe
Systems has licensed this algorithm for use in its Acrobat products. Independent
software vendors may be required to license RC4 to develop software that encrypts
or decrypts PDF documents. For further information please send e-mail to
products@rsa.com or visit the RSA web server at
http://www.rsa.com/.

Encryption details

Protection of data in a PDF file consists of two steps: computation of a key to be
used to encrypt data, and encryption of the data. The key is simply a string of five
bytes. (The key is restricted in length to five bytes (40 bits) to satisfy current U.S.
cryptographic export requirements.) The key can be computed in any number of
ways, more or less cryptographically secure, while encryption of data based on the
key is always performed in the same way. The Encryption dictionary identifies the
security handler that computes the key. PDF includes one built-in method for
computing the key, called “Standard.” The remainder of this section explains how
data is encrypted given a key. Section 6.13, “Encryption dictionary, discusses
security handlers, including the Standard security handler.

Once the key for a document is computed, strings and streams are encrypted using
Algorithm 5.3:

Algorithm 5.3 Encrypting string and stream data

1. Extend the key by five bytes using the string or stream’s object identifier.
(See Section 4.10, “Indirect objects.”) If the string or stream is a direct
object, the identifier of the indirect object containing it is used. An object
identifier consists of an object number and a generation number. These are
treated as binary integers. The low-order three bytes of the object number
and the low-order two bytes of the generation number are concatenated to
the key in that order, low-order byte first.

2. The resulting ten-byte string is used as input for the MD5 hash function.

3. The first ten bytes of the output of the MD5 function are used as input to
the RC4 function, along with the string or stream data to be encrypted. The
output of the RC4 function is the encrypted data that is stored in the PDF
file.

http://www.rsa.com/

5: File Structure March 11, 1999

64 Adobe Systems Inc.

RC4 is a symmetric stream cipher—the same algorithm is used for both encryption
and decryption, and the algorithm does not change the length of the data. The PDF
encryption algorithm is also symmetric. Given a key, the three steps described
above can also be used to decrypt data.

Stream data is encrypted after all stream encoding filters have been applied (and is
decrypted before the stream decoding filters are applied). Decryption of strings,
other than those in the Encryption dictionary, is done after escape-sequence
processing and hex decoding as appropriate to the string representation described
in Section 4.4, “Strings and text.”

PDF 1.3 Reference Manual March 11, 1999 6: Document Structure

65

CHAPTER 6

Document Structure

PDF provides an electronic representation of a document—a series of pages
containing text, graphics, and images, along with other information such as
thumbnails (miniature images of the pages), text annotations, hypertext links, and
outline entries (also called bookmarks). Previous chapters lay the groundwork for
understanding the PDF representation of a document, but do not describe the
representation itself.

The body of a PDF file consists of a sequence of objects that collectively represent
a PDF document. This chapter focuses exclusively on the contents of the body
section of a PDF file and contains a description of each type of object that may be
contained in a PDF document. Following each description is an example showing
the object as it might appear in a PDF file. Complete example PDF files appear in
Appendix A.

6.1 Introduction

A PDF document can be described as a hierarchy of objects contained in the body
section of a PDF file. Figure 6.1 shows the structure of a PDF document. Most
objects in this hierarchy are dictionaries. Parent, child, and sibling relationships are
represented by key–value pairs whose values are indirect references to parent,
child, or sibling objects. For example, the Catalog object, which is the root of the
hierarchy, contains a Pages key whose value is an indirect reference to the object
that is the root of the Pages tree.

Each page of the document includes references to its contents, its thumbnail, and
any annotations that appear on the page. The PDF file’s standard trailer, described
in Section 5.16, “Trailer,” specifies the location of the Catalog object as the value
of the trailer’s Root key. In addition, the trailer specifies the location of the
document’s Info dictionary, a structure that contains general information about the
document, as the value of the trailer’s Info key.

Note In many of the tables in this chapter, certain key–value pairs contain the notation
“must be an indirect reference” or “indirect reference preferred.” Unless one of
these is specified in the description of the key–value pair, objects that are the value
of a key can either be specified directly or using an indirect reference, as described
in Section 4.11, “Object references.”

6: Document Structure March 11, 1999

66 Adobe Systems Inc.

Figure 6.1 Structure of a PDF document

Catalog

Pages
tree

Outline
entry

Article
threads

Named
destinations

Outline
tree

Page

Imageable
content

Thumbnail

Annotations

Page

Outline
entry

•
•
•

•
•
•

•
•
••

•
•

Bead

Bead

Thread

Thread

AcroForm

March 11, 1999

6: Document Structure 67

6.2 Catalog

The Catalog is a dictionary that is the root node of the document. It contains a
reference to the tree of pages contained in the document, a reference to the tree of
objects representing the document’s outline, a reference to the document’s article
threads, and the list of named destinations. In addition, the Catalog indicates
whether the document’s outline or thumbnail page images should be displayed
automatically when the document is viewed and whether some location other than
the first page should be shown when the document is opened. Example 6.1 shows a
sample Catalog object.

Example 6.1 Catalog

1 0 obj

<<

/Type /Catalog

/Pages 2 0 R

/Outlines 3 0 R

/PageMode /UseOutlines

>>

endobj

Table 6.1 shows the attributes for a Catalog.

Table 6.1 Catalog attributes

Key Type Semantics

Type name Object type. Always Catalog.

Dests dictionary (Required in PDF 1.1 if the document has named destinations; must be an indirect
reference) A dictionary of names and corresponding destinations; see page 184.

Outlines dictionary (Required if the document has an outline; must be an indirect reference) The
Outlines object that is the root of the document’s outline tree, described on page
104.

Pages dictionary (Required, must be an indirect reference) Pages object that is the root of the
document’s Pages tree; see page 71.

Threads array (Required if the document has any threads; must be an indirect reference) An array
of threads as described on page 121.

AcroForm dictionary (Optional) A dictionary that defines the AcroForm database contained in this file.
See page 129.

Names dictionary (Optional) A dictionary that contains lists of various types of names and strings to
be referenced within the document. See page 119.

OpenAction
array or dictionary (Optional) If the value of this key is an array, it must be a destination; see page

184. If the value is a dictionary, it must be an action; see page 107. If this key is
omitted, the top of the first page appears at the default zoom level.

PDF 1.1

PDF 1.1

PDF 1.3

PDF 1.2PDF 1.2

PDF 1.1PDF 1.1PDF 1.1

6: Document Structure March 11, 1999

68 Adobe Systems Inc.

PageMode name (Optional) How the document should appear when opened. Allowed values:

UseNone Open document with neither outline nor thumbnails
visible. This is the default value.

UseOutlines Open document with outline visible.

UseThumbs Open document with thumbnails visible.

FullScreen Open document in full-screen mode. In full-screen mode,
there is no menu bar, window controls, nor any other
window present.

URI dictionary (Optional) Contains document-level information for Uniform Resource Identifier
annotations; see page 113.

ViewerPreferences
dictionary (Optional) Specifies a dictionary that contains opening display options for this

document; see page 69. If this key is omitted, viewers behave in accordance with
any current user preferences. The name of the key reflects the fact that this
dictionary is not part of the document structure itself, but represents a set of
viewer-level options for displaying this document. A given viewer implementation
may or may not support the options in this dictionary.

PageLabels Number tree (Optional) Specifies the page labeling for the entire document. The keys in this
number tree are page indices, and the values are PageLabel dictionaries (see page
70). The page index indicates the first page to which the related PageLabel
dictionary applies. If the PageLabels tree is present, there must be a 0 entry.

PageLayout name (Optional) Specifies the layout for the page when the document is opened. If this
attribute is not present, viewers behave in accordance with the current user
preference. Allowed values:

SinglePage Display the pages one page at a time.

OneColumn Display the pages in one column.

TwoColumnLeft Display the pages in two columns, with odd-numbered
pages on the left.

TwoColumnRight Display the pages in two columns, with odd-numbered
pages on the right.

Note In a previous version of the manual, the PageLayout key was documented as being
in the Viewer Preferences dictionary. The PageLayout key was actually
implemented in the Catalog.

JavaScript number (Optional) Default is 1.2. The minimum version of the JavaScript interpreter
necessary to execute JavaScript actions found in this document.

StructTreeRoot
dictionary (Optional) The structure-tree root object for the document. See page 163.

SpiderInfo dictionary (Optional) Specifies a dictionary that contains state information for Web Capture
(also known as AcroSpider); see Table 6.78 on page 157.

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

March 11, 1999 6.2.1

6: Document Structure 69

Note In PDF 1.2, the AA key was also defined as an Additional Actions attribute. It was
never implemented. In PDF 1.3, the AA key is obsolete and should be ignored.

6.2.1 Viewer preferences

The viewer preferences dictionary has the following attributes:

Table 6.2 Viewer Preferences

Key Type Semantics

HideToolbar boolean (Optional) Specifies that the viewer’s toolbar should be hidden whenever the
document is active. This attribute defaults to false.

HideMenubar boolean (Optional) Specifies that the viewer’s menubar should be hidden whenever the
document is active. This attribute defaults to false.

HideWindowUI boolean (Optional) Specifies that the user interface elements in the document’s window
should be hidden. This attribute defaults to false.

FitWindow boolean (Optional) Specifies that the viewer should resize the window displaying the
document to fit the size of the first displayed page of the document. This attribute
defaults to false.

CenterWindow boolean (Optional) Specifies that the viewer should position the window displaying the
document in the center of the computer’s monitor. This attribute defaults to false.

NonFullScreenPageMode
name (Optional) Specifies how the document should be displayed after exiting full-

screen mode if the value of the PageMode key in the Catalog is FullScreen.
This key is ignored if the value of the PageMode key in the Catalog is not
FullScreen. Allowed values and semantics are the same as for the PageMode
key in the Catalog, except that a value of FullScreen is not allowed.

Direction name (Optional) This key defines the predominant reading order for text. If present the
values must be either R2L or L2R, indicating right-to-left or left-to-right reading
order, respectively. R2L should be supplied for documents that use languages or
writing systems that use text that is read from right to left such as Arabic, Hebrew,
and Chinese, Korean, and Japanese that use vertical writing. If present this entry
will be used when displaying or printing multiple pages. The default value is L2R.

Note In a previous version of the manual, the PageLayout key was documented as
being in the Viewer Preferences dictionary. The PageLayout key was actually
implemented in the Catalog.

In languages such as Arabic, Hebrew, or vertical writing in Chinese, Korean and
Japanese, text is read from right to left. The pages in documents that use these
languages are also read starting from the right-hand page. The Direction key can
be used to identify documents that use right-to-left reading order. It is used by the
Acrobat viewer to determine the sequence of pages where more than one page is

PDF 1.3

PDF 1.2

PDF 1.3

6: Document Structure March 11, 1999

70 Adobe Systems Inc.

displayed side by side on the screen at one time. It can also be used in n-up
printing. Reading direction has no effect on the contents of a PDF file, or on the
page numbering.

6.2.2 PageLabel dictionaries

The term page label to refer to the short, generally numeric string used to identify
a page in the viewer user interface. The term page index refers to the position of a
page relative to the first page of the document, which has a page index of 0. For
example, the first page of a document which begins using Roman numbers would
have a page label of “i” and a page index of 0. In the same document the first page
of the first chapter would have a page label of “1” and a page index greater than 0.

A labeling range is a contiguous set of pages which use the same numbering
system and prefix. All of the pages in a labeling range are numbered in ascending
order.

A page label is composed of a numeric portion and an optional label prefix. The
numeric portion of each label is automatically generated based on the position of
the page within its labeling range. The label prefix is a string that is prefixed to the
numeric portion to form the complete page label. For example, the pages in an
appendix may be labeled with decimal numeric portions prefixed with the string
“A-”. The resulting page labels would be “A-1”, “A-2”, etc.

A PageLabel dictionary specifies the labeling system to be used for a labeling
range.

Table 6.3 PageLabel dictionary entries

Key Type Semantics

Type name Always PageLabel.

S (Style) name (Optional) Specifies the numbering system to use for the numeric portion of each
label in this range of pages. Possible values are:

D for decimal numbers
R for upper-case Roman numbers
r for lower-case Roman numbers
A for upper-case alphabetic numbers
a for lower-case alphabetic numbers
If this key is not present, the labels for this range will not have a numeric portion.
The display will consist solely of the prefix string with no number appended. This
allows pages to be named without numbers. For example,

<< /P (Contents) >>

will cause a page’s label to be just the string “Contents”. If the prefix string is also
missing or empty, the page’s label will be an empty string. When a valid PageLabel
dictionary is present, the viewer never uses default numbering; the PageLabel
dictionary specifies every label of every page.

PDF 1.3

March 11, 1999 6.2.2

6: Document Structure 71

P (Prefix) Text (Optional) Specifies a string to be prefixed to the numeric portion to create the
page label.

St (StartAt) integer (Optional) Specifies the value to use when generating the numeric portion of the
first label in this range. This number must be greater than or equal to 1. The default
value is 1.

For ranges with an S key, the value of the numeric portion of the first label in the
range is specified by the St key, which defaults to 1. Subsequent pages in the range
will be numbered in ascending order. The label is constructed by expressing the
numeric portion as a string in the numbering system specified by the S key and
then appending the prefix string, if any, to the front.

Labels for ranges with no S key consist solely of the prefix string.

Alphabetic numbering uses ‘a’ through ‘z’ for 1 through 26, ‘aa’ through ‘zz’ for
27 through 52, etc.

The following example shows a document with pages labeled

i, ii, iii, iv, 1, 2, 3, A-8, A-9, …

Example 6.2 Document with pages labeled

1 0 obj <<

/Type /Catalog

/PageLabels <<

A “number tree” with 3 Page Label dictionaries
/Nums [

0 << /S /r >>

4 << /S /D >>

7 << /S /D /P (A-) /St 8 >>

]

>>

…

>>

endobj

6.3 Pages tree

The pages of a document are accessible through a tree of nodes known as the Pages
tree. This tree defines the ordering of the pages in the document.

To optimize the performance of viewer applications, the Acrobat Distiller program
and Acrobat PDF Writer construct balanced trees. (For further information on
balanced trees, see reference [15] in the Bibliography on page 506.) The tree
structure allows applications to quickly open a document containing thousands of
pages using only limited memory. Applications should accept any sort of tree

6: Document Structure March 11, 1999

72 Adobe Systems Inc.

structure as long as the nodes of the tree contain the keys described in Table 6.4.
The simplest structure consists of a single Pages node that references all the page
objects directly.

Note The structure of the Pages tree for a document is unrelated to the content of the
document. In a PDF file for a book, for example, there is no guarantee that a
chapter is represented by a single node in the Pages tree. Applications that
consume or produce PDF files are not required to preserve the existing structure of
the Pages tree.

The root and all interior nodes of the Pages tree are dictionaries, whose minimum
contents are shown in Table 6.4.

Table 6.4 Pages attributes

Key Type Semantics

Type name (Required) Object type. Always Pages.

Kids array (Required) List of indirect references to the immediate children of this Pages node.

Count integer (Required) Specifies the number of leaf nodes (imageable pages) under this node.
The leaf nodes do not have to be immediately below this node in the tree, but can
be several levels deeper in the tree.

Parent dictionary (Required; must be indirect reference) Pages object that is the immediate ancestor
of this Pages object. The root Pages object has no Parent.

The following illustrates the Pages object for a document with three pages.
Appendix A contains an example showing the Pages tree for a document
containing 62 pages.

Example 6.3 Pages tree for a document containing three pages

2 0 obj

<<

/Type /Pages

/Kids [4 0 R 10 0 R 24 0 R]

/Count 3

>>

endobj

6.3.1 Inheritance of Attributes

A Pages object may contain additional keys that provide values for Page objects
that are its descendants. Such values are said to be “inherited.” For example, a
document may specify a MediaBox for all pages by defining one in the root Pages
object. An individual page in the document could override the MediaBox in this
example by specifying a MediaBox in the Page object for that page.

March 11, 1999 6.3.1

6: Document Structure 73

Attributes that may be inherited are indicated in Table 6.5. If a required key that
may be inherited is omitted from a Page object, then a value must be supplied in
one of its ancestors. If an optional key that may be inherited is omitted, then a
value may be supplied in one of its ancestors; barring that, the default value is
used.

Example 6.4 demonstrates inheritance by showing a tree of Pages objects and Page
objects. Pages 1, 2, and 4 are rotated 90º. Page 3 is rotated 270º. Pages 5 and 7 are
not rotated (rotated 0º). Page 6 is rotated 180º.

6.4 Page objects

A Page object is a dictionary that describes a single page containing text, graphics,
and images. A Page object is a leaf of the Pages tree, and has the attributes shown
in the following table.

Table 6.5 Page attributes

Key Type Semantics

Type name (Required) Object type. Always Page.

MediaBox Rectangle (Required; may be inherited) Rectangle specifying the “natural size” of the page,
for example the dimensions of an A4 sheet of paper. The coordinates are measured
in default user space units. This rectangle includes any extended area surrounding
the finished page for bleed, printing marks, or other similar purpose. (Also see the
CropBox, BleedBox, ArtBox, and TrimBox keys.)

Parent dictionary (Required; must be indirect reference) The Pages object that is the immediate
ancestor of this page.

Pages

page 1

Pages
/Rotate 90

Pages Pages
/Rotate 180

Pages

Page

Page Page

/Rotate 90

Page Page
/Rotate 0

Page

Page
/Rotate 270

page 2

page 3 page 4

page 5 page 6 page 7

Example 6.4 Inheritance of attributes

6: Document Structure March 11, 1999

74 Adobe Systems Inc.

Resources dictionary (Required; may be inherited) Resources required by this page, described in
Chapter 7. If the page requires no resources, this value should be an empty
dictionary, written as << >>. Omitting this value, or specifying a null value,
indicates that the value is to be inherited from an ancestor Pages object.

Contents stream or array (Optional; must be indirect reference) The page description (contents) for this
page, described in Chapter 8. Contents may be a single stream or an array of
streams. If it is an array of streams, the effect is equivalent to a single stream
formed by concatenating all the elements of the array, in order. (This allows a
program that is creating a PDF file to create image objects and other resources as
they occur, even though they interrupt the page description.) If Contents is
absent, the page is empty.

Note The arrangement of streams in the array is unrelated to the content on the page.
Applications that consume or produce PDF files are not required to preserve the
existing structure of a Contents array.

CropBox Rectangle (Optional; may be inherited) Rectangle specifying the default clipping region for
the page when displayed or printed. The default is the value of the MediaBox.

Rotate integer (Optional; may be inherited) Specifies the number of degrees
the page should be rotated clockwise when it is displayed or
printed. This value must be zero (the default) or a multiple of
90.

Thumb stream (Optional; must be indirect reference) Object that contains a thumbnail sketch of
the page, described in Section 6.5, “Thumbnails.”

Annots array (Optional) An array of objects, each representing an annotation on the page,
described in Section 6.6, “Annotations.” Omit the Annots key if the page has no
annotations.

B (Beads) array (Recommended if the page contains article beads) An array whose elements are
indirect references to each article bead on the page, in drawing order (the same
order as the Annots array). Articles are described on page 121.

Dur (Duration) real (Optional; may be inherited) Specifies the “advance timing” (display duration) of
a page. By default, the page does not advance automatically. See page 77.

Hid (Hidden) boolean (Optional; may be inherited) If true, the page should be hidden (not displayed)
during a presentation. The default is false. See page 77.

Trans (Transition)
dictionary (Optional; may be inherited) A Transition dictionary, containing information about

transitions between pages. See page 77.

AA dictionary (Optional; may not be inherited) An additional-actions dictionary, providing
defaults for the entire page. See page 108.

PieceInfo dictionary (Optional) A PieceInfo dictionary. PieceInfo is described on page 261.

LastModified Date (Optional unless PieceInfo key is present) Time of the most recent alteration of
the content of the Page.

0º

270º

180º

90º

PDF 1.1

�

PDF 1.1

PDF 1.1

PDF 1.1

PDF 1.2

PDF 1.3

PDF 1.3

March 11, 1999 6.3.1

6: Document Structure 75

SeparationInfo
dictionary (Optional) If this page is a separation, this dictionary describes its output

characteristics as described in the Separation Info dictionary (page 81).

ArtBox Rectangle (Optional; may not be inherited) Rectangle specifying an area of the page to be
used when placing PDF content into another application. The default is the value
of the CropBox.

TrimBox Rectangle (Optional; may not be inherited) Rectangle specifying the intended “finished size”
of the page (for example, the dimensions of an A4 sheet of paper). In some cases,
the MediaBox will be a larger rectangle, which includes printing instructions, cut
marks, or other content. The default is the value of the CropBox.

BleedBox Rectangle (Optional; may not be inherited) Rectangle specifying the region to which all page
content should be clipped if the page is being output in a production environment.
In such environments, a “bleed area” is desired, to accommodate physical
limitations of cutting, folding, and trimming equipment. The actual printed page
may include printer’s marks that fall outside the bleed box. The default is the value
of the CropBox.

ID string (Optional; may not be inherited. Indirect reference preferred.) An ID that can be
used to locate a Web Capture Content Set array in the IDS name tree. See page
160.

PZ (Preferred Zoom)
number (Optional; may not be inherited) A scaling factor by which the page can be scaled

to achieve the “natural” zoom level. See page 160.

Note that some Page attributes may be inherited; see Section 6.3.1 on page 72. No
optional Page attributes defined in PDF 1.3 or later versions may be inherited.

Note The intersection between the page’s media box and the crop box is the region of the
default user space coordinate system that is viewed or printed. Typically, the crop
box is located entirely inside the media box, so that the intersection is the same as
the crop box itself.

Figure 6.2 on page 77 shows the distinction between the media box, art box, trim
box, and bleed box. The crop box, which is not explicitly shown in the figure, is
the default clipping region for viewing and printing. However, an application may
use one of the other, more specific boxes for cropping, as appropriate. For
example, the figure shows printer’s crop marks at the bleed box.

Example 6.5 on page 76 shows a Page object with a thumbnail and two
annotations. In addition, the Resources dictionary is specified as a direct object,
and shows that the page makes use of three fonts, with the names F3, F5, and F7.

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

6: Document Structure March 11, 1999

76 Adobe Systems Inc.

Example 6.5 Page with thumbnail, annotations, and Resources dictionary

3 0 obj

<<

/Type /Page

/Parent 4 0 R

/MediaBox [0 0 612 792]

/Resources <<

/Font << /F3 7 0 R /F5 9 0 R /F7 11 0 R >>

/ProcSet [/PDF] >>

/Thumb 12 0 R

/Contents 14 0 R

/Annots [23 0 R 24 0 R]

>>

endobj

March 11, 1999 6.4.1

6: Document Structure 77

Figure 6.2 Page object’s media box and crop box

6.4.1 Presentation mode

A Page dictionary may contain three keys, Dur, Hid, and Trans, that provide
information that is intended to be used when displaying a PDF document as a
“presentation” or “slide show.” They are otherwise ignored. A PDF viewer is not
required to provide a presentation mode. If such a mode is provided by the viewer
or a plug-in, however, then these keys define its behavior.

This might be a caption.

Headline

MediaBox: Specifies
size of physical media.

TrimBox:
Represents final
size of
document, after
printing and
trimming.

ArtBox: Used
when placing in
another
application

BleedBox: Prepress applications
clip to this box at print time.

PDF 1.1

6: Document Structure March 11, 1999

78 Adobe Systems Inc.

6.4.1.1 Duration

The Dur key in a Page dictionary specifies the advance timing of the page. The
advance timing is intended to be used only when a presentation is being played in a
non-interactive mode. It describes the maximum amount of time the page is
displayed before the viewer automatically turns to the next page; the user can
advance the page manually before the time is up. If no Dur key is specified for a
Page object or any of its Pages ancestors, the page does not advance automatically.

The advance timing is defined as the amount of time between the end of the last
transition and the beginning of the next one, as shown in the time-line below:

6.4.1.2 Hidden

The Hid (Hidden) key in a Page dictionary specifies that the page is not to be
displayed during the presentation. If the user attempts to turn to a hidden page
from the previous or following page during a presentation, the page is skipped and
the next visible page is displayed. If the page is the destination of a link or thread,
the Hidden attribute is ignored and the page is displayed.

The Hidden attribute of a page hides the page only during a presentation; other
aspects of the user interface ignore the Hidden attribute.

6.4.1.3 Transition

The Trans key in a Page dictionary specifies a Transition dictionary, which
describes the effect to use when going to that page, and the amount of time the
transition should take. For example, a transition effect in the Transition dictionary
of page two executes whenever the user goes to page two, regardless of the
previous page. The following table defines keys for all Transition dictionaries; they
may contain additional keys that control specific transition effects.

Table 6.6 Transition attributes

Key Type Semantics

Type name Object type. Always Trans.

S (Subtype) name (Optional) Describes the transition effect. If this key is omitted, there is no
transition effect to that page (the page is displayed normally), and the D key in the
Transition dictionary is ignored. The allowed values are described in the following
table.

Transition from
page 1 to page 2

Transition from
page 2 to page 3Page 2 is displayed

Transition duration Advance timing (Dur) Transition duration

March 11, 1999 6.4.1

6: Document Structure 79

D (Duration) number (Optional) The duration (in seconds) of the transition effect. The default duration
is 1 second.

6.4.1.4 Transition effects

All implementations of presentation mode support the transition effects shown in
the following table. Some of these effects include optional parameters that control
the appearance of the effect. The parameters are described in Table 6.8.

Table 6.7 Transition Effects

Subtype Parameters Description

Split Dm, M Two lines sweep across the screen revealing the new page image. The lines can be
either horizontal or vertical, as determined by the Dm key, and can move from the
center out or from the edges in as determined by the M key.

Blinds Dm Multiple lines, evenly distributed across the screen, appear and synchronously
sweep in the same direction to reveal the new page. The lines are either horizontal
or vertical, as determined by the Dm key. Horizontal lines move down; vertical
lines move to the right.

Box M A box sweeps from the center out or from the edges inward, as determined by the
M key, revealing the new page image.

Wipe Di A single line sweeps across the screen from one edge to the other, revealing the
new page image. Possible values for Di include 0, 90, 180, and 270.

Dissolve (none) The old page image “dissolves” in a piecemeal fashion to reveal the new page.

Glitter Di Similar to Dissolve, except the effect sweeps across the image in a wide band
moving from one side of the screen to the other. Supported directions are 0, 270,
and 315.

R (none) (Replace) The effect is simply to replace the old page with the new page; i.e., there
is no “transition” per se. This is the default effect if the S key is omitted from the
transition dictionary, but it may be explicitly specified as a way to override any
default transition that may be used for full-screen mode.

Table 6.8 Effect parameters

Key Type Semantics

Di (Direction) number The direction of movement, specified in degrees, increasing in a
counterclockwise direction. A value of 0 points to the right,
indicating that the effect proceeds from left to right. A value of
90 points upward, indicating that the effect moves from bottom
to top.

0º

90º

180º

270º

6: Document Structure March 11, 1999

80 Adobe Systems Inc.

Note This is different from the page rotation, where the degrees increase in a clockwise
direction.

Dm (Dimension) name For those effects which can be performed either horizontally or vertically, the Dm
key specifies which dimension to use. Possible values are H (horizontal) or V
(vertical).

M (Motion) name For those effects which can be performed either from the center out or the edges in,
the M key specifies which direction to use. Possible values are I (In) or O (Out).

The following example shows a page that, in presentation mode, would be
displayed for 5 seconds before advancing to the following page. Before the page is
displayed, there is a 3-second transition in which two vertical lines sweep across
the screen, from the center outwards.

Example 6.6 A page with information for presentation mode

<<

/Type /Page

/Parent 4 0 R

/Contents 16 0 R

/Dur 5

/Trans <<

/Type /Trans

/S /Split

/D 3.5

/M /O

/Dm /V >>

>>

6.4.2 Separated PDF

High-end printing workflows make use of documents in a pre-separated form,
where each printed color page is represented by several gray pages, each of which
is intended to be printed with a different color. When such a document is converted
to PDF, the following information must be extracted from the PDF file:

• The pages, if any, to be printed as separations.

• The color needed for each separated page.

• The pages which are to be grouped together for output as a single PDF page.

In PostScript, this information is typically provided by the %%PlateColor and
%%Page comments. This section describes how corresponding information is
embedded in PDF files.

PDF 1.3

March 11, 1999 6.4.2

6: Document Structure 81

6.4.2.1 Separation Info Dictionary

Table 6.9 describes the attributes in a Separation Info dictionary. See Table 6.5 for
more information about the page attribute dictionary keys.

Table 6.9 Separation Attributes

Key Type Semantics

DeviceColorant
name or string (Required) The name of the device colorant assigned to this separation. Examples:

/Cyan, (PANTONE 35 CV).

ColorSpace color space (Optional) A color space object of type Separation or DeviceN. This provides
additional information about the color specified by DeviceColorant. If the color
space is of type Separation, then the DeviceColorant key must match the
colorant name of the separation color space. If the color space is of type DeviceN,
then the DeviceColorant key must match one of the colorant names in the color
space.

Pages array (Required) An array of indirect references to page objects which are the PDF pages
that comprise a single separated document page. The current page object must be
one of the pages referenced by the array, and all of the pages referenced by the
array must have Separation Info dictionaries, which must have Pages arrays
identical to this one.

6.5 Thumbnails

A PDF document may include thumbnail sketches of its pages. They are not
required, and even if some pages have them, others may not.

The thumbnail image for a page is the value of the Thumb key of the page object.
The structure of a thumbnail is very similar to that of an Image resource (see
Section 7.13.1 on page 246). The only difference between a thumbnail and an
Image resource is that a thumbnail does not include Type, Subtype, and Name
keys.

Example 6.7 Thumbnail

12 0 obj

<<

/Filter [/ASCII85Decode /DCTDecode]

/Width 76

/Height 99

/BitsPerComponent 8

/ColorSpace /DeviceRGB

/Length 13 0 R

>>

stream

s4IA>!"M;*Ddm8XA,lT0!!3,S!/(=R!<E3%!<N<(!WrK*!WrN,

6: Document Structure March 11, 1999

82 Adobe Systems Inc.

… image data omitted …
endstream

endobj

13 0 obj

4298

endobj

6.6 Annotations

Annotations are notes or other objects that are associated with a page but are
separate from the page description itself. PDF supports several kinds of
annotations:

• Text notes (see page 89)

• Hypertext links (page 90)

• Movies (page 90)

• Sounds (page 93)

• Widgets (page 133)

• Trap networks (page 98)

• Various mark-up annotations, such as rubber stamps, lines, squares, circles,
strikethrough text, highlights, and underlines.

In the future, PDF may support additional types.

If a page includes annotations, they are stored in an array as the value of the
Annots key of the Page object. Each annotation is a dictionary. As shown in Table
6.10, all annotations must provide a core set of keys, including Type, Subtype,
and Rect. Certain other keys, indicating an annotation’s color, title, modification
date, border, and other information, are also defined for all annotations but are
optional.

Note All coordinates and measurements in text annotations, link annotations, and
outline entries are specified in default user space units.

Note As an alternative to the simple border and color characteristics defined in PDF
1.0 and 1.1, Annotations in PDF 1.2 can have one or more appearances attached
to them. An appearance is a PDF Form XObject that is rendered inside the
annotation’s bounding box.

Table 6.10 Annotation attributes (common to all annotations)

Key Type Semantics

Type name Object type. Always Annot.

PDF 1.2

�

March 11, 1999 6.4.2

6: Document Structure 83

Subtype name (Required) Annotation subtype.

Rect Rectangle (Required) Rectangle specifying the location of the annotation.

Border array (Optional) In PDF 1.0, this is an array of three numbers, specifying the horizontal
corner radius, the vertical corner radius, and the width of the border of the
annotation. The default values are 0, 0, and 1, respectively. No border is drawn if
the width is 0.

The array may have a fourth element, a dash array that allows specification of
solid and dashed borders. The dash array contains “on” and “off” stroke-lengths
for drawing dashes, in the same format as the d marking operator (see page 325).
An example of a border with a dash array is [0 0 1 [3]].

Note This key has been superseded in PDF 1.2 with the BS key, described below.

C (Color) array (Optional) The annotation color. For links, this is the border color. For text
annotations, it is the background color of a closed annotation’s icon, the title bar
color of an active open annotation’s window, and the window frame color of an
inactive open annotation. A color is specified as an array of three numbers in the
range 0 to 1, representing a color in DeviceRGB.

T (Title) Text (Optional) An arbitrary text label associated with the annotation. It is displayed in
an active open text annotation’s title bar and can be edited from the annotation’s
properties dialog.

M (ModDate) Date (Optional) The last time an annotation was modified. A text annotation’s
modification date is updated each time the text is changed. The ModDate must be a
string; the preferred format described on page 183, but viewers should accept and
display any string.

F (Flags) integer (Optional) Flags. The binary value of the integer is interpreted as a collection of
flags that define various characteristics of the annotation. All undefined bits are
reserved and must be set to 0. The default value for this key is 0.

Note Bit-positions are numbered starting at 1, which is the least significant bit.

bit 1 The Invisible flag specifies how an annotation is displayed when the corresponding
annotation handler is not available. If this flag’s value is 1, and the viewer does not
provide a handler for the annotation’s Subtype, the annotation is not displayed,
even if the annotation has an appearance dictionary (AP key). If this flag’s value is
0, and the viewer does not provide a handler for the annotation’s Subtype, the
annotation appears as an unknown annotation unless the annotation has an
appearance (AP key), in which case the appearance is displayed.

bit 2 The Hidden flag determines whether the annotation is to be shown. If the value of
this flag is 1, then the annotation is hidden, in which case there is no user
interaction, display, or printing of the annotation, regardless of the existence of an
annotation handler. The ability to hide and show annotations selectively, combined
with appearances (see the AP key), is especially useful in cases where screen real
estate is limited. They can then be used to display pop-up auxiliary data similar in
function to online help systems.

PDF 1.0

PDF 1.1

PDF 1.1

PDF 1.1

PDF 1.1

PDF 1.1

PDF 1.2

6: Document Structure March 11, 1999

84 Adobe Systems Inc.

bit 3 The Print flag indicates whether the annotation should be printed. If the value of
this flag is 1, then the annotation is printed, regardless of the existence of an
annotation handler. Corresponding to the definition of appearances for annotations,
there may be some instances where the author of a document wishes to create an
annotation for display purposes only. That is, the annotation should display its
appearance while in the viewer but that appearance should not print. This is typical
for annotations that act like push buttons whose presence on the printed page
would be distracting.

bit 4 The NoZoom flag indicates that if the annotation has an appearance that the
appearance should not zoom as the page is magnified in the viewer.

bit 5 The NoRotate flag indicates that if the annotation has an appearance that the
appearance should not be rotated with respect to the page before displaying the
appearance. This is useful for certain annotation types (e.g., text notes) whose
appearances do not rotate with the page.

bit 6 The NoView flag indicates that if the annotation has an appearance, then that
appearance should be used only for printing. A viewer should consider this
annotation hidden for display and user-interaction purposes. This bit may be useful
in some instances where an author wants the annotation to print (a watermark, for
example) but not to show up on the screen, as it might appear distracting.

bit 7 The Read-only flag indicates that the annotation should display but not interact
with the user. This is equivalent to the Read-only flag for form fields (see page
132) but applicable to other types of annotations as well.

H (Highlight) name (Optional) In PDF 1.1, the visual effect of clicking on a link annotation produced
an inversion of the colors inside the bounding box of the annotation. In PDF 1.2,
additional highlight modes, specified by this key, have been added for both Link
and Widget annotations, as described in Table 6.11. The default for this key is I
(Invert).

BS (Border Style)
dictionary (Optional) This key overrides the Border key. The value of this key is a

dictionary, defined on page 86, that specifies several attributes related to the
border of the annotation.

This key is ignored by the Stamp, Text, StrikeOut, Highlight, Underline,
Sound, FileAttachment, and Popup annotations.

AA (Additional Actions)
dictionary (Optional) An additional-actions dictionary. See page 108.

AP (Appearance)
dictionary (Optional) Specifies that one or more appearances are available for this annotation.

See page 87.

PDF 1.2

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.2

PDF 1.2PDF 1.2

PDF 1.2

March 11, 1999 6.4.2

6: Document Structure 85

AS (Appearance State)
name (Required if more than one appearance is possible) If the N, R, or D keys in the

AP dictionary are dictionaries instead of Form XObjects, then this key indicates
which entry in the dictionary is to be used in each instance. This allows for the
specification of items such as checkboxes and radio buttons whose appearance
may change.

Contents Text The text to be displayed, usually in a pop-up window. Text can be separated into
paragraphs using carriage returns.

Popup dictionary (Optional) An indirect reference to an annotation that displays the Contents text
of this annotation in an associated pop-up window. The pop-up window is used for
text entry and editing.

P dictionary (Optional; defined only for annotations in PDF files, not in FDF files) An indirect
reference to the Page object for the page on which the annotation appears.

The NoRotate and NoZoom flags indicate that the annotation’s appearance will not
change with respect to the view in some manner. In these cases, it is important to
define a reference point as to where the annotation will show in the view. For
example, if a page is rotated and the annotation is not, about which point should
the annotation’s appearance be unrotated? In all cases, the upper left corner of the
annotation bounding box is considered to be this reference point. Figure 6.3 shows
a Text annotation that specifies the NoRotate flag and the result of a rotating the
page 90 degrees clockwise. The upper left corner is “pinned” to the page.

PDF 1.2

PDF 1.3

PDF 1.3

612

612
792

792

100, 700

700, 512

abcdefghijklm
nopqrstuvwxyz

Figure 6.3 Text annotation with the NoRotate flag

a
bcd

efg
hijklm

n
opqrstuvw

xyz

6: Document Structure March 11, 1999

86 Adobe Systems Inc.

For the Stamp, Line, Square, Circle, Text, StrikeOut, Highlight,
Underline, and Ink annotations, the Read-only flag is interpreted in the following
manner: if the flag is on, the annotation icon may be selected but not moved, nor
may any of its properties be changed. The associated Popup annotation, if any,
may be displayed as a result of interacting with the parent annotation. This pop-up
window can be moved and resized, but the text in the pop-up may not be edited.

6.6.1 Annotation borders

The border is drawn completely inside the annotation’s bounding box. If neither
the BS key nor the Border key is present in the annotation dictionary, the border
style is drawn as a solid line with a width of one point.

Table 6.11 Border Style attributes

Key Type Semantics

Type name Object type. Always Border.

S (Subtype) name (Optional) One of the following names:

S (Solid) The border is drawn as a solid line. This is the default.

D (Dashed) The border is drawn with a dashed line. The dash pattern is specified by
the D attribute (see below).

B (Beveled) The border is drawn in a beveled style (faux three-dimensional) such
that it looks as if it is pushed out of the page (opposite of Inset).

I (Inset) The border is drawn in an inset style (faux three-dimensional) such that it
looks as if it is inset into the page (opposite of Beveled).

U (Underlined) The border is drawn as a line on the bottom of the annotation
rectangle.

Other subtypes may be defined in the future.

W (Width) number (Optional) The border width in points. The default is 1 point.

D (Dash array) array (Optional) If the Subtype is D, this array contains numbers representing on and off
stroke lengths for drawing dashes, in the same format as the d marking operator.
The default for this key is [3].

6.6.2 Annotation highlighting

An annotation is highlighted when any of the following events is triggered.

PDF 1.3PDF 1.2

�

PDF 1.2

�

March 11, 1999 6.6.3

6: Document Structure 87

1. If the user clicks the mouse button down inside the active area of the
annotation, the highlight is shown.

2. If the mouse button is down and the user moves the cursor out of the active
area of the annotation, the highlight is removed.

3. If the mouse button is down and the user moves the cursor back into the
active area of the annotation, the highlight is shown.

4. If the mouse button is released then the highlight is removed.

A highlight is removed by reverting the visual appearance of the document back to
what it was before the highlight occurred.

Table 6.12 Highlight Modes

Name Semantics

I (Invert) The rectangle specified by the bounding box of the annotation is inverted.

N (None) No highlighting is done.

O (Outline) The border of the annotation is inverted. If no active color is defined, the border is
inverted.

P (Push) If the annotation specifies a Down appearance (i.e., if the Appearance dictionary
defines a D key), that appearance is drawn. If the annotation does not specify a
Down appearance, then the region underneath the bounding box of the annotation
is drawn inset into the page.

The use of the highlighting works in conjunction with the Down sub-appearance
specified in the annotation appearance dictionary (if any) in the following manner:
If the highlight value is not P (push), then the specified highlight mode is
respected regardless of the fact that a down sub-appearance exists.

Note The active behavior of highlighting is applicable only to annotations whose
annotation handler is present. The highlighting behavior is logically the
responsibility of the handler. Plug-in designers are encouraged to use the same
PDF extensions for specifying highlighting for their annotations.

6.6.3 Annotation appearances

The appearance dictionary defines the following three keys.

PDF 1.2

�

6: Document Structure March 11, 1999

88 Adobe Systems Inc.

Table 6.13 Appearance dictionary

Key Type Semantics

N (Normal)
dictionary or stream (Required) This is the appearance that is used when the annotation is in a normal

state, that is, when the user is not interacting with the annotation. This is also the
appearance that is used when printing the annotation.

R (Rollover)
dictionary or stream (Optional) appearance. This is the appearance that is used when the user moves the

mouse cursor inside the annotation. If the cursor leaves the annotation then the
Normal appearance is re-displayed. The default is that no alternative appearance is
displayed when the rollover occurs.

D (Down)
dictionary or stream (Optional) This is the appearance that is used when the user clicks the mouse down

inside the annotation. When the user releases the mouse, the viewer displays the
Rollover appearance if that is defined, or the Normal appearance otherwise. The
default is that no alternative appearance is displayed when the mouse-down event
occurs.

If the N, R, or D values are dictionaries, then they contain one or more sub-
appearances. The appearance state (AS) key in the annotation dictionary
determines which sub-appearance to use as the current appearance.

Consider a checkbox with two states: checked and unchecked. The appearance
dictionary, containing only a normal appearance (N), would look like this:

/AP <<

/N <<

/Checked Form XObject
/Unchecked Form XObject

>>

>>

The appearance state key would determine which appearance is the current normal
appearance. For example, if the checkbox were currently checked, the value of the
AS key would be the name Checked.

/AS /Checked

If the N, R, or D values are not dictionaries, then they must be Form XObjects (see
page 255), which are represented as streams, and the appearance does not depend
on the AS key.

The Form XObject’s graphics state when rendering the appearance should have the
origin translated to the lower left corner of the annotation bounding box and scaled
to fit inside and clipped to the annotation bounding box. All other graphics state
values are set to their defaults.

March 11, 1999 6.6.4

6: Document Structure 89

Some annotation subtypes defined in PDF (e.g., Movie) and all annotation
subtypes defined by third parties are implemented through plug-ins. If the plug-in
that implements a particular annotation subtype is not available, the viewer
displays that annotation’s Normal appearance.

Note The viewer should attempt to provide reasonable behavior (e.g., display nothing) if
the sub-appearance named by the AS key is not present in the N, R, or D
dictionaries.

6.6.4 Text annotations

A text annotation contains a Text in its Contents key, which is required. When
the annotation is open, the text is displayed. A PDF viewer chooses the size and
typeface of the text. The following table shows the attributes of the Text annotation
dictionary.

Table 6.14 Text annotation attributes (in addition to those in Table 6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always Text.

Open boolean (Optional) If true, specifies that the annotation should initially be displayed
opened. The default is false (closed).

Name name (Optional) The name of the icon to be displayed for the annotation. This is used by
the viewer to construct an appearance if the AP key is omitted. The default value is
Note.

AP dictionary (Optional) An indirect reference to an appearance dictionary. If this key is omitted,
an appearance will be constructed using the Name key.

Implementation note The Acrobat viewer will use a predefined appearance for the following values of
Name: Comment, Insert, Note, Paragraph, NewParagraph, Key, and
Help.

Example 6.8 Text annotation

22 0 obj

<<

/Type /Annot

/Subtype /Text

/Rect [266 116 430 204]

/Contents (text for two)

>>

endobj

PDF 1.3

PDF 1.3

6: Document Structure March 11, 1999

90 Adobe Systems Inc.

6.6.5 Link annotations

A link annotation, when activated, displays a destination or performs an action. A
destination is a view of another location, possibly on a different page, with a
different zoom factor, or in a different file. The following table shows the contents
of the link annotation dictionary.

Table 6.15 Link annotation attributes (in addition to those in Table 6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always Link.

Dest array or name (Optional; not permitted if the A key is present) The view to go to, represented as a
destination. See page 184.

A (Action) dictionary (Optional; not permitted if the Dest key is present) The action to be performed on
activating this link annotation. See page 107.

PA (Previous Action)
dictionary (Optional) As a part of its normal operation, Web Capture (see Section 6.16) will

change the actions associated with some link annotations from URI actions (see
Section 6.8.6) to GoTo actions (see Section 6.8.2). For such an annotation, it
desirable that the data for the original URI action be available even after the action
has been changed to a GoTo action. This allows Web Capture to change the action
for the link annotation back to the original URI action if the target page for the
GoTo action is deleted.The PA key contains the former action to perform upon
activating this link.

If neither the A or Dest key is present, the AA key can be used to describe the
annotation’s behavior.

Example 6.9 Link annotation

93 0 obj

<<

/Type /Annot

/Subtype /Link

/Rect [71 717 190 734]

/Border [16 16 1]

/Dest [3 0 R /FitR –4 399 199 533]

>>

endobj

6.6.6 Movie Player annotations

A Movie Player annotation describes the static display and playing of movies and
sounds within PDF documents. These annotations appear to be embedded in the
document, like links. The activation area may be invisible, bordered in the manner

�

PDF 1.1

PDF 1.3

PDF 1.2

�

March 11, 1999 6.6.6

6: Document Structure 91

of a link button, and it may have the movie’s Poster frame displayed. There are
several authoring options that control the way a movie is to be displayed and
played.

Table 6.16 Movie Player annotation attributes (in addition to those in Table 6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always Movie.

Movie dictionary (Required) A description of the static characteristics of the Movie; see Table 6.17.

A (Activation) boolean (Optional) A flag that indicates whether the movie should be shown by clicking in
the annotation rectangle. Possible values are:

false Do not play the movie when clicked.
true Play the movie with the default activation values. (This is the

default value for the A key.)
or

dictionary (Optional) Directions for playing the Movie; see Table 6.17.

The Movie dictionary contains information needed to locate the movie data and to
display the poster (if requested) in the annotation rectangle.

Table 6.17 Movie dictionary attributes

Key Type Semantics

F (File) File specification (Required) A self-describing movie file.

Note The format of a “self-describing movie file” is left unspecified, and there is no
guarantee of portability.

Aspect array (Optional) If the movie is visible, the horizontal and vertical sizes of the movie’s
bounding box in pixels: [horiz vert]. An “invisible movie” is one with no video:
it has only sound.

Rotate integer (Optional) Specifies the number of degrees clockwise the movie
must be rotated, relative to the rotation of the page. This value
must be a multiple of 90. The default is 0.

Poster boolean (Optional) A flag indicating whether the poster is to be retrieved
from the movie file for display. Possible values are:

false Do not show a poster image. (This is the default if the Poster key
is omitted.)

true Show the poster image from the movie file.
or

stream (Optional) An Image resource (see Section 7.13.1 on page 246) that is to be
displayed as the poster.

90º

0º

270º

180º

6: Document Structure March 11, 1999

92 Adobe Systems Inc.

The Movie Activation dictionary contains information needed to control the
dynamics of playing the movie.

Table 6.18 Movie Activation attributes

Key Type Semantics

ShowControls boolean (Optional) If this key is true, a Movie Controller bar is shown when the movie is
being played. The default is false.

Mode name (Optional) The playing mode for the movie. Currently defined values are:

Once Show the movie once and stop.
Open Show the movie and leave the controller open.
Repeat Repeat the movie from the beginning until stopped.
Palindrome Play the movie back and forth until stopped.

If Mode is omitted or unrecognized, the mode is Once.

Synchronous boolean (Optional) If this key is true, the player does not return to Acrobat until the movie
is completed or dismissed by the user. The default is false.

Start
number, string, or array (Optional) The starting time of the movie segment to play. If omitted, the movie is

played from the beginning.

Movie time values are based on 64-bit integers. If the start time is representable in
32 bits, the key value should be an integer. If not, the key value should be an 8-byte
string, with the most significant byte of the value first, that is treated as a 64-bit
integer. If the time scale for the starting time is not the same as the Movie time
scale, the start time is represented as an array of two values: the first element is the
time value (integer or string), and the second element is the time scale (integer).
The time scale is measured in events per second.

Duration
number, string, or array (Optional) The duration of the movie segment to play. If omitted, the movie is

played to the end.

Movie time values are based on 64-bit integers. If the duration is representable in
32 bits, the key value should be an integer. If not, the key value should be an 8-byte
string, with the most significant byte of the value first, that is treated as a 64-bit
integer. If the time scale for the duration is not the same as the Movie time scale,
the duration is represented as an array of two values: the first element is the time
value (integer or string), and the second element is the time scale (integer). The
time scale is measured in events per second. A negative duration means the movie
is to be played backwards.

Rate number (Optional) The initial speed at which the movie is played. The default speed is 1.0.
A negative speed means the movie is to be played backwards with respect to Start
and Duration.

March 11, 1999 6.6.7

6: Document Structure 93

Volume number (Optional) The initial volume setting for the movie. This number must be between
-1 and 1. Negative settings are muted. A higher number denotes increased volume.
The default volume is 1.

FWScale array (Optional) For floating play windows, the magnification at which to play the
movie. FWScale is an array of two integers: [numerator denominator]
representing a rational magnification factor for the movie. The final window size
for the movie is (numerator ÷ denominator) × Aspect pixels. The presence of
the FWScale key implies that the movie is to be played in a floating window. The
absence of the FWScale key implies that the movie is to be played in the
annotation rectangle.

FWPosition array (Optional) For floating play windows, the position within the screen at which to
play the movie. FWPosition is an array of two numbers: [horizontal vertical]
representing a relative position of the movie window with respect to the left and
top of the screen. Each number must be in the range 0 to 1, with [0.5 0.5]
meaning “center the movie window on the screen.”

6.6.7 Sound annotations

A Sound annotation is analogous to a Text annotation, except that it contains
sound, recorded from the computer’s microphone or imported from a file. The
annotation behaves like a Text annotation in most ways, with a different icon (by
default, a speaker) to indicate that it is a Sound annotation. The Contents key,
which is optional for this annotation, specifies the text to be displayed as the
description of the sound.

Table 6.19 Sound annotation attributes (in addition to those in Table 6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always Sound.

Sound stream (Required) A Sound object (see Section 6.15 on page 147).

Name name (Optional) The name of the icon to be displayed for the annotation. This is used by
the viewer to construct an appearance if the AP key is omitted. The default value is
Speaker.

AP dictionary (Optional) An indirect reference to an appearance dictionary. If this key is omitted,
an appearance will be constructed using the Name key.

Implementation note Acrobat uses a predefined appearance when the value of Name is Speaker or
Microphone.

PDF 1.2

PDF 1.3

PDF 1.3

6: Document Structure March 11, 1999

94 Adobe Systems Inc.

6.6.8 Free Text annotations

The Free Text annotation displays text on top of the associated page using the
specified appearance attributes. The text is specified by the Contents key, which
is required for this annotation. There is no pop-up window for this annotation,
since the text is always visible.

Table 6.20 Free text annotation attributes (in addition to those in Table 6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always FreeText.

DA string (Required) The default appearance string (see Table 6.60).

AP dictionary (Optional) An indirect reference to an appearance dictionary (see Section 6.6.3 on
page 87). If this key is omitted, then the appearance is generated based on values of
the Contents and DA keys.

6.6.9 Rubber Stamp annotations

The Rubber Stamp annotation displays an appearance as specified by its AP key.
The associated Contents text is displayed in a pop-up window when the
annotation is opened.

Table 6.21 Rubber Stamp annotation attributes (in addition to those in Table
6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always Stamp.

Name name (Optional) The name of the rubber stamp appearance to be displayed for the
annotation. This is used by the viewer to construct an appearance if the AP key is
omitted. The default value is Draft.

AP dictionary (Optional) An indirect reference to an appearance dictionary. If this key is omitted,
an appearance will be constructed using the Name key.

Implementation note Acrobat uses a predefined appearance if Name is any one of the following:
Approved, AsIs, Confidential, Departmental, Draft, Experimental,
Expired, Final, ForComment, ForPublicRelease, NotApproved,
NotForPublicRelease, Sold, and TopSecret.

6.6.10 Line annotation

A Line annotation displays an appearance as specified by its AP key which is in
the form of a single line. The associated Contents text is displayed in a pop-up
window when the annotation is opened.

PDF 1.3

PDF 1.3

PDF 1.3

March 11, 1999 6.6.11

6: Document Structure 95

Table 6.22 Line annotation attributes (in addition to those in Table 6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always Line.

BS (Border Style)
dictionary (Optional) The border style (see Table 6.11 on page 86) specifies the

characteristics of the line: its width and its dash pattern.

L array (Required) An array of four numbers, [x1 y1 x2 y2], specifying the starting and
ending points of a line, in default user coordinates.

AP dictionary (Optional) An indirect reference to an appearance dictionary. If this key is omitted,
then an appearance is generated from the BS and L keys.

6.6.11 Square and Circle annotations

The Square and Circle annotations display an appearance as specified by their AP
keys which are in the form of either a rectangle or an ellipse respectively (despite
the names Square and Circle). The associated text (in the Contents key) is
displayed in a pop-up window when the annotation is opened. The square and
circle are drawn inside the bounding box specified by the Rect key, which is
described in Table 6.10.

Table 6.23 Square and Circle annotation attributes (in addition to those in Table
6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always Square or Circle.

BS (Border Style)
dictionary (Optional) The border style (see Table 6.11 on page 86) specifies the

characteristics of the line: its width and its dash pattern.

AP dictionary (Optional) An indirect reference to an appearance dictionary. If this key is omitted,
then an appearance is generated from the BS and Rect keys.

6.6.12 StrikeOut, Highlight, and Underline annotations

The StrikeOut, Highlight, and Underline annotations display an appearance as
specified by their AP keys which is in the form of a one or more disjoint horizontal
line segments. The associated text (Contents key) is displayed in a pop-up
window when the annotation is opened.

PDF 1.3

PDF 1.3

6: Document Structure March 11, 1999

96 Adobe Systems Inc.

Table 6.24 StrikeOut, Highlight, and Underline annotation attributes (in addition
to those in Table 6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always StrikeOut, Highlight, or Underline.

QuadPoints array (Required) An array of 8 × n numbers defining the coordinates of n quadrilaterals,
in default user space. Each 8 numbers are in the following order:

x1 y1 x2 y2 x3 y3 x4 y4

specifying four points of a convex quadrilateral, proceeding
counterclockwise from (x1, y1). Each quadrilateral

encompasses a word or group of contiguous words in the text
underlying the annotation. The text is oriented with respect to
the edge from (x1, y1) to (x2, y2).

AP dictionary (Optional) An indirect reference to an appearance dictionary. If this key is omitted,
then an appearance is generated from the QuadPoints key.

Implementation note In Acrobat 4.0, the text is oriented with respect to the vertex with the minimum y
value (or the leftmost of those, if there are two such points) and the next vertex in a
counterclockwise direction, regardless of whether those are the first two points in
the QuadPoints array.

6.6.13 Ink annotations

The Ink annotation displays an appearance as specified by its AP key which is in
the form of a one or more disjoint paths. The associated text (Contents key) is
displayed in a pop-up window when the annotation is opened.

Figure 6.4 Square and Circle annotations

18 pt 18 pt

Square annotation with a border
size of 18 points, shown
inscribed inside the bounding
box of the annotation
(represented by the dashed
line).

Circle annotation with a border
size of 18 points, shown
inscribed inside the bounding
box of the annotation
(represented by the dashed
line).

1

2

3

4

Jupiter

PDF 1.3

March 11, 1999 6.6.14

6: Document Structure 97

Table 6.25 Ink annotation attributes (in addition to those in Table 6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always Ink.

InkList array (Required) An array of n arrays, representing n stroked paths. Each path is
represented by an array of alternating x and y coordinates, specifying points along
the path, connected by straight lines or curves, forming a continuously drawn
gesture. All coordinates are in default user space.

BS (Border Style)
dictionary (Optional) The border style (see Table 6.11 on page 86) specifies the width and

dash patterns of the paths in the InkList.

AP dictionary (Optional) An indirect reference to an appearance dictionary. If this key is omitted,
then an appearance is generated from the BS and InkList keys.

Implementation note The Acrobat 4.0 viewer always connects the points along each path with straight
lines.

6.6.14 File Attachment annotations

A File Attachment annotation allows the user to embed a file within a PDF file for
later extraction. For example, a user may want to embed a spreadsheet file next to
the table that shows the data in the spreadsheet.

Table 6.26 File attachment annotation attributes (in addition to those in Table
6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always FileAttachment.

FS File specification (Required) A file specification that refers to an embedded file (not the embedded
file itself).

Name name (Optional) The name of the icon to be displayed for the annotation. This is used by
the viewer to construct an appearance if the AP key is omitted. The default value is
PushPin.

AP dictionary (Optional) An indirect reference to an appearance dictionary. If this key is omitted,
an appearance will be constructed using the Name key.

Implementation note Acrobat uses a predefined appearance when the value of Name is Graph,
Paperclip, PushPin, or Tag.

PDF 1.3

6: Document Structure March 11, 1999

98 Adobe Systems Inc.

6.6.15 Pop-up annotations

Pop-up annotations display text in a pop-up window. The window can be used for
entry and editing of the text. Typically, the pop-up annotation is associated with
another “parent” annotation (e.g., Text, Ink) and does not appear alone in the
document.

A Pop-up annotation has no appearance or associated actions.

Table 6.27 Pop-up annotation attributes (in addition to those in Table 6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always Popup.

Parent dictionary (Optional) The parent annotation for this pop-up. The parent uses the pop-up
annotation to display its Contents text for viewing and editing. If this key is
specified, then the parent’s C (color), T (title), Contents, and M (modification
date) keys override those specified in the Pop-up dictionary.

Open boolean (Optional) Specifies whether the annotation should be opened (displayed) initially.
The default value is false.

6.6.16 PDF Trapping

Beginning with PDF 1.3, a PDF file may contain a trap network.

PDF 1.3

WE HAVE BEEN TRACKING GREAT EMPLOYERS SINCE 1981,
when we began research on our book The 100 Best
Companies to Work for in America. From our database of
more than 1,000 companies, we selected 238 as the most
viable candidates for this list. Of this group, 161 agreed to
participate. (To be eligible, a company must be at least ten
years old and have a minimum of 500 employees.)

We asked each candidate company to distribute to 225
randomly selected employees the Great Place to Work Trust
Index. This employee survey was designed by the Great
Place to Work Institute of San Francisco to evaluate trust in
management, pride in work/company, and camaraderie.
Responses were returned directly to us.

Each company was also required to fill out the Hewitt
People Practices Inventory, a comprehensive 29-page
questionnaire designed by our partner in this project, Hewitt
Associates of Lincolnshire, Ill., a leading management
consulting firm. Finally we asked each of our candidates to
send us additional corporate materials, such as employee

Joe Carousel
This is the pop-up associated with
the highlight annotation on the
page.

Figure 6.5 Pop-up annotation for a Text annotation

PDF 1.3

March 11, 1999 6.6.16

6: Document Structure 99

This section does not specify how trapping instructions are generated for PDF
files. That is explained in the Portable Job Ticket Format (PJTF) Specification; see
the Bibliography [9].

6.6.16.1 Discussion of Trapping

Trapping refers to the process of adding marks to pages along color borders in
order to avoid unattractive visual artifacts when those pages are printed. These
marks are calculated by software that interprets the page description language (in
this case, PDF) and determines where the marks should be added.

There are two aspects to trapping: trapping instructions, and trap networks.

Trapping instructions determine how the trapping engine should calculate traps for
a page. Specifically, trapping instructions identify zones on the page which should
be trapped (the trap zones), and prescribe the set of parameters (the trap styles)
which the trapping engine should use when calculating traps for each zone.

Trapping instructions are encoded in TrappingParameters and TrapRegion
objects as defined in the Portable Job Ticket Format specification (version 1.1).

A trap network annotation is the collection of all trap calculations for a single
page. A single trap style may be used on each region, or different trap styles may
be used on different regions of the same page. However, each trap region may have
only one trap style specified for it at any given time.

6.6.16.2 Terminology

The following terms are used in this section:

Trap Zone A closed region on a page which is to be trapped. A trap
zone is trapped using exactly one trap style (see below).

Trap Style A set of parameters which define how traps should be
calculated. Trap styles are equivalent to the contents of
the trapping parameters dictionary described in section
6.3.3 of the PostScript Language Reference Manual,
Third Edition [1].

Trapping Parameters A PJTF object which specifies a Trap Style.

Trap Region A PJTF object [9] which defines a trap zone, and which
identifies the Trapping Parameters object which is to be
used to trap the zone.

Trap Network A collection of PDF marking operations which comprise
the traps for one or more Trap Regions on a page.

Current Trap Network The trap network that the annotation is currently
displaying or printing. (A trap network annotation is a
PDF annotation of type TrapNet as defined in Section
6.6.16.4 on page 100.)

6: Document Structure March 11, 1999

100 Adobe Systems Inc.

Trap Engine Software which calculates trap networks for pages.

Figure 6.6 Trap Network Annotation

6.6.16.3 Trap Network Definition

This section specifies an annotation type to record, display, and print trap
networks. Each page may have a single TrapNetwork annotation. The annotation
can include multiple trap networks for a page. Each trap network is represented as
a separate entry in the Appearance Dictionary for the TrapNetwork annotation.

6.6.16.4 TrapNetwork Annotation Attributes

Each page may have at most one annotation of type TrapNet.

The TrapNet annotation must occur as the last entry in the Annots array for the
page. This ensures that the trap network is printed after all other page contents.

1 Trap Network Annotation = 1 PDF Document Page

Graphic 1

Graphic 3

Graphic 4

Graphic 2

Trap Style A

Trap Style B

Trap Style C

Trap Style A

�

March 11, 1999 6.6.16

6: Document Structure 101

Trap networks are represented as Form XObjects that occur as entries in the
Appearance Dictionary of TrapNet annotations. Trap network appearances which
are to be printed must occur in the N (Normal) sub-dictionary of the annotation AP
dictionary. Entries may be provided for the R (Rollover) or D (Down) keys in the
AP dictionary, but they cannot be printed.

More than one trap network may be calculated for a page, based on different
trapping styles (presuming different output devices). The sub-keys used inside the
N (Normal), R (Rollover) and D (Down) dictionaries are arbitrary.

Additional keys are provided in the trap network appearance objects which allow
the identification of the trap styles and zones which were used to calculate them.
See TrapNetwork Appearances Attributes on page 102 for more details.

The Version key provides a mechanism to identify the elements which made up
the page description when the trap network was calculated. This is accomplished
by retaining a reference to page contents and resources which might be changed by
an editing application, and would thus modify the appearance of the page,
invalidating the trap network. This array is unordered; to validate the trap network,
an application must enumerate the page elements which comprise the array and
verify that the results of that enumeration exactly match the elements of the
Version array.

Only one Version key is provided per TrapNet annotation (and thus per page).
For this reason, an application which calculates trap networks must verify the
validity of existing trap networks when calculating new trap networks. Trap
networks that are valid may be retained. Invalid trap networks must be deleted,
then replaced.

The FontFauxing key is used to identify Fonts which were fauxed during the
generation of traps for the page.

Table 6.28 TrapNetwork Annotation Attributes (in addition to those in Table 6.10)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always TrapNet

F (Flags) integer (Required) The flag field must be present, with the bit values specified below:

bit 1 The Invisible flag must be 0.

bit 2 The Hidden flag must be 0.

bit 3 The Print flag must be 1.

bit 4 The NoZoom flag must be 0.

bit 5 The NoRotate flag must be 0.

bit 6 The NoView flag must be 0.

bit 7 The ReadOnly flag must be 1.

6: Document Structure March 11, 1999

102 Adobe Systems Inc.

AP (Appearance)
dictionary (Required) Holds one or more trap networks for this page.

AS (Appearance State)
name (Required if more than one appearance is present) This value specifies which trap

network is “current” and will be displayed and printed.

Version array (Required) An unordered array of the objects that were present in the page
description when the trap network was calculated. For example, this array includes
all stream objects which occur in the Page key.

The entries in this array represent all the objects which (if changed) could affect
the appearance of the page.

A complete list of the objects which must be included in this array is provided in
Section 6.6.16.6 on page 103.

AnnotStates array (Required) An ordered array of names. Each entry is the value of the AS key for
the corresponding annotation in the Annots array of the page. For an annotation
with no AS key, null should be specified as the array element. No entry should be
included for the TrapNet annotation.

FontFauxing array (Optional) An array of fonts which were “fauxed” (replaced by substitution fonts)
during trapping. The entries in this array are the Font Resource objects which
were fauxed.

6.6.16.5 TrapNetwork Appearances Attributes

Each trap network appearance stores the marking operations calculated by the
trapping engine.

When the trapping instructions and the geometry of the trap zones are specified by
objects which occur in a Portable Job Ticket which is embedded in the PDF file,
the trap network appearances may contain references to the PJTF TrapRegion
objects which were used to by the engine to calculate those traps.

Note that TrapRegion objects (as defined in the Portable Job Ticket Format)
provide the geometry of the trap region, as well as reference (by name) to the
TrappingParameters used.

When the trapping instructions and the trap zone geometry are specified by an
external job ticket, or by some other means, the TrapRegions key is not present.

Whether or not TrapRegions is present, a textual description of the trapping
styles used to calculate the trap network may be provided using the TrapStyles
key.

March 11, 1999 6.6.16

6: Document Structure 103

Table 6.29 TrapNetwork Appearance attributes (in addition to those in Table
6.28)

Key Type Semantics

TrapRegions array (Optional) An array of references to TrapRegion objects (as specified in the
Portable Job Ticket Specification).

TrapStyles Text (Optional) Text which an application can use to describe a trap network to users
(for example, if the application provides the ability to switch between trap
networks).

PCM name (Required) Identifies the Process Color Model which was assumed when this
network was created (as documented in the PostScript Language Reference
Manual, Third Edition [1]). Legal values are DeviceGray, DeviceRGB,
DeviceCMYK, DeviceCMY, DeviceRGBK, and DeviceN.

SeparationColorNames
array (Optional) Identifies the colorants which were assumed when this network was

created. If absent, the colorants implied in the ProcessColorModel are assumed.

Colorants implied by PCM are always included.

6.6.16.6 Version Array

The following objects must be included in the Version array:

Table 6.30 Page elements to include in the Version array

Element Subtype Resources to include

Contents -- Include the Contents stream, or all streams in the Contents array.

All others None.

In addition, the following resources must be included:

Table 6.31 Page Resources to include in the Version array stream, or all stream

Type Subtype Resources to include

XObject all Include all XObject streams and all OPI dictionaries contained in the XObject.

ExtGState Include all ExtGState dictionaries.

Font any Include all Font dictionaries.

Pattern Include all Pattern stream objects.

ProcSet None.

6: Document Structure March 11, 1999

104 Adobe Systems Inc.

Properties Include each Property List (see Section 7.19, “Property lists).

Shading Include each Shading dictionary.

ColorSpace any Include all ColorSpace arrays.

In addition, for Form XObjects, include the following entries from the XObject’s
Resources dictionary:

Table 6.32 XObject Resources to include in the Version array

Type Subtype Resources to include

ExtGState Include all ExtGState dictionaries.

Font any Include all Font dictionaries.

Pattern Include all Pattern stream objects.

ProcSet None.

Properties Include each Property List dictionary.

Shading Include each Shading dictionary.

ColorSpace any Include all ColorSpace arrays.

6.6.16.7 Separated PDF and trapping

Separated PDF files (see page 80) cannot be trapped. This is because traps are
defined along the borders of adjacent objects that have different colors,
compensating for the small gaps that may occur when printing. A single separated
file uses only one color. Logically, separation must occur after trapping.

If a composite trapped PDF file is separated, it is the responsibility of the
application which separates the file to calculate new Version keys for the
separated trap networks.

6.7 Outline tree

An outline allows a user to access views of a document by name. As with a link
annotation, activation of an outline entry (also called a bookmark) brings up a new
view based on the destination description. Outline entries form a hierarchy of
elements. An entry may be one of several at the same level in the outline, it may be
a sub-entry of another entry, and it may have its own set of child entries. An outline
entry may be open or closed. If it is open, its immediate children are visible when
the outline is displayed. If it is closed, they are not.

March 11, 1999 6.6.16

6: Document Structure 105

If a document includes an outline, it is accessed from the Outlines key in the
Catalog object. The value of this key is the Outlines object, which is the root of the
outline tree. The contents of the Outlines dictionary appear in Table 6.33 and
Example 6.10. The top-level outline entries are contained in a linked list, with
First pointing to the head of the list and Last pointing to the tail of the list. When
displayed, outline entries appear in the order in which they occur in the linked list.

Table 6.33 Outlines attributes

Key Type Semantics

Count integer (Required if document has any open outline entries, otherwise optional) Total
number of open entries in the outline. This includes the total number of items open
at all outline levels, not just top-level outline entries. If the count is zero, this key
should be omitted.

First dictionary (Required if document has any outline entries; must be indirect reference)
Reference to the outline entry that is the head of the linked list of top-level outline
entries.

Last dictionary (Required if document has any outline entries; must be indirect reference)
Reference to the outline entry that is the tail of the linked list of top-level outline
entries.

Example 6.10 Outlines object with six open entries

21 0 obj

<<

/Count 6

/First 22 0 R

/Last 29 0 R

>>

endobj

Each outline entry is a dictionary, whose contents are shown in the following table.

Table 6.34 Outline entry attributes

Key Type Semantics

Title Text (Required) The text that appears in the outline for this entry.

Dest Destination (Optional; not permitted if the A key is present) A destination, as described on
Section 7.3.1 on page 184.

A (Action) dictionary (Optional, not permitted if the Dest key is present) The action to be performed
when this bookmark is activated; see page 107.

Parent dictionary (Required; must be indirect reference) Specifies the entry for which the current
entry is a sub-entry. The parent of the top-level entries is the Outlines object.

PDF 1.1

6: Document Structure March 11, 1999

106 Adobe Systems Inc.

Prev dictionary (Required if the entry is not the first of several entries at the same outline level;
must be indirect reference) Specifies the previous entry in the linked list of outline
entries at this level.

Next dictionary (Required if the entry is not the last of several entries at the same outline level;
must be indirect reference) Specifies the next entry in the linked list of outline
entries at this level.

First dictionary (Required if an entry has sub-entries; must be indirect reference) Specifies the
outline entry that is the head of the linked list of sub-entries of this outline item.

Last dictionary (Required if an entry has sub-entries; must be indirect reference) Specifies the
outline entry that is the tail of the linked list of sub-entries of this outline item.

Count integer (Required if an entry has sub-entries) If positive, Count specifies the number of
open descendants the entry has. This includes not just immediate sub-entries, but
sub-entries of those entries, and so on. If the value is negative, the entry is closed,
and the absolute value of Count specifies how many entries would appear if the
entry were reopened. If an entry has no descendants, the Count key is omitted.

SE dictionary (Optional; must be indirect reference) The structural element to which the outline
entry refers. See Section 6.17.3 on page 164.

Note In PDF 1.2, the AA (Additional Actions) key was also defined as an Outline entry
attribute. It was never implemented. In PDF 1.3, the AA key is obsolete and should
be ignored.

In PDF 1.3, an outline entry may refer to a structural element (e.g., the start of
Chapter 14) as well as to a destination (e.g., a certain rectangle on page 432) or
action. For backwards compatibility, however, such outline items should also
specify a destination as in PDF 1.2 and earlier. If a structural element is supplied,
the destination should correspond to a page area where the content of the structural
element is displayed.

The following example shows an outline entry. An example of a complete outline
tree can be found in Appendix A.

Example 6.11 Outline entry

22 0 obj <<

/Parent 21 0 R

/Dest [3 0 R /XYZ 0 792 0]

/Title (Document)

/Next 29 0 R

/First 25 0 R

/Last 28 0 R

/Count 4

>>

endobj

PDF 1.3

PDF 1.3

PDF 1.3

March 11, 1999 6.6.16

6: Document Structure 107

6.8 Actions

Beginning in PDF 1.1, it is possible to specify an action to be performed when a
Link annotation or Outline entry is activated, or when a document is opened. PDF
defines several subtypes of actions.

Table 6.35 Types of actions

Action type Description

GoTo Change the current page view to a specified page and zoom factor. See page 111.

GoToR (“GoTo Remote”) Open another PDF file at a specified page and zoom factor. See
page 111

Launch Launch an application, usually to open a file. See page 112.

Thread Begin reading an article thread. See page 121.

URI Resolve the specified Uniform Resource Identifier (URI). See page 113.

Sound Play a sound. See page 115.

Movie Play a movie. See page 116

SetState Store a value in the appearance-state (AS key) of an annotation’s appearance
dictionary. See page 117.

Hide Set or clear the Hidden flag for an annotation. See page 117.

Named Execute an action predefined by the viewer. See page 118.

SubmitForm Send data to a URL. See page 143.

ResetForm Set field values to their defaults. See page 144.

ImportData Import field values from a file. See page 145.

JavaScript Execute a JavaScript script. See page 145

Note It is intended that plug-in extensions may add new actions, as described in
Appendix G.

Note The NOP (no-op) action, defined in PDF 1.2, is obsolete in PDF 1.3.

An action is represented as a dictionary. Every action must contain an S (Subtype)
key. Other keys may be present, depending on the action type.

PDF 1.1

�

PDF 1.2

PDF 1.2

PDF 1.2

PDF 1.2

PDF 1.2

PDF 1.2

PDF 1.2

PDF 1.2

PDF 1.3

�

6: Document Structure March 11, 1999

108 Adobe Systems Inc.

Table 6.36 Action attributes (common to all actions)

Key Type Semantics

Type name Object type. Always Action.

S (Subtype) name (Required) Action subtype.

Next dictionary or array (Optional) The action, or sequence of actions, to be performed after the current
action.

In PDF 1.1, only single actions can be triggered as the result of a user action. PDF
1.2 allows actions to be chained together to provide a richer action model. For
example, if a user clicks on a particular link, it might play a sound, then go to a
new page, and then start up a movie.

The value of the Next key is either an action or an array of actions, each of which
may in turn contain a Next key. Note that this data structure allows the expression
of the actions as a tree. Actions are executed in the following order:

1. The current action is performed.

2. If the current action has a Next key whose value is an action, that action is
executed.

3. If the current action has a Next key whose value is an array of actions, then
each action in the array is executed, in order.

The application should attempt to provide reasonable behavior in extreme
situations: actions that are self-referential should not be subsequently executed;
actions that close the document or otherwise render the execution of the next
action impossible should terminate the execution of the action tree. The
application should ensure that a sequence of actions is interruptible by the user.

Note During its execution, an action should not modify its dictionary or the action tree
in which it resides. The effect of such modification on subsequent execution of
actions in the tree is undefined.

6.8.1 Action Trigger Points

In PDF 1.1, the presence of an A key or Dest key in an annotation or Outline entry
denotes an action that is to be performed when the mouse button is released after
clicking inside the annotation or Outline entry. PDF 1.2 provides a more general
mechanism by defining other “trigger points” (events) and associating actions with
each one by means of an “additional actions” dictionary, which is included in an
annotation or Outline entry as the value of the AA key.

Note The term “mouse” is used to represent a generic pointing device available for use
inside a viewing application. It is assumed that the pointing device has the
following characteristics:

PDF 1.2

PDF 1.2

PDF 1.2

�

March 11, 1999 6.8.1

6: Document Structure 109

• A selection button that may be activated, held, and released. This is often the
(left) mouse button.

• A notion of location, that is, an indication of where the device is pointing. In
many systems, this is usually denoted by the cursor.

• A notion of focus, that is, which element in the document is currently interacting
with the user. In many systems, this is denoted by a blinking caret, a focus
rectangle, or a color change.

The viewing application and any accessibility programs must ensure that a
mapping exists into this environment in order for these actions to be executed
correctly.

Table 6.37 Additional Actions attributes

Key Type Semantics

E (Enter) dictionary (Optional. Defined only for Annotation objects.) The action that is executed when
the cursor enters the activation area.

X (Exit) dictionary (Optional. Defined only for Annotation objects.) The action that is executed when
the cursor exits the activation area.

D (Down) dictionary (Optional. Defined only for Annotation objects.) The action that is executed when
the user depresses the mouse button inside the activation area.

U (Up) dictionary (Optional. Defined only for Annotation objects.) The action that is executed when
the user releases the mouse button inside the activation area. For backwards
compatibility, the A key in an annotation dictionary takes precedence over the U
key in this dictionary.

O (Open) dictionary (Optional. Defined only for Page objects.) The action that is executed after the
page has finished being drawn. This is independent of any OpenAction that may
be defined in the Catalog (see Table 6.1 on page 67), and would be executed after
such an action.

C (Close) dictionary (Optional. Defined only for Page objects.) The action that is executed when the
page is no longer being displayed (e.g., when the user goes to the next page or
follows a link). This action applies to the page being closed, and is executed before
any other page is opened.

F (Format) dictionary (Optional. Defined only for Field objects.) The action to be executed prior to when
an Acroform field has its appearance created based on its current value. The action,
if it is a JavaScript action, has the opportunity to modify the value for formatting
purposes.

V (Validate) dictionary (Optional. Defined only for Field objects.) The action to be executed prior to when
an Acroform field’s value is changed and saved. The action, if it is a JavaScript
action, has the opportunity to reject the change as invalid.

PDF 1.3

PDF 1.3

6: Document Structure March 11, 1999

110 Adobe Systems Inc.

K (Keystroke) dictionary (Optional. Defined only for Field objects.) The action to be executed whenever a
user types a keystroke in a text or combo box, or modifies the selection in a list
box. The action, if it is a JavaScript action, has the opportunity to reject or modify
the change.

C (Calculate) dictionary (Optional. Defined only for Field objects.) The action to be executed in order to
calculate an Acroform field’s value based on other field value changes in the
document. The action, if it is a JavaScript action, will calculate the new value of
the field.

Implementation note In PDF 1.2, the keys FP, PP, NP, and LP were also defined as Additional Actions
attributes. They were never implemented. In PDF 1.3, those keys are obsolete and
should be ignored.

Note The effects of a particular action attached to one of the field trigger points is
essentially limited only by the action itself and can be outside of the described
scope of the trigger. For example, even though the format trigger is used to invoke
actions that format field values prior to display, it is possible that an action
attached at this trigger point could perform a calculation or make any other
modification to the document.

Also note that these trigger points can be activated either through user interaction
(as described) or programmatically such as the resolution of the
NeedsAppearances key in the document, FDF import, or JavaScript actions.
For example, modifying a field value (by the user) can trigger a cascade of
calculations and further formatting and validation for other fields in the document.

Trigger points for mouse-events are defined with the following constraints:

• An Enter event cannot occur unless the mouse button is already up.

• An Up event cannot occur without an Enter event and a Down event occurring.

• An Exit cannot occur without an Enter occurring.

• In the case of overlapping or nested annotations, entering a second annotation’s
activation area causes an Exit of the first annotation’s area to occur.

Note In PDF 1.2, trigger points (AA dictionaries) were inherited. In PDF 1.3, they no
longer are.

Note The Enter and Exit triggers are determined by the annotation’s handler and may
not correspond to the annotation’s bounding box. Annotation handlers can
implement non-rectangular activation regions.

Note Triggers that are related to AcroForms (see page 129) are defined only for non-
button types of Fields.

PDF 1.3

PDF 1.3

PDF 1.3

�

March 11, 1999 6.8.2

6: Document Structure 111

6.8.2 GoTo action

A GoTo action has the same effect as specifying a destination (with a Dest key) in
a Link annotation, but it is less compact and is not compatible with PDF 1.0.
Destinations are preferred over GoTo actions.

Table 6.38 GoTo action attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Action type. Always GoTo.

D (Dest) Destination (Required) The destination, as described in Table 7.1 on page 184.

Example 6.12 GoTo action

42 obj

<<

/Type /Annot

/Subtype /Link

/Rect [71 717 190 734]

/Border [16 16 1]

/A <<

/Type /Action

/S /GoTo

/D [3 0 R /FitR -4 399 199 533]

>>

>>

endobj

Note This example has the same effect as the Link annotation shown in Example 6.9 on
page 90, which uses a destination (a Dest key).

6.8.3 GoToR action

The GoToR action is similar to the GoTo action. However, it includes an
additional parameter, the F key, that specifies the PDF file that contains the
action’s destination.

Table 6.39 GoToR action attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Action type. Always GoToR.

D (Dest) Destination (Required) An explicit destination, represented by an array, as described in Table
7.1 on page 184, except that the destination page (the first element of the array)
must be specified by a page number, not by an indirect reference to a Page object.
The first page is 0.

6: Document Structure March 11, 1999

112 Adobe Systems Inc.

If the destination is specified as an array, the first element of the array (the
destination page) must be a page number, not an indirect reference to a Page
object.

F (File) File specification (Required) The file containing the destination.

NewWindow boolean (Optional) If the value is true, then the destination document will be opened in a
new window; if it is false, then the destination document will be opened in the
same window as the source document. If this attribute is omitted, the viewer will
behave in accordance with the current user preference.

6.8.4 Launch action

The Launch action specifies an application to launch or a document to open. The
action must specify the application or document as a file, using the F key.

PDF also allows platform-specific information to be included in the Launch
dictionary where that information is needed for specific platform. The key Win is
used for information related to Microsoft Windows launches; the key Unix is used
for information related to UNIX system launches. If there is no platform specific
key, then the F key is used.

Table 6.40 Launch action attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Action type. Always Launch.

F (File) File specification (Required if there is no alternative key) The file to use in performing the specified
action. A viewer that encounters an action with no F key and for which it does not
understand any of the alternative keys does nothing.

Win dictionary (Optional) Windows-specific launch parameters as described in Table 6.41.

Unix undefined (Optional) Not yet defined.

Mac undefined (Optional) Not yet defined.

NewWindow boolean (Optional) If the destination is not a PDF document, then this key is ignored. If the
value is true, the document is opened in a new window; if it is false, then the
document is opened in the same window as the source document. If this attribute is
omitted, the viewer behaves in accordance with the current user preference.

Table 6.41 Windows-specific launch attributes

Key Type Semantics

F (File) string (Required) The document or application to launch, specified as a DOS file name
using standard DOS syntax of eight alphanumeric characters followed by a period,
then up to three more alphanumeric characters (commonly referred to as DOS

PDF 1.2

�

�

PDF 1.2

March 11, 1999 6.8.5

6: Document Structure 113

“8.3” naming). If the string includes a backslash (\), the backslash must itself be
preceded by a backslash. Note: this value must be a simple string. It is not a File
specification.

O (Operation) string (Optional) The operation to perform: (open) or (print). (open) is the
default. If the F key specifies an application, this key is ignored and the application
is launched.

P (Parameters) string (Optional) The parameters passed to the application specified by the F key. If the F
key specifies a document, this key should not be provided.

D (Directory) string (Optional) The default directory, specified using standard DOS syntax.

6.8.5 Thread action

When a viewer performs a Thread action, it goes to the specified thread and enters
thread mode. The thread need not be in the current PDF file.

Table 6.42 Thread action attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Action type. Always Thread.

F (File) File specification (Optional) If this key is omitted, then the thread is in the current file. Otherwise
this key specifies an external file containing the thread.

D (Dest) (Required) The desired thread destination. One of the following forms must be
provided:

dictionary An indirect reference to a thread. This form of the destination requires that the
thread be in the current file. (See Section 6.11, “Articles.”)

number The index of a thread. (The index of the first thread in a document is 0.)
Text The title of the thread. If more than one thread has the same title, the first thread in

the document’s list of threads with that title is chosen.

B (Bead) (Optional) The desired bead in the destination thread. One of the following forms
may be provided:

dictionary An indirect reference to a Bead dictionary. This form of the bead requires that the
thread be in the current file. See Table 6.55 on page 122.

number A number that specifies the bead’s index in the thread. (The index of the first bead
in a thread is 0.)

6.8.6 URI action

A Uniform Resource Identifier (URI) is a string that identifies a resource on the
Internet, typically a file that is the destination of a hypertext link, although it can
also “resolve” to a query or other entity. In PDF, activating a URI action causes the
URI to be resolved.

PDF 1.1

�

6: Document Structure March 11, 1999

114 Adobe Systems Inc.

Note The URI action is resolved by the Acrobat WebLink plug-in.

Table 6.43 URI action attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Action type. Always URI.

URI string (Required) The Uniform Resource Identifier to resolve, encoded in 7-bit ASCII.

IsMap boolean (Optional) If this key is true, the mouse position should be tracked when link is
activated.

In a URI string, any characters following a # define a fragment identifier.

<fragmentID>::= <handler>[=<data>]

handler indicates a service, typically provided by a plug-in, that makes use of the
resolved URI; data (the characters following an equal sign) provides additional
information for the handler. The only handler defined by PDF is designated by the
string nameddest. The data is interpreted as the name of a destination; such a
URI action is similar to a GoToR action that uses a named destination. If there is
no equal sign, then the entire fragment identifier is interpreted as data for the
nameddest handler; i.e., it is a named destination. For example, the following
two examples are equivalent; the first one is preferred.

<< /Type /Action /S /URI

/URI (http://www.adobe.com/techdocs/PDF1.3Man\

ual.pdf#nameddest=Chap2.Section3)

>>

<< /Type /Action /S /URI

/URI (http://www.adobe.com/techdocs/PDF1.3Man\

ual.pdf#Chap2.Section3)

>>

The syntax for handler is similar to a PDF name object (see page 39) except that =
is not permitted (because it separates the handler from the data). Furthermore, PDF
names allow characters that are not allowed in URI strings. To use such a character
in a fragment identifier, in either the handler or the data, write its two hex-digit
character code, preceded by a percent sign. The name X&Y, for example, would be
written as X%26Y.

A URI action’s IsMap attribute indicates that when the action is performed, the
(x, y) position of the mouse within the parent link annotation (relative to the upper
left hand corner of the link rectangle) should be concatenated to the end of the
URI, preceded by a question mark. Here is an example:

http://www.adobe.com/intro?100,200

http://www.adobe.com/techdocs/PDF1.3Man\
http://www.adobe.com/techdocs/PDF1.3Man\
http://www.adobe.com/intro?100,200

March 11, 1999 6.8.7

6: Document Structure 115

Suppose the bounding rectangle in user space of the Link annotation (the value of
the Rect key) is [llx lly urx ury]. Given the coordinates of the mouse position in
device space, (xd, yd), transform the mouse coordinates to user space, (xu, yu). The
final coordinates, (x, y), are obtained in this way:

x = xu - llx
y = yu - ury

Because these coordinates can be fractional and the IsMap attribute requires
integers, the final coordinates should be rounded to the nearest integer.

6.8.6.1 URI dictionary in the Catalog

In order to support URI action types, the Catalog of the PDF file may include a
URI dictionary.

Table 6.44 URI attributes

Key Type Semantics

Base string (Optional) Base URI to resolve relative references. This element allows the URI of
the document itself to be recorded in situations in which the document may be
accessed out of context. URI actions within the document may be in a “partial”
form relative to this base address. When the base address is not specified, the URI
is assumed to be the one originally used to locate the document. For example, if a
document has been moved but the documents pointed to by relative links within
the document have not, the Base key could be used to override the true URI of the
document to fix the relative links. This concept is parallel to the description of the
body element <BASE> as described in Section 2.7.2 of the HTML specification
[17].

6.8.7 Sound actions

A Sound action can be used to play a sound from with a PDF document.

Table 6.45 Sound action attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Object subtype. Always Sound.

Sound stream (Required) A Sound object. See Section 6.15 on page 147.

Synchronous boolean (Optional. The default is false.) If this key is true, the viewer does not permit
further user interaction, other than cancelling the action, until the sound has been
completed played.

Repeat boolean (Optional. The default is false.) If this key is true, the sound is repeated
indefinitely. If this key is present, the Synchronous key is ignored.

PDF 1.2

6: Document Structure March 11, 1999

116 Adobe Systems Inc.

Mix boolean (Optional. The default is false.) If this key is true, the viewer attempts to mix this
sound with any other sound playing. If this key is false, any playing sound is
stopped before starting this sound. This may be used to stop a Repeating sound.

Volume number (Optional. The default is 1.) The volume setting for the sound. This number must
be between 0 and 1.

Note In PDF 1.2, the value of the Sound key was allowed to be a File specification.
That is no longer supported, but the same effect can be achieved by using an
external stream.

6.8.8 Movie Player actions

A Movie Player action can be used to play a movie in a “floating window” or
within the rectangle of a Movie Player annotation. A Movie Player action
dictionary is identical to the Movie Activation dictionary described in Table 6.18,
with the following additional elements.

Table 6.46 Movie Player attributes (in addition to those in Table 6.36)

Key Type Semantics

Type name Object type. Always Action.

S (Subtype) name (Required) Object subtype. Always Movie.

Operation name (Optional) The action command for the movie. Currently defined values are:

Play Start playing the movie. The Mode key (see Table 6.18 on page
92) determines the type of play. This is the default value.

Stop Stop playing the movie and exit the action.
Pause Pause a playing movie.
Resume Resume a paused movie.

If Play is selected on a paused movie, the movie is repositioned to the Start
position (if specified) before playing.

T (Title) Text The title of the Movie annotation to be played. The movie annotation must be
contained in the destination page.

Annot dictionary An indirect reference to a Movie annotation.

Either T or Annot must be specified, but not both.

PDF 1.2

�

March 11, 1999 6.8.9

6: Document Structure 117

6.8.9 SetState action

Corresponding to the use of appearances for an annotation is the SetState action.
This action allows for the setting of the value of the AS key in the appearance
dictionary. This allows another annotation, page, or document-level event to
change the state of one or more target annotations. Note that the effect of this
action is temporary and does not permanently affect the document.

Table 6.47 SetState action attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Must be SetState.

T (Target) string (Required) The string contains the fully qualified field name of the AcroForm field
that is to change state as a result of this action. See page 131.

AS (Appearance State)
name (Optional) Indicates which appearance in the sub-dictionary of appearances for the

annotation should be shown. This has the effect of setting the appearance state
(AS) value in the annotation’s dictionary.

6.8.10 Hide action

Corresponding to the Hidden flag, the Hide action allows the author to determine
when a particular annotation is hidden or shown. For example, combined with the
action triggers (see page 108), when the user rolls the mouse over an area of the
page, an annotation can appear that describes the action that would occur if the
user clicked on that spot on the page. The Hide action is equivalent to setting or
clearing the Hidden flag for the annotation. Note that the effect of this action is
temporary and does not affect the document.

Table 6.48 Hide action attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Action subtype. Must be Hide.

T (Target) string (Required) The string contains the fully qualified field name of the AcroForm field
that is to be hidden or shown. See page 131.

H (Hide) boolean (Optional) If this boolean is true, the action hides the target annotation. If false, the
action shows the target annotation. The default for this key is true.

PDF 1.2

�

PDF 1.2

�

6: Document Structure March 11, 1999

118 Adobe Systems Inc.

6.8.11 Named actions

PDF 1.2 defines several actions, shown in the following table, that a viewer is
expected to support. Additional names may be defined in the future. Viewers may
support additional named actions, but a document that uses such names is not
portable. If a named action is inappropriate for a viewing platform, or if the viewer
does not recognize the name, it should take no action.

Table 6.49 Named Action Attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Action type. Always Named.

N (Name) name (Required) One of the names listed in Table 6.50.

Table 6.50 Named Action List

Name Action

FirstPage Go to the first page of the document.

PrevPage Go to the previous page in the document.

NextPage Go to the next page in the document.

LastPage Go to the last page in the document.

6.8.12 NOP action

The NOP action does nothing when it is executed. It exists primarily as a means of
overriding a trigger point that would inherit behavior either from some other part
of the document or from the viewer itself. For example, a page could specify the
NOP action for the NP key of its Additional Actions dictionary to prevent
anything from happening when the user attempted to go to the next page of the
document.

Table 6.51 NOP Action Attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Action type. Always NOP.

Note In PDF 1.3, the NOP action is no longer defined and should be ignored. In PDF
1.2, NOP was defined as a way to block the inheritance of the actions associated
with a trigger point. In PDF 1.3, there is no inheritance for trigger points, and
therefore no need for the NOP action.

PDF 1.2

�

PDF 1.2

�

PDF 1.3

March 11, 1999 6.8.12

6: Document Structure 119

6.9 Names dictionary

The Catalog of a document may contain a Names key. The value of this key is a
dictionary. Each value in this dictionary is a Name tree, which is a tree, similar to
the Pages tree, where the leaf nodes contain pairs of strings (the “names”) and
objects (the “values”). A name tree has the same purpose as a dictionary, mapping
keys to values, but it does so in a different manner: the keys in a name tree are
strings, not PDF name-objects.

Table 6.52 Names dictionary in the Catalog

Key Type Semantics

Dests Name tree The root of a name tree for named destinations. Destination names are encoded
with PDFDocEncoding. (See Section 7.3.2 on page 185.)

Pages Name tree The root of a Pages tree for AcroForms. (See Section 6.14.14 on page 146.)

Templates Name tree The root of a Templates tree for AcroForms. (See Section 6.14.14 on page 146.)

URLS Name tree (Optional) The root of a name tree that maps URLs to Web Capture Content Sets
(or arrays of Web Capture Content Sets). (See Section 6.16.2 on page 152.)

IDS Name tree (Optional) The root of a name tree that maps IDs to Web Capture Content Sets (or
arrays of Web Capture Content Sets). (See Section 6.16.2 on page 152.)

JavaScript Name tree (Optional) The root of a name tree for document-level JavaScript actions.

Note that the names of the individual JavaScripts in the Names dictionary serve as
a convenient means for organizing and packaging scripts. The names are arbitrary
and specified by the user when authoring the document and may or may not have
anything to do with the JavaScript name space. (See Section 6.14.13.4 on page
145.)

AP Name tree (Optional) The root of a name tree for named appearances. Appearances can be
referenced from multiple annotations. In order to save space in PDF files,
appearance attributes can be “named.” The values associated with the names are
appearance dictionaries

The values in the leaf nodes of the URLS and IDS name trees contain indirect
references to either a Web Capture Content Set object or an array of such objects.
The purpose of the array is to allow a single name, such as a URL, to map to
multiple Web Capture Content Sets. The Web Capture Content Sets need not, and
usually don’t, have the same subtype. For example, it is legal to have the same
URL map to multiple Web Capture Page Set objects, or to both Web Capture Page
Set objects and Web Capture Image Set objects. See Figure 6.13 for an example.

PDF 1.2

PDF 1.2

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

6: Document Structure March 11, 1999

120 Adobe Systems Inc.

6.10 Info dictionary

A document’s trailer may contain a reference to an Info dictionary that provides
information about the document. This optional dictionary may contain one or more
keys, whose values are strings. In most cases, the strings are actually Text. These
strings may be displayed and/or updated using a viewer of PDF files. For this
reason, the information in these keys may not always accurately reflect the state of
the PDF file.

Implementation note These strings are displayed in an Acrobat viewer’s Document Info dialog.

Note Omit any key in the Info dictionary for which a value is not known, rather than
including it with an empty string as its value.

Table 6.53 PDF Info dictionary attributes

Key Type Semantics

Author Text (Optional) The name of the person who created the document.

CreationDate Date (Optional) The date the document was created.

ModDate Date (Optional) The date the document was last modified.

Creator Text (Optional) If the document was converted into a PDF document from another
form, this is the name of the application that created the original document.

Producer Text (Optional) The name of the application that converted the document from its native
format to PDF.

Title Text (Optional) The document’s title.

Subject Text (Optional) The subject of the document.

Keywords Text (Optional) Keywords associated with the document.

Trapped name (Optional) This key is used to indicate whether the data in this PDF file has been
modified to express trapping information. Trapping means the modification of the
boundaries of colored objects within the PDF file to prevent the media color from
accidentally showing through when color planes are slightly misregistered in a
reproduction process. The defined names which this key can take are:

True The file has been modified to include trapping data and no further
trapping is needed; that is, all necessary traps for all pages of the
file have been created. (Note that this is the name /True, not the
boolean true.)

False No trapping modifications have been made to any page or object
of the entire file. Any desired trapping must be done before final
rendering of the file. (Note that this is the name /False, not the
boolean false.)

Unknown Either it is unknown whether the file has been trapped, or it is the
case that some but not all necessary traps have been created.

PDF 1.1

PDF 1.1

PDF 1.1

PDF 1.1

PDF 1.3

March 11, 1999 6.8.12

6: Document Structure 121

If the Trapped key is omitted, the default value of the key is Unknown. The
Trapped key may be set either by some processor that created traps or, because
trapping information may be generated at so many places in the workflow that
created the PDF file, the amount of trapping may only be known to a human
operator and it may be necessary for the trapping information to be manually
entered via a user interface to the Info dictionary.

Info strings that are to be interpreted as dates must include the D: prefix (see on
Section 7.2 on page 183). In particular, the 1.0 key CreationDate and the 1.1 key
ModDate should use this format. All Info strings that represent dates should be
displayed as a human-readable date. Other Info strings are uninterpreted.

Info keys and strings may be added to or changed by users or extensions, and some
extensions may choose to permit searches on these keys. PDF 1.1 does not define
short names for the keys in Table 6.53, to make it easier to browse and edit Info
dictionary entries. New names should be chosen with care so that they make sense
to users.

Although private data can be stored in the Info dictionary, it is more appropriate to
store it in the Catalog. This allows a user or program to alter entries in the Info
dictionary with less chance of unforeseen side effects.

The following example shows an Info dictionary.

Example 6.13 Info dictionary

1 0 obj

<<

/Creator (Adobe Illustrator)

/CreationDate (D:19930204080603-08'00')

/Author (Werner Heisenberg)

/Producer

(Acrobat Network Distiller 1.0 for Macintosh)

>>

endobj

6.11 Articles

An article thread identifies related elements in a document, enabling a user to
follow a flow of information that may span multiple columns or pages.

A PDF document may include one or more article threads. Each thread has a title
and a list of thread elements, which are referred to as beads. A viewer may allow
the user to select a particular thread and then navigate through it. As in newspaper
or magazine articles, beads are not necessarily located on contiguous pages or in
sequential page order. The viewer automatically maintains a comfortable zoom
level for reading and moves from one bead to the next, rather than from one page
to the next.

PDF 1.1

�

6: Document Structure March 11, 1999

122 Adobe Systems Inc.

If a document includes any threads, they are stored in an array as the value of the
Threads key in the Catalog object. Each thread and its beads are dictionaries.
Table 6.54 lists the attributes of a Thread dictionary, and Table 6.55 lists the
attributes of a Bead dictionary.

Table 6.54 Thread attributes

Key Type Semantics

F (First) dictionary (Required; must be an indirect reference) Specifies the first bead in this thread.

I (Info) dictionary (Optional) Information about the thread. This dictionary should contain
information similar to the document’s Info dictionary and should use the same key
names and data formats for entries that correspond to Info dictionary entries. Most
entries in this dictionary will be of type Text.

Table 6.55 Bead attributes

Key Type Semantics

T (Thread) dictionary (Required for the first bead of a thread; must be an indirect reference) The thread
in which this bead is an element.

V (Prev) dictionary (Required; must be indirect) The previous bead of this thread; for the first bead in a
thread, V specifies the last bead in the thread.

N (Next) dictionary (Required; must be indirect) The next bead of this thread; for the last bead in a
thread, N specifies the first bead in the thread.

P (Page) dictionary (Required; must be indirect) The Page on which this bead appears.

R (Rect) Rectangle (Required) Rectangle specifying the location of this bead.

The following example shows a thread with three beads:

Example 6.14 Thread

22 0 obj <<

/F 23 0 R

/I << /Title (Man Bites Dog) >> >>

endobj

23 0 obj <<

/T 22 0 R

/V 25 0 R

/N 24 0 R

/P 8 0 R

/R [158 247 318 905] >>

endobj

PDF 1.2

March 11, 1999 6.8.12

6: Document Structure 123

24 0 obj <<

/T 22 0 R

/V 23 0 R

/N 25 0 R

/P 8 0 R

/R [322 246 486 904] >>

endobj

25 0 obj <<

/T 22 0 R

/V 25 0 R

/N 23 0 R

/P 10 0 R

/R [157 254 319 903] >>

endobj

The Page object for each page on which beads appear should contain a B key, as
described in Section 6.4, “Page objects.” The value of this key is an array of
indirect references to each bead on the page, in drawing order.

6.12 File ID

A PDF file may contain a reference to another PDF file. Storing a file name, even
in a platform-independent format, does not guarantee that the file can be found,
even if it exists and its name has not been changed. Different server software
applications often present different names for the same file. For example, servers
running on DOS platforms must convert all file names to eight letters and a three-
letter extension. Different servers use different strategies for converting long
names to this format.

References to PDF files can be made more reliable by making the PDF file
reference consist of two parts: (1) a normal operating system-based file reference
and (2) a file ID. The file ID characterizes the file and is stored with the file.
Placing a file ID with the file reference and in the file itself increases the chances
that a file reference can be resolved correctly. Matching the ID in the reference
with the ID in the file indicates whether the desired file was found.

A PDF file may have an ID key in its trailer. The value of this key is an array of two
strings. The first element is a permanent ID, based on the contents of the file at the
time the file was created. This ID does not change when the file is incrementally
updated. The second element is a changing ID, based on the contents of the file at
the time the file is incrementally updated. When a file is first written, the IDs are
set to the same value. When resolving a file reference, if both IDs match, it is very
likely that the correct file has been found. If only the first ID matches, then a
different version of the correct file has been found.

PDF 1.1

�

6: Document Structure March 11, 1999

124 Adobe Systems Inc.

To help insure the uniqueness of the file ID, it is recommend that the file ID be
computed using a message digest algorithm such as MD5, as described in RFC
1321: The MD5 Message-Digest Algorithm [35]. It is recommend that the
following information be passed to the message digest algorithm:

• the current time

• a string representation of the location of the file, usually a path name

• the document size in bytes

• the value of each entry in the document’s Info dictionary.

Implementation note Adobe applications pass this information to the MD5 message digest algorithm to
calculate file IDs. Note that the calculation of the file IDs need not be
reproducible. All that matters is that the file IDs are likely to be unique. For
example, two implementations of this algorithm might use different formats for the
current time. This will cause them to produce different file IDs for the same file
created at the same time, but this does not affect the uniqueness of the ID.

6.13 Encryption dictionary

Documents can be protected via encryption, as described in Section 5.18,
“Encryption.” Every protected document must have an Encryption dictionary,
which specifies the security handler to be used to authorize access to the
document. The Encryption dictionary also contains whatever additional
information the security handler chooses to store in it.

The value of the Filter key is the name of the security handler that encrypted the
document.

The V key indicates the algorithm that is used to encrypt and decrypt document
data, as described below. A security handler may require additional keys in the
Encryption dictionary. The keys required by the built-in standard security handler
are described below.

The V key is set and used by the PDF consumer (e.g., viewer) rather than by the
security handler. A value of 1 corresponds with Algorithm 5.3 on page 63. A value
of 0 corresponds to an algorithm that is no longer supported and has been
deprecated. Values greater than 1 are not defined for PDF 1.3; PDF files with
values greater than 1 cannot be opened by PDF viewers that support PDF 1.3.

Standard encryption

The built-in encryption method provided by PDF allows for the following
functionality. A document has two passwords: an owner password and a user
password. The document also specifies operations that should be restricted even
when the document is decrypted: printing; copying text and graphics out of the
document; modifying the document; and adding or modifying text notes and
AcroForm fields. When the correct user password is supplied, the document is

PDF 1.1

March 11, 1999 6.8.12

6: Document Structure 125

opened and decrypted but these operations are restricted; when the owner
password is supplied, all operations are allowed. The owner password is required
to change these passwords and restrictions.

A document is encrypted whenever a user or owner password or restrictions are
supplied for the document. However, a user is prompted for a password on opening
a document only if the document has a user password. It is possible to determine if
a document has a user password by testing the empty string as the user password,
as described in Algorithm 6.10 below.

Note If the Owner and User passwords are the same, the document is opened with User
permission. It is, therefore, impossible at this point to get Owner permission for the
file.

Note Table 6.56 lists the Encryption dictionary attributes of a document that is
encrypted using the standard security handler. The data in this dictionary is used
to determine if a candidate password string is the user password, the owner
password, or neither. If it is the user password, the dictionary data is used to
determine the operations that should be restricted. The calculation and use of data
in this dictionary is described below.

Table 6.56 Standard security handler attributes

Key Type Semantics

Filter name (Required in all encrypted documents) Name of security handler. The name of the
built-in handler is Standard.

R (Revision) number (Required if Filter is Standard) Revision number of algorithm used to encode
data in this dictionary. The current revision number for the Standard security
handler is 2.

O (Owner) string (Required if Filter is Standard) Data that can be used to determine whether or
not the owner password was entered. Contains an encrypted version of the padded
user password. Step 1 of Algorithm 6.7 shows how to pad the user password.

U (User) string (Required if Filter is Standard) Data that can be used to determine whether or
not the user password was entered. Contains an encrypted version of the fixed
padding string shown in step 1 of Algorithm 6.7.

P (Permissions) integer (Required) Collection of flags describing permissions granted to user who opens a
file with the user password. See Table 6.57.

V (version) number (Optional) Indicates the algorithm that is used to encrypt and decrypt document
data. The value should be 1, indicating Algorithm 5.3 on page 63. If the value is
omitted, the default value is 0, but that indicates an algorithm that is undocumented
and deprecated. It is strongly recommended that a value of 1 be specified.

6: Document Structure March 11, 1999

126 Adobe Systems Inc.

The value of the P (Permissions) key is an unsigned 32-bit integer that contains a
collection of access rights. These rights are enabled on opening the document with
the user password if the corresponding bit is set in the integer. Table 6.57 specifies
the meanings of the bits, with bit 1 being the least significant.

Table 6.57 Permission flags

Bit position Semantics

1–2 Reserved. Must be set to 0.

3 Enable printing of the document.

4 Enable changing the document other than by adding or changing text notes and
AcroForm fields.

5 Enable copying of text and graphics from the document.

6 Enable adding and changing text notes and AcroForm fields.

7–32 Reserved. Each bit must be set to 1.

As described in Section 5.18, “Encryption,” one function of a security handler is to
produce a five-byte key that is provided as input to the PDF encryption algorithm.
Given a password string, the standard security handler computes an encryption key
using Algorithm 6.7:

Algorithm 6.7 Computing an encryption key

1. Truncate the password string to 32 bytes. (Treat an omitted password as an
empty string.) If the string is less than 32 bytes long, pad it with bytes from
the following string to make it exactly 32 bytes long:

<28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08

2E 2E 00 B6 D0 68 3E 80 2F 0C A9 FE 64 53 69 7A>

Pad the password string from the beginning of the pad string. That is, if the
password string is n bytes long, concatenate bytes 1 to 32 – n of the pad string to
the password string.

2. Provide the string as input to the MD5 hash function.

3. Input the value of the Encryption dictionary’s O (Owner) key (a 32-byte
string) to the MD5 hash function. (Algorithm 6.8 explains how the O string
is computed.)

4. Treat the value of the P (Permissions) key as an unsigned four-byte integer,
and provide these bytes to the MD5 hash function, low-order byte first.

5. Input the first element of the file’s ID to the MD5 hash function. (See
Section 6.12, “File ID.”)

March 11, 1999 6.8.12

6: Document Structure 127

6. The first five bytes of the MD5 output make up the encryption key.

The encryption key is used to encrypt strings and stream data, as described in
Section 5.18, “Encryption.” The same key decrypts data as well.

To create an encrypted document, the standard security handler must compute the
entries in the Encryption dictionary as well as the encryption key. While
calculation of the value of the Filter, R (Revision), and P (Permissions) keys are
straightforward, calculation of the value of the O (Owner) and U (User) keys
requires further explanation.

Algorithm 6.8 shows how to calculate the value of the O key in the Encryption
dictionary:

Algorithm 6.8 Computing the O (Owner) key in the Encryption dictionary

1. Truncate or pad the owner password string as needed, following the same
process as in step 1 of computing an encryption key (Algorithm 6.7). If
there is no owner password, the user password is used instead.

2. Provide the string as input to the MD5 hash function.

3. Create an RC4 key using the first five bytes of the MD5 output.

4. Truncate or pad the user password string as needed, following the same
process as in step 1 of Algorithm 6.7.

5. Encrypt the padded user password string using the RC4 algorithm with the
key from step 3.

6. Store the encrypted string as the value of the O key in the Encryption
dictionary.

Algorithm 6.9 shows how to calculate the value of the U key in the Encryption
dictionary:

Algorithm 6.9 Computing the U (User) key in the Encryption dictionary

1. Create an encryption key (Algorithm 6.7) based on the user password
string.

2. Encrypt the 32-byte string specified in step 1 of Algorithm 6.7 using the
RC4 algorithm with the encryption key from the previous step.

3. Store the encrypted string as the value of the U key in the Encryption
dictionary.

The standard security handler performs several other functions beyond calculating
the key needed to encrypt or decrypt data, as described above. It determines if the
candidate password string is the user password, the owner password, or neither. If
it is the user password, it determines the operations that should be restricted.

�

6: Document Structure March 11, 1999

128 Adobe Systems Inc.

Given a password, the standard security handler uses the contents of the
Encryption dictionary to determine if a document should be opened and what
permissions should be granted. If the password is the user password, the document
is opened only with the permissions specified in the Encryption dictionary. If the
password is the owner password (but not the same as the user password), all
permissions are enabled.

To determine if a password is the correct user password, the security handler uses
Algorithm 6.10:

Algorithm 6.10Checking for the correct user password

1. Use steps 1 through 3 of Algorithm 6.7 to compute an encryption key from
the password string.

2. Use RC4 with this encryption key to decrypt the value of the U key.

3. If the decrypted value of the U key is the fixed padding string shown in step
1 of Algorithm 6.7, the password is the user password.

To determine if a password is the correct owner password, the security handler
uses Algorithm 6.11:

Algorithm 6.11Checking for the correct owner password

1. Use steps 1 through 3 of Algorithm 6.7 to compute an encryption key from
the password string.

2. Use RC4, with this encryption key, to decrypt the value of the O key.

3. Use Algorithm 6.7 to compute an encryption key from the decrypted value
of the O key.

4. Use RC4, with this encryption key, to decrypt the value of the U key.

5. If the decrypted value of the U key is the fixed padding string shown in step
1 of Algorithm 6.7, the password is the owner password.

Note Despite the specification of document permissions in a PDF file, PDF cannot
enforce the restrictions specified. It is up to the implementors of PDF viewers to
respect the intent of the document creator by limiting access to an encrypted PDF
file according to the permissions and passwords contained in the file.

Document creators have two choices if the standard encryption provided by PDF is
not sufficient. They can use an alternative, more secure, security handler, or they
can encrypt whole PDF documents, bypassing PDF security entirely.

March 11, 1999 6.14.1

6: Document Structure 129

6.14 Acrobat Forms

Beginning with version 1.2, PDF defines a number of interactive document
features. Prominent among these is the feature that allows a PDF document to
represent a form. By form we mean the PDF equivalent of the familiar paper
instrument and not the Form XObject defined on page 255. The term AcroForm
refers to the feature defined here; the other is referred to explicitly as a Form
XObject.

An AcroForm consists of a collection of fields. A field should be thought of as a set
of properties. The three most important properties of a field are its type, its name,
and its value. Other properties are used to specify the appearance of a field. Fields
can be organized into a hierarchy, and there are still other properties of the field
that associate it with its parent and children.

6.14.1 AcroForm

A PDF file may contain at most one AcroForm, although that AcroForm may have
an arbitrary number of fields that appear on any page of the PDF file. The
properties of the AcroForm itself are encoded in a dictionary that is referenced in
the Catalog dictionary of the PDF file using the key AcroForm.

Note Although each PDF file contains at most a single AcroForm, arbitrary sets of fields
may be imported and exported from the PDF file; see Section 6.14.13 on page 143.

The AcroForm dictionary has the following attributes:

Table 6.58 AcroForm dictionary attributes

Key Type Semantics

Fields array (Required) This array contains a reference to each root field in the PDF file. A root
field is a field with no parent.

NeedAppearances
boolean (Optional) AcroForms use annotations; in particular, AcroForms use the AP

dictionary of an annotation to represent the appearance of a field’s value. Form-
authoring applications can omit the AP dictionary for fields that contain text (see
Section 6.14.5 on page 133). When the PDF file is opened, if
NeedAppearances is true, the viewer creates an AP dictionary and all of its
subparts including the N dictionary and the appearance stream it refers to, for any
field containing variable text that does not have one. The default value for this
attribute is false.

CO (Calculation Order)
array (Required if calculation scripts are specified for fields in the document) A

JavaScript key (see page 145). An array of indirect pointers to field dictionaries.
The order of fields within the calculation order array is the order in which actions
attached to the fields’ calculation triggers will be executed.

PDF 1.2

PDF 1.3

6: Document Structure March 11, 1999

130 Adobe Systems Inc.

SigFlags integer (Optional) Signature flags. Collection of document-level flags defining various
characteristics related to signature fields (see Section 6.14.12 on page 141). The
default value is 0. The following flags are defined:

bit 1 Signatures-exist flag. A value of 1 indicates that at least one of the fields in the
document is of type Sig. This is intended for use by viewer interfaces to enable
menu items or buttons appropriate for manipulating signatures. This bit is always
available with the first page of a linearized file, while scanning all the fields
potentially requires loading all the pages.

bit 2 Append-only flag. A value of 1 indicates that the user is to be discouraged from
saving (writing) the file in a way that alters the previous contents of the file, such
as saving with the “optimize” option, because doing so will likely invalidate
signatures contained in the document. Merely updating the file, which involves
appending new information to the end of the previous of the version of the file, is
fine. (See Section A.6 on page 435.) The intended use of this flag is for the viewer
to present the user doing a save/optimize with an additional dialog box stating that
signatures will be invalidated and asking whether to continue, with a default action
of canceling the save.

In addition to the attributes in Table 6.58, the AcroForm dictionary can contain
document-wide defaults for the Q, DR, OH and DA field dictionary attributes,
described below.

In order to ensure efficient performance of field value calculation, it is necessary to
calculate field values in a single pass through all of the calculation scripts in the
document. Because JavaScript is a full programming language, it is difficult to
determine dependencies between calculations and the proper calculation order
based on a simple analysis of these scripts.

The order of fields within the Calculation Order array is the order in which actions
attached to the fields’ calculation triggers will be executed.

6.14.2 Fields

The properties that define each distinct field are stored in a dictionary. All such
dictionaries must be indirect objects. A particular property of a field is found in
one of three ways. In the simplest case, the property is found immediately in the
dictionary, referenced by a predefined key. For example, the simple way to
represent the type of a checkbox field is to place the key-value pair

<< /FT /Btn >>

in the field’s dictionary, indicating that is a button.

Fields are arranged in a hierarchy, and many properties that can be stored directly
in the dictionary can also be inherited from the field’s parent. In general, an
inherited property might be found in the grandparent or some arbitrary ancestor of
the field.

PDF 1.3

PDF 1.3

March 11, 1999 6.14.3

6: Document Structure 131

One field property is neither stored directly in the dictionary nor inherited from an
ancestor. This property, the fully qualified field name, must be derived from the T
attribute of the field and its ancestors. A fully qualified field name is an ordered
collection of the partial field names of a field and all of its ancestors. The partial
field name is stored in the dictionary as the key-value pair

<< /T string >>

The fully qualified field name is formed by concatenating the partial field names,
separated by periods, such as (a.b.c.d).

One way of producing the ordered collection is to store the partial field names in
an array. Using this technique, two fully qualified field names are identical if the
arrays are of equal size and the components of the array are pairwise identical.

It is possible for different fields to have the same fully qualified field name, albeit
under a restricted set of circumstances. All fields with the same fully qualified field
name must be descendents of a common ancestor with that same name. In practice,
this means that none of these descendants can have a T attribute. If different fields
have the same fully qualified field name, the fields should differ only in properties
that specify appearance. In particular, whenever different fields have the same fully
qualified field name, they must have the same type, value, and default value, as
described below. Given a fully qualified field name, there is an effective way to
find the common ancestor of all fields with that name.

6.14.3 Field dictionaries

All types of fields share the following attributes. Since the notion of required and
optional fields is somewhat clouded by inheritance, in addition to the normal
categories of Required and Optional, we use the terms Required, inheritable for
attributes that must exist somewhere in the inheritance hierarchy, and Optional,
inheritable for attributes that may exist somewhere in the inheritance hierarchy.

Table 6.59 Attributes common to all types of fields

Key Type Semantics

FT name (Required, inheritable) The type of field. Valid field types include:

Btn Button field. This field type is used for a checkbox, radio button, or a push button.
A checkbox is a field that toggles between two states, on and off. A radio button is
a field made up of an arbitrary number of toggles, only one of which can be on at
any given time. A push button is a simple interactive element that retains no value.
See Section 6.14.6 on page 135.

Tx Text field. A field whose value is text. Text may be single- or multi-line. See
Section 6.14.11 on page 139.

Ch Choice field. Like a radio button, this field type takes on one value from an
arbitrary set. It is presented to the user as a pop-up list or a scrollable list, rather
than as a set of mutually exclusive toggles. See Section 6.14.10 on page 138.

Sig Signature field. See Section 6.14.12 on page 141. PDF 1.3

6: Document Structure March 11, 1999

132 Adobe Systems Inc.

T Text (Optional) The partial field name. The fully qualified field name is derived from
the partial field name, as described above.

Acrobat 4.0 does not support Unicode encoding of field names.

V various (Optional, inheritable) The value. The format of the value is dependent on the type
of the field as specified by the FT attribute. See the following sections for details
on the field values for particular types.

DV various (Optional, inheritable) The default value. The value of the field reverts to this
when a ResetForm action (see Section 6.14.13.2 on page 144). The format of DV
is the same as V.

Ff integer (Optional, inheritable) Flags. Collection of flags defining various characteristics
of the field. The default value is 0. The following flags apply to any field,
regardless of field type:

bit 1 Read-only flag, indicating that the user is not allowed to change the field value in
the viewer. This is intended for use with computed fields or fields that are imported
from a database.

bit 2 Required flag, indicating that the this field must have a value at the time the field is
exported by a Submit action; see Section 6.14.13.1 on page 143.

bit 3 No-export flag, indicating that this field must not be exported by a Submit action;
see Section 6.14.13.1 on page 143.

Kids array (Optional) The Kids and Parent attributes define the child/parent relationship
between field dictionaries. This array contains references to child field dictionaries
of this field. A child may be referenced from only one Kids array and thus has a
unique parent.

A field dictionary may use a Kids array to reference sub-fields (i.e. fields that
share a common prefix with their fully qualified field). That shared prefix is the
fully qualified field name of this field. For instance, you might create a field
dictionary whose T key is (Address) with sub-field dictionaries whose T keys
are (Street) and (City).

A field dictionary may use a Kids array to reference child fields that differ from
this field only in their appearance. Such child fields inherit FT, V, and DV
attributes and may not specify a T attribute.

Parent dictionary (Required if this field is referenced from another field’s Kids array) The parent
field.

TU Text (Optional) User Name. The name to be used when generating error or status
messages for a field.

TM Text (Optional) Mapping Name. The name to be used when exporting AcroForm field
data from a document.

�

PDF 1.3

PDF 1.3

PDF 1.3

March 11, 1999 6.14.4

6: Document Structure 133

6.14.4 Widget annotations

AcroForms use annotations to represent the appearance of fields and to manage
user interactions. These annotations have a subtype of Widget.

If a field has an appearance, that appearance must be represented with an AP
dictionary (see page 87). Conversely, if an AP dictionary exists, the appearance it
represents must be consistent with the value of the field.

As an optimization, the attributes of a field are merged into a single dictionary with
the attributes of the Widget annotation that represents the appearance of the field
and manages user interactions. Hence, a field may also be a bona fide annotation
that is referenced in the Annots array of some Page dictionary. The keys for a
field dictionary and an annotation dictionary are mutually exclusive, so there is no
ambiguity in doing this. A field is also a Widget annotation if and only if it
contains a Subtype attribute whose value is Widget. A Widget annotation is also
a field if and only if it contains a T attribute, or if it contains a Parent attribute one
of whose ancestors, as found by following the Parent references, contains a T
attribute.

6.14.5 Fields comprising variable text

Both text fields and choice fields can contain variable text (i.e., text stored in field
dictionary attributes that are used to generate the appearance of the field). The
sections on text and choice fields, below, contain more information on exactly
which attributes are used in each case. When there is a change in the attributes of a
text or choice field that affect the appearance, the viewer must generate an
appearance stream for the field, contained in the AP dictionary of the Widget
annotation, conforming to these new attributes. A number of additional attributes
are defined to specify the initial appearance of this text.

Table 6.60 Attributes common to all types of fields containing variable text

Key Type Semantics

DR dictionary (Required, inheritable) Default resources. This is a Resources dictionary (see page
195). At a minimum, this dictionary must contain a resource of type Font. The
Font resource is, in turn, a dictionary which must contain at least one key-value
pair specifying the resource name and resource dictionary of the default font for
this field. All resources from the DR dictionary are copied to the appearance
stream when it is created or updated.

DA string (Required, inheritable) Default appearance string. This string contains a sequence
of valid page-content graphics or text-state operators that determine such
appearance properties as text color, text size, etc.

H (Highlight) name (Optional) Indicates how click-feedback appears.

Q integer (Optional, inheritable) Quadding. This determines whether the input text is left-
justified (0), centered (1) or right-justified (2). The default value is 0.

6: Document Structure March 11, 1999

134 Adobe Systems Inc.

OH integer (Optional) Original height. This determines the height of the BBox attribute of the
appearance stream. The default for this attribute is the height of the Rect attribute
of the Widget annotation that contains the appearance stream.

A viewer must generate the appearance stream according to the following
procedures. There are two cases to consider. In the first case, the appearance
stream is created where none existed previously. In the second, an existing
appearance stream is updated to reflect a new value.

If the appearance stream is created, when the Widget annotation used to represent
the appearance of the field contains no appearance stream, a viewer performs the
following actions:

• Create the appearance dictionary, AP, in the Widget annotation. Create an
empty stream. Set the normal face, N, of the appearance dictionary to the newly
created stream. Set the Resources dictionary of the newly created stream to DR.
Set the BBox attribute of the stream. The lower and left coordinates of the
BBox are set to 0. The top coordinate is set to OH. The right coordinate is set
to the width of the Rect of the Widget annotation divided by the ratio of OH to
the height of the Rect of the annotation. All other stream attributes are set to
their defaults.

• Insert /Tx BMC q into the stream data. The BMC operator labels the stream
data as marked content with the tag Tx (see page 353). The q operator saves the
current graphics state.

• If any graphics-state changes are required, such as clipping, emit them here.

• Insert BT to begin the text object.

• Insert the DA string into the stream data, subject to the following constraints:

Graphics state operators, if specified, must be operators that are legal within a text
object (see Figure 8.1 on page 320). At a minimum, a Tf operator along with its
two parameters, fontname and size, must be present. The fontname must match a
resource name in the Font resource of the default resource dictionary, DR. If size
is 0, then the size of the font is computed as a function of OH (or the height of the
annotation’s rect when OH is not defined), and that value is inserted instead of 0.
(This is referred to as “auto-sizing.”) If a Tm operator is present, the x and y
translation components are replaced with positioning information determined by
the viewer to be appropriate, based on the field value, the Q attribute, and any
layout rules it employs.

Note The DA string should contain at most one Tm operator.

• If the DA string contains no Tm operator, emit Tm with appropriate x and y
translation components, as described above.

• Emit any text string operators necessary to show the variable text along with
any additional, necessary text positioning operators.

March 11, 1999 6.14.6

6: Document Structure 135

• Emit ET Q EMC. The ET operator ends the text object, the Q operator restores
the previous graphics state, and the EMC operator indicates the end of the
content that was marked with tag Tx.

If an existing appearance stream is updated to reflect a new value, when an
appearance stream already exists, the viewer performs the following actions:

• Copy the resources from DR to the Resources dictionary of the appearance
stream. Conflicts between resource names in DR and the existing appearance
stream are resolved in favor of the appearance stream (i.e., no copy takes place).

• Search the appearance stream for the sequence /Tx BMC and the matching
EMC, accounting for any nested BMC/EMC pairs in this matching process.
Valid appearance streams should have exactly one such BMC operator with tag
Tx.

• Replace the stream contents identified in the previous search by the stream
contents generated in the first case beginning at the second step; i.e. emit /Tx
BMC q, etc. If the original appearance stream contains no content marked with
tag Tx, then append the new stream contents to the end of the original stream.

6.14.6 Button field

The Btn field type is used for checkboxes, radio buttons, and simple push buttons
that retain no value. Simple push buttons are distinguished from checkboxes or
radio buttons by the push-button flag. Radio buttons and checkboxes are
distinguished with the radio flag.

Table 6.61 Field flags (Ff) for Btn fields

Bit Position Semantics

16 Radio flag. If this flag is true (i.e., if this bit is 1), then the Btn field is a radio
button; otherwise it is a checkbox. This flag is meaningful only if the push-button
flag is false.

17 Push-button flag. This flag is used to indicate a button field that is “purely
interactive”; i.e., one that responds to user input in some way but does not change
state as a result of that input.

6.14.7 Push button

A push button is the simplest type of field. It has no value. It can assume any of the
attributes common to all fields except the V and DV attributes. The FT attribute
must be set to Btn, the Ff key is required, and the push-button flag must be set to
1.

6: Document Structure March 11, 1999

136 Adobe Systems Inc.

6.14.8 Checkbox

A checkbox is a field that can assume two states, on and off. Each state can have a
separate appearance created from arbitrary marking operations. These appearances
are found in the AP dictionary of the field annotation; see page 87. The appearance
for the off state is optional but, if present, must be stored in the AP dictionary
under the name Off. The recommended name for the on state is Yes, but this is not
required. The Ff attribute of a checkbox field should have both the push-button and
radio flags set to 0. In addition to the attributes common to all fields, a checkbox
field can contain the following attributes:

Table 6.62 Checkbox attributes

Key Type Semantics

FT name (Required, inheritable) Field type. Must be Btn.

Ff integer (Optional, inheritable) Flags. The push-button and radio flags must both be set to
0.

V name (Optional, inheritable) Field value. This indicates which of the two states the
checkbox is in. The value of a checkbox is the name that is used to identify its
appearance in the AP dictionary. So, if the checkbox is in the off state, then the
value is Off. If it is in the on state, then the value contains whatever name is used to
identify this state in the AP dictionary. As mentioned above, it is recommended
but not required that this name be Yes. The default value for this attribute is Off.

Example 6.15 Simple checkbox field with Zapf Dingbats check character (�)

1 0 obj

<< /FT /Btn

/T (Urgent)

/V /On

/AS /On

/AP << /N << /On 2 0 R >> >>

>>

endobj

2 0 obj

<< /Resources 20 0 R /Length 50 >>

stream

q 0 0 1 rg BT /ZaDb 12 Tf 0 0 Td (8) Tj ET Q

endstream

endobj

6.14.9 Radio button

A radio button is a field that can assume at most one of n+1 predefined states. The
radio button is conceptually formed from n checkboxes, with the added semantics
that selecting any one of the checkboxes deselects all the others. The PDF

March 11, 1999 6.14.9

6: Document Structure 137

representation of a radio button is n+1 fields, one for the radio button itself and one
for each of the underlying checkboxes. The Ff attribute of a radio button has the
push-button flag set to 0 and the radio flag set to 1.

Each child of the radio button is a checkbox that inherits its type and value from
the parent radio button.

In addition to the attributes common to all fields, the radio button contains the
following attributes:

Table 6.63 Radio button attributes

Key Type Semantics

FT name (Required, inheritable) Field type. Must be Btn.

Ff integer (Required, inheritable) Flags. The push-button flag should be 0. The radio flag
should be 1. A radio button contains one additional flag:

bit 15 “No toggle to Off” flag. If this bit is 1, then selecting the checkbox that is in the on
state leaves it in that state, rather than toggling it to off; in effect, the checkbox is
“re-selected.” If this bit is 0, the checkbox that is currently in the on state can be set
to off even if no other checkbox enters the on state.

Kids array (Required) An array of n checkboxes.

V name (Optional, inheritable) The value. V is the name of the key in the AP dictionary of
whichever child checkbox is in the on state. The default value for this attribute is
Off.

Example 6.16 Radio button field with two buttons

10 0 obj The radio button
<<

/FT /Btn

/Ff ...7 … radio flag = 1, push-button = 0 …
/T (Credit Card)

/V /Master-Card

/Kids [11 0 R 12 0 R]

>>

endobj

11 0 obj checkbox 1
<<

/Parent 10 0 R

/AS /Master-Card

/AP

<</N << /Master-Card 8 0 R /Off 9 0 R >> >>

>>

endobj

6: Document Structure March 11, 1999

138 Adobe Systems Inc.

12 0 obj checkbox 2
<<

/Parent 10 0 R

/AS /Off

/AP

<< /N << /Visa 8 0 R /Off 9 0 R >> >>

>>

endobj

8 0 obj An “On” stream
<< /Resources 20 0 R /Length 50 >>

stream

q 0 0 1 rg BT /ZaDb 12 Tf 0 0 Td (8) Tj ET Q

endstream

endobj

9 0 obj An “Off” stream
<< /Resources 20 0 R /Length 50 >>

stream

q 0 0 1 rg BT /ZaDb 12 Tf 0 0 Td (4) Tj ET Q

endstream

endobj

6.14.10 Choice

A choice is a field that contains n items, at most one of which may be selected as
the field value. A choice may be presented to the user as a scrollable list within a
rectangle on the page, or as a pop-up list triggered by user input. A pop-up list box
may allow user input in addition to the predefined choice options, in which case it
is referred to as a combo box. A choice can be used to represent the behavior of list
boxes, combo boxes, or pop-up list boxes, depending on the setting of certain
flags.

In addition to the attributes common to all fields, the field dictionary that
represents a choice contains the following attributes:

Table 6.64 Choice attributes

Key Type Semantics

FT name (Required, inheritable) Field type. Must be Ch.

Ff integer (Optional, inheritable) Flags. Collection of flags defining various characteristics
of the list box field. The following flags apply specifically to choices:

bit 18 Pop-up flag. Distinguishes between a list box (0) and a pop-up (1).

bit 19 Edit flag. Indicates that this list box is a combo box and hence, the user may input
a string value rather than selecting it from the pre-defined list.

March 11, 1999 6.14.11

6: Document Structure 139

bit 20 Sort flag. This flag is included for use by form-authoring tools that need to keep
track of the user’s preference regarding sort order of list items. If set, the authoring
tool should sort the items in the Opt array in alphabetical order. This flag is not
used by viewers. It is the responsibility of the authoring tool to put the items in the
Opt array in the order desired. The viewer simply presents them in that order.

Opt array (Required, inheritable) An array of n elements. Each element is either a Text
representing one of the n potential values of the field, or an array containing a Text
and a string: the text indicates a potential value, and the string is used to produce
the appearance.

V Text or name (Optional, inheritable) Field value. Refers to the Opt array element that is
currently selected. If that Opt array element is a text, then the value is that text. If
it is an array, then the value is the text found in the first element of that array. The
default value of this attribute is null.

TopIndex integer (Optional, inheritable) List boxes are scrollable. This integer indicates the index in
the Opt array of the first visible element in the list box.

If the choice is presented to the user as a scrollable list, then the appearance
contains the texts found in the Opt array, one per line, beginning with the text at
the index indicated by TopIndex.

If the choice is presented to the user as a pop-up, then the appearance contains the
string found in the V attribute.

Note When a pop-up choice is activated in the viewer by user input, the choices appear
on the screen, typically immediately under the current value. The viewer may
choose to present to the user this transient appearance of the field by generating
an appropriate appearance stream, based on the V and Opt attributes.

Example 6.17 List box field

<<

/FT /Ch

/Ff …
/T (Body Color)

/V (Blue)

/Opt [(Red) (My favorite color) (Blue)]

>>

6.14.11 Text field

A text field is a field whose value is an arbitrary, user-specified Text. The text may
be restricted to a single line or allowed to span multiple lines. The text is presented
on the page in a single style; i.e. font, size, color, etc. The variable text used to
generate the appearance of the field as described on page 133 is found in the value
of the text field.

�

6: Document Structure March 11, 1999

140 Adobe Systems Inc.

In addition to the attributes common to all fields, the field dictionary that
represents a text field contains the following attributes:

Table 6.65 Text field attributes

Key Type Semantics

FT name (Required, inheritable) Field type. Must be Tx.

Ff integer (Optional, inheritable) Flags. Collection of flags defining various characteristics
of the text field. Flags that apply to text fields include:

bit 13 Multi-line. Distinguishes between a multi-line (1) and single-line (0) text field.

bit 14 Password. Keyboard input is not displayed on the screen when this flag is 1.
Rather, some benign feedback is given, such as displaying an asterisk for each
input character. In order to preserve the confidentiality of password fields, the
value of a text field with the password flag set should never be stored in the PDF
file by a viewer.

V Text (Optional, inheritable) Field value.

MaxLen integer (Optional, inheritable) Maximum number of characters allowed in this text field.

Example 6.18 Text field

6 0 obj

<<

/FT /Tx

/Ff … set multi-line flag …
/T (Silly prose)

/DR 21 0 R

/DA (0 0 1 rg /Ti 12 Tf)

/V (The quick brown fox ate the lazy mouse)

/AP << /N 5 0 R >>

>>

endobj

5 0 obj

<< /Resources 21 0 R /Length 65 >>

stream

/Tx BMC BT 0 0 1 rg /Ti 12 Tf

1 0 0 1 100 100 Tm

0 0 Td (The quick brown fox) Tj

0 -13 Td (ate the lazy mouse) Tj

ET EMC

endstream

endobj

March 11, 1999 6.14.12

6: Document Structure 141

6.14.12 Signature field

A Signature Field is a field whose value is an electronic form of a signature. The
signature may be purely mathematical, such as a public-private-key encrypted
document digest, or it may be a biometric representation such as handwritten
signature, fingerprint, or retinal scan. Filling in a Signature Field (signing it)
involves updating at least the V key, and usually involves updating the AP key of
the associated annotation. Exporting a Signature Field follows the rules for other
fields and typically exports the T, V, and AP key-value pairs.

The digital signature public key specification is available online ([11]).

The field dictionary that represents a signature field contains the following
attributes:

Table 6.66 Signature field attributes

Key Type Semantics

FT name (Required, inheritable) Field type. Must be Sig.

T string (Optional) The partial field name.

Ff integer (Optional, inheritable) Flags.

Kids array (Optional) This array contains references to child field dictionaries of this field or
to Widget annotation dictionaries that describe this field. As an optimization, the
Widget annotation key-value pairs may be merged into the signature field
dictionary.

Parent dictionary (Required if this field is referenced from another field’s Kids array) The parent
field.

V dictionary (Optional, inheritable) The value, a Signature Dictionary (see below).

DV dictionary (Optional, inheritable) The default value. The value of the field reverts to this
when a ResetForm action occurs (see page 144). The format of DV is the same
as V.

Signature Dictionary

The value of a Signature Field is a Signature Dictionary. It contains the following
attributes:

Table 6.67 Signature dictionary attributes

Key Type Semantics

Type name (Required) Object type. Always Sig.

PDF 1.3

6: Document Structure March 11, 1999

142 Adobe Systems Inc.

Filter name (Required, inheritable) Name of specific signing method, such as
Adobe.PPKLite, Entrust.PPKEF, CICI.SignIt, and VeriSign.PPKVS.This
name specifies which signature handler was used to fill in this signature field.
Third-party handler writers are encouraged to register their name with Adobe; see
Appendix F.

ByteRange array (Required) An array of pairs of integers, describing the exact byte range for the
digest calculation: start byte-offset, length in bytes. Multiple discontiguous ranges
of bytes may be used to describe a digest that does not include the signature token
itself.

Contents string (Required) A (hex) string containing the encrypted signature token.

A number of keys are optional, but all Adobe and 3rd-party signature handler
writers are encouraged to use them in a standard way if they are used at all:

SubFilter name (Optional) Name of a specific submethod of the specified handler.

Name Text (Optional) String giving the name of the person or authority signing the document.

M Date (Optional) The time of signing. It is up to the specific signature handler whether
this is a normal unverified computer time or a time generated in a verifiable way
from a secure time server.

Location Text (Optional) String giving the CPU hostname or physical location of the signing.

Reason Text (Optional) String giving the reason for the signing. E.g., (I agree…).

Finally, a Signature Dictionary may contain arbitrary handler-private key-value
pairs. Third-party handler writers are encouraged to use a key-naming convention
to avoid duplicate names. The suggested naming convention is to use the registered
filter name followed by a period as a prefix of all private keys.

The DV key in a Signature Field may specify a signature dictionary for an
unsigned field that is pre-loaded with default values for some keys. There may be
private-key default values for multiple handlers. Signature handlers are free to use
or ignore these values in constructing the V key for a signed field. A signature
dictionary for a signed document should contain keys meaningful only to the
handler that was actually used in the signing; all others should be stripped out by
that handler.

Signature Annotation

Each Signature Field is described by one or more Widget annotations, just as
other field types are described. This annotation should be included in the Annots
array of the page containing the signature. The Rect (rectangle) specified by this
annotation gives the position of the field on some page, and the AP (appearance)
specified by this annotation gives the visible representation of the signature field.
A rectangle of zero height and zero width is explicitly allowed for signatures (such
as PPK ones) that are not intended to be visible.

March 11, 1999 6.14.13

6: Document Structure 143

Signature Appearance

For a signature field that has not been filled in, the normal appearance is usually
blank. For a signature that has been filled in, the normal appearance is a stream that
shows an appropriate representation of the unvalidated signature: text, strokes of a
handwritten signature, a bitmap of a fingerprint, or whatever other representation
is deemed appropriate by the signing method. When a document containing a
signature field is displayed or printed, the normal appearance is used, just as it is
for other field types. This behavior is independent of the PDF viewer having any
signature-related plug-ins.

If a viewer does have a signature plug-in that matches the specific signing method
used in a given signature field, and the plug-in is requested to validate the
signature, it is expected to alter the appearance of the signature from unvalidated to
either valid or invalid. It is suggested that the standard appearance of an
unvalidated signature contain an overprinted yellow question mark, the appearance
of an invalid signature contain an overprinted red X, and the appearance of a valid
signature contain the logo of the validating method underprinted as a watermark.

6.14.13 AcroForm actions

AcroForms support four additional types of actions: SubmitForm, ResetForm,
ImportData, and JavaScript.

6.14.13.1 SubmitForm Action

The SubmitForm action is used to send name-value pairs from the selected fields
to the indicated URL, presumably that of a Web server where they will be
processed, and from which a response sent back. The name that is sent is the fully
qualified name of the field, and the value that is sent is the value of the V entry in
the field dictionary (or the value of the AP entry if the field is of type push button
and the data is sent using Forms Data Format (FDF)).

These name-value pairs can be sent using Forms Data Format (see Appendix H) or
HTML Form format, as specified in RFC 1866, Hypertext Markup Language - 2.0
(i.e. application/x-www-form-urlencoded).

Table 6.68 SubmitForm action attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Action type. Always SubmitForm.

F File specification (Required) A URL file specification; see Section 7.4.4 on page 194. This is the
URL of the script at the Web server that will process the request.

Fields array (Optional) The name-field value pairs to send, or to exclude from sending. Which
of these two interpretations to use is decided based on bit 1 of the Flags key
below. Each entry in the Fields array is either an indirect object reference to the
corresponding field dictionary in the AcroForm, or (in PDF 1.3) the string
representing the fully qualified name of the field. The array may contain a mixture
of these types. If the Fields key is not present, then all name-field value pairs in

�

PDF 1.3

6: Document Structure March 11, 1999

144 Adobe Systems Inc.

the document are sent (except for those that have the “no-export” flag set), and bit
1 of Flags is ignored. The actual selection of name-value pairs to send can be
further refined through bit 2 of the Flags key.

If the Fields array represents fields to include, and an entry in this array represents
a non-terminal field, that is, a field that has descendants (e.g. Kids) and those
descendants can have values, then all name-value pairs from terminal fields in the
subtree underneath it get sent (except for those that have the “no-export” flag set).

If (and only if) the Submit Form action includes the Fields attribute, then any fields
of type push button that end up in the set to transmit have their AP entry exported.

Flags integer (Optional) The binary value of the integer is interpreted as a collection of flags that
define various characteristics of the action. The default value is 0.

bit 1 Include/exclude flag. This determines how the Fields key is interpreted. If this bit
is 0, then Fields represents the individual fields to send. If the bit is 1, then all
name-value pairs in the AcroForm are sent, except for those in the Fields array
(and those that are flagged as “no-export”).

bit 2 “Include no-value fields” flag. This can further restrict which name-value pairs get
sent. If this bit is 0, then those fields (previously selected by the combination of the
Fields array and bit 1 of Flags) that don’t have a value (i.e. they don’t have a V
key) is not sent. If, on the other hand, this bit is 1, then for any fields that don’t
have a V key only the field name is sent.

bit 3 Export format flag. If this bit is 0, then the data is sent using the Forms Data
Format (FDF). Otherwise it is sent using the HTML Form format.

bit 4 Get Method flag. If this bit is 0, the data is submitted using a POST action; if it is
1, a GET action is used for the submission. (This bit has an effect only when bit 3
is 1. If bit 3 is 0, this bit must also be 0.)

bit 5 Submit Coordinates flag. If this bit is 1, the x and y coordinates of the mouse click
that caused this action are sent as part of the AcroForm data. The x and y values
are relative to the upper left hand corner of the widget contains the submit action.
They are represented in the data as name.x=xval&name.y=yval where name is
the value of the TM field if present, otherwise the field name. The special case of
TM equal to a single space character results in x=xval&y=yval being submitted
(no name, no dot). (This bit has an effect only when bit 3 is 1. If bit 3 is 0, this bit
must also be 0.)

6.14.13.2 ResetForm Action

This action is used to reset the indicated fields to their default values (if defined);
that is, the value of the V key is set to the value of the DV key in the field
dictionary. If no default value is defined for a field, then the V key is removed.
Resetting a field that can have no V key (i.e., a push button) has no effect.

March 11, 1999 6.14.13

6: Document Structure 145

Table 6.69 ResetForm action attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Action type. Always ResetForm.

Fields array (Optional) The fields to reset, or to exclude from resetting. Which of these two
interpretations to use is decided based on bit 1 of the Flags key below. Each entry
in the Fields array is either an indirect object reference to the corresponding field
dictionary in the AcroForm, or (in PDF 1.3) the string representing the fully
qualified name of the field. The array may contain a mixture of these types. If the
Fields key is not present, then all fields in the document are reset, and bit 1 of
Flags is ignored.

If the Fields array represents fields to include, and an entry in this array represents
a non-terminal field, that is, a field that has descendants (e.g. Kids) and those
descendants can have values, then all fields in the subtree underneath it get reset.

Flags integer (Optional) The binary value of the integer is interpreted as a collection of flags that
define various characteristics of the action. The default is 0.

bit 1 Include/exclude flag. This determines how the Fields key is interpreted. If this bit
is 0, then Fields represents the individual fields to reset. If the bit is 1, then all
fields in the AcroForm are reset except for those in the Fields array.

6.14.13.3 ImportData Action

Import data in Forms Data Format from a specified file into the AcroForm.

Table 6.70 ImportData action attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Action type. Always ImportData.

F (File) File specification (Required) File specification of the FDF file to import.

6.14.13.4 JavaScript Action

The JavaScript action causes a script to be compiled and executed by the
JavaScript interpreter. Depending on the nature of the script, this can cause various
AcroForm fields in the document to update their values or change their graphical
properties.

Table 6.71 JavaScript action attributes (in addition to those in Table 6.36)

Key Type Semantics

S (Subtype) name (Required) Action subtype. Always JavaScript.

PDF 1.3

�

PDF 1.3

6: Document Structure March 11, 1999

146 Adobe Systems Inc.

JS (JavaScript)
string or stream (Required) The string or the contents of the stream contains the JavaScript to be

executed.

One of the desirable properties of a scripting language that supports function
definitions is the re-use of code in the form of function calls. In some instances, a
AcroForm author will want to define a JavaScript that is very specific to a single
field. For the most part, however, field scripts will make parameterized calls into
subroutines that will do the bulk of the processing.

A PDF document allows for function definitions that are particular to a document
and used by field scripts to be stored at the document level in the Names tree (see
Section 6.9, “Names dictionary”). All of the scripts specified in the name tree are
executed when the document first opens thus defining functions for use by other
scripts in the document.

Note PDFDoc or Unicode encodings (identified by a prefix pair of <FE FF> bytes) are
used to encode the contents of the string or stream.

Implementation note These encodings are translated to a platform specific encoding prior to
interpretation by the JavaScript engine as the current version of JavaScript (1.2) is
not Unicode compatible.

Implementation note See the Netscape JavaScript Reference Manual [33] and the Adobe Acrobat Forms
JavaScript Object Specification [10] for details on the contents and effects of these
types of scripts.

6.14.14 Named Pages

In PDF 1.3, it is possible to name a page using the Names data structures
described in Section 6.9 on page 119. Naming a page allows it to be referenced in
two different ways.

• During an FDF import operation, a referenced page can be added to the
document into which the FDF is being imported, either as a button appearance,
or as a page.

• During the execution of a JavaScript, the named page can be added as a regular
page to the current document.

Pages can be named in one of two ways: If a named page is to be visible in the
viewer, the page is left in the Pages data structure (described in Section 6.3 on page
71), and a reference to the page is placed in the appropriate leaf node of the Pages
tree of the Names dictionary. If the page is to be made invisible to the viewer, it is
instead removed from the Pages tree and put in the Templates structure.
Additionally, the Type field must be changed to Template, the Parent key must
be removed, and the B key must be removed.

Regardless of how the page is named, when it is copied into a document either by
using a JavaScript or by importing an FDF, the new copy is not itself named.

PDF 1.3

March 11, 1999 6.15.1

6: Document Structure 147

6.15 Sounds

A PDF document may contain Sound objects, and it may refer to external sound
files.

6.15.1 Sound objects

A Sound is represented as a stream. In addition to the standard keys in any stream
dictionary, a Sound dictionary is defined with the following keys:

Table 6.72 Sound attributes

Key Type Semantics

Type name (Required) Stream type. Always Sound.

R (Rate) number (Required) Sample rate, in samples per second.

C (Channels) integer (Optional) Number of sound channels in the data. The default is 1.

B (Bits) integer (Optional) Number of bits per sample value (per channel). The default is 8.

E (Encoding) name (Optional) The format of the sample data. Allowable values are:

Raw unspecified or unsigned values, 0 to 2B (Bits) - 1.
Signed two’s-complement values.
muLaw µ-law encoded samples.
ALaw A-law encoded samples.
The default is Raw.

CO (Compression) name (Optional) The type of sound compression (not file compression) used on the data,
if any. If this key is omitted, then no sound compression has been used, and the
data contains sampled waveforms, to be played at R (Rate) samples per second,
per channel.

CP (Compression Parameters)
various (Optional) Optional parameters, specific to the Compression used.

Dual-channel uncompressed sound is saved in an interleaved format, in channel
order (1, 2). For 2-channel stereophonic sounds, channel 1 is the left channel, and
channel 2 is the right channel. Acrobat does not support more than two channels of
sound.

Samples are stored in the stream with the most significant bits first (big-endian
order for samples larger than 8 bits). Samples that are not a multiple of 8 bits are to
be packed into the byte stream, starting at the most significant end of the byte and
proceeding to the least significant end. If a sample extends across a byte boundary,
the most significant bits are placed in the first byte, followed by less significant
bits in the subsequent bytes.

PDF 1.2

6: Document Structure March 11, 1999

148 Adobe Systems Inc.

To maximize portability of PDF documents containing embedded sounds, Adobe
recommends that PDF applications and plug-ins support at least the following
formats (assuming the platform has sufficient hardware and OS support to play
sounds at all):

B 8 or 16 bits per channel

C 1 or 2 channels

E Raw, Signed, or muLaw encoding

R 8000, 11025, or 22050 samples per second

If the encoding is muLaw, B must be 8, C must be 1, and R must be 8000. If the
encoding is Raw or Signed, R must be 11025 or 22050. Sound players should be
prepared to convert between formats, downsample rates, and combine channels as
necessary to render sound on the target platform.

6.15.2 External sounds

If a Sound stream is external (that is, if it includes an F key), the specified file must
be a self-describing sound file, containing all the information necessary to render
the sound. No additional information need be present in the PDF file.

Note AIFF, AIFF-C (Macintosh), RIFF (.wav) and snd (.au) files all contain sufficient
information for playing.

6.16 Web Capture

Web Capture (sometimes referred to as AcroSpider) is an Acrobat plug-in that
creates PDF files from Internet-based or locally resident HTML, PDF, GIF, JPEG,
and ASCII text files. The plug-in provides several useful features, including the
ability to automatically print multiple pages from a website and the ability to
locally save and preserve the visual appearance of information from the web. The
plug-in also allows the user to update and modify PDF files that it created, to
retrieve more material or delete unwanted material.

AcroSpider performs the following operations, among others:

• It finds all pages or Image XObjects in a PDF file that were generated from a
given URL.

• It finds all pages or Image XObjects in a PDF file that match a given digital ID
(MD5 hash).

• Given a page in the PDF file, it find out its creation information, such as the
URL (if any) from which the page was generated.

• It lists all URLs that were used to generate pages in the PDF file.

Web Capture records the information it needs in the PDF file, in two data
structures. The first, known as the Web Capture Content Database, keeps track of
the material retrieved and where it came from, enabling Web Capture to avoid

PDF 1.3

March 11, 1999 6.16.1

6: Document Structure 149

needlessly downloading material that is already in the file. The second, known as
the Web Capture Info Dictionary, holds information about the state of the PDF file,
and how it was created. The following sections provide a detailed overview of
these structures. To understand the need for these data structures, it is important to
know how Web Capture works. (The discussion below is centered on HTML and
GIF files, although Web Capture handles other types as well.)

6.16.1 Web Capture Content Database

Web Capture retrieves HTML files from URLs and converts them into PDF. Since
HTML pages do not have a fixed size, the conversion of HTML pages to PDF
frequently results in a one-to-many mapping: a single HTML page may result in
several letter-sized PDF pages. Additionally, a single Web Capture-generated PDF
file may contain the contents of multiple URLs. Web Capture keeps track of all of
the URLs used to create the resulting PDF file, by means of the Web Capture
Content Database. This database maps URLs and digital IDs to PDF objects such
as pages and Image XObjects. This allows Web Capture to perform on-the-fly
optimizations, such as storing only one copy of an image that is referenced by
multiple HTML pages. By looking up digital IDs in the database, Web Capture
determines whether newly downloaded content is identical to content already in
the PDF that was retrieved from a different URL.

Figure 6.12 depicts a sample portion of a Web Capture Content Database. There
are two Web Capture-related name trees in a PDF document’s Catalog (see page
119); one contains URLs, and the other contains digital IDs. Each name in these
trees is an indirect reference to one or more Web Capture Content Sets.

A Web Capture Content Set is a dictionary that holds information about a group of
PDF objects generated from the same source data. This information includes
indirect references to the objects. There are two subtypes of Web Capture Content
Set: Web Capture Page Set and Web Capture Image Set. When Web Capture
converts an HTML file into PDF pages, for example, it creates a Web Capture Page
Set that holds information about all of the new pages. Similarly, when it converts a
GIF image into one or more Image XObjects, it create a Web Capture Image Set to
hold information about the new XObjects.

In the example in Figure 6.12, an HTML file has been retrieved from the Web. It
has been converted into three pages in the PDF file. A Page Set has been created
for the new pages. It has indirect references to the pages themselves. The source
URL, the string (http:://www.adobe.com/), has been added to the URLS
name tree and its tree entry points to the new Page Set. The digital ID calculated
from the HTML source, the string (904b58b7…), has been added to the IDS
name tree in a similar fashion.

http:://www.adobe.com/

6: Document Structure March 11, 1999

150 Adobe Systems Inc.

Figure 6.12 Simple Web Capture file structure

A more complicated situation is depicted by Figure 6.13. Here, a GIF has been
retrieved from a URL, (http://www.adobe.com/getacro.gif),
independently of any HTML file, and converted into a single page in a PDF file.
As in Figure 6.12, a Web Capture Page Set has been created to hold information
about the new page. However, since the retrieval also resulted in a new Image
XObject, a new Web Capture Image Set has also been created. In this case, the
same entries in the name trees must point to both a Web Capture Image Set and a
Web Capture Page Set. Thus, a Web Capture Content Set array is created to hold
these pointers, and the name tree entries point to this array.

Catalog

Names

URLs
name tree

IDs
name tree

Spider Page Set

name tree

(http://www.adobe.com/) (904b58b7d1bc743\
7847c1dd8a18dea12)

dictionary

Page Page Page

http://www.adobe.com/getacro.gif
http://www.adobe.com/

March 11, 1999 6.16.1

6: Document Structure 151

Figure 6.13 Complex Web Capture file structure

URL strings

The entries in a name tree are stored in sorted order, to facilitate fast lookup. This
requires that the URLs used as keys in the URLS name tree be stored in a
canonical form. URLs being looked up in this name tree must also be transformed
to the canonical form before searching.

Here is the algorithm to canonicalize a URL (relevant for HTTP, FTP, and file
URLs). These steps refer to terminology from RFC 1738: Uniform Resource
Locators [18] and RFC 1808: Relative Uniform Resource Locators [23].

• If the URL in question is relative, make it absolute.

• If the URL contains a number sign character (#), strip the leftmost # and any
characters after it.

Names

URLs
name tree

IDs
name tree

Page Image
XObject

Spider Content Set array

Catalog

(http://www.adob\
e.com/getacro.gif)

(bf7082b1afde98b\
b81dad5ab7bd77148)

Spider Page Set Spider Image Set

dictionary

array

name tree

http://www.adob\

6: Document Structure March 11, 1999

152 Adobe Systems Inc.

• Transform the scheme section of the URL into lowercase ASCII.

• If the URL contains a host section, transform the host section into lowercase
ASCII.

• If the scheme is file, and the host is localhost (case insensitive), strip the
host section.

• If the URL contains a port section, and the port is the default port for the given
protocol (80 for HTTP, 21 for FTP), strip the port section.

• If the URL’s path section contains “..” or “.” subsequences, transform the
path as described in section 4 of RFC 1808 [23].

Note Concerning the encoding of characters in a URL which are considered unsafe: no
number of encoding or decoding passes on a URL will ever cause it to reach a
steady state, because the percent character (%) is both an unsafe character and the
escape character for encoded characters. In general, it is not possible to tell the
difference between a URL with non-encoded characters and a URL with encoded
characters. For example, it is impossible to decide whether the sequence %00
represents a single encoded NUL character, or a non-encoded sequence of three
characters. Empirically, URLs embedded in HTML files have unsafe characters
encoded with one pass of encoding, and web servers perform one decoding pass on
received paths (though CGI scripts are free to make their own decisions). Thus,
canonical URLs are assumed to have one and only one pass of encoding. If the
initial encoding state of a URL is known, then it can be safely transformed into a
URL which has undergone only one pass of encoding.

6.16.2 Web Capture Content Sets

A Web Capture Content Set is a dictionary that holds information about a set of
PDF objects generated from the same source data. This information includes an
indirect reference to each of the objects in the set. A Content Set can be used to
hold information that is common to all of the objects as well as information that
describes the set of objects itself. Every Content Set must contain an S (Subtype)
key. The subtype determines what type of objects are grouped by the Content Set
(e.g., page objects, images). It is legal for a subtype to be defined that groups
heterogeneous object types. Unless a subtype definition imposes stricter
constraints, it is legal for the same object to be a member of multiple Content Sets
at once.

Table 6.73 Web Capture Content Set attributes (common to all Web Capture
Content Sets)

Key Type Semantics

Type name (Optional) Object type. Always SpiderContentSet.

S (Subtype) name (Required) Web Capture Content Set subtype.

O (Objects) array (Required) List of indirect references to the objects grouped by this Content Set.
The order of objects in the array is undefined, in general, but subtypes of Web
Capture Content Set may define an order.

March 11, 1999 6.16.2

6: Document Structure 153

ID string (Required) An ID for the Content Set.

TS (TimeStamp) Date (Optional) The date at which the Content Set was created.

CT (Content Type) string (Optional) A Content Type that describes the entity from which the objects
grouped by the Content Set were created.

If a Content Set is located by traversing the URLS name tree, the ID key allows its
related entry in the IDS name tree to be found. Every Content Set must be mapped
into the IDS name tree. The ID may also be used as a unique (for practical use)
identifier for the Content Set. The ID calculation method is specified on a per-
subtype basis.

The optional CT (Content Type) key can be used to store origin information about
the objects mapped by the Content Set. The Content Type string should conform to
the Content Type specification described in RFC 2045: Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies [26]. For
example, for a Web Capture Content Set (Web Capture Page Set) that maps a
group of Page objects created from an HTML file, the value of the CT key would
be the string (text/html).

6.16.2.1 Web Capture Page Set (subtype of Web Capture Content Set)

A Web Capture Page Set is a Web Capture Content Set subtype for groups of PDF
page objects that are generated from the same source data, such as an HTML file.
A Page Set can optionally store information that applies to the entire set of pages,
such as a title. A page object may not be a member of more than one Page Set.

Table 6.74 Web Capture Page Set attributes (in addition to those in Table 6.73)

Key Type Semantics

S (Subtype) name (Required) Web Capture Content Set type. Always SPS (Spider Page Set).

SI (Source Info)
dictionary or array (Required) One or more Source Info objects. See Section 6.16.2.2, “Source Info

Object.”

T (Title) Text (Optional) A string intended to be displayed as the Page Set’s title.

TID (Text ID) string (Optional) An ID generated from the text of the Page Set.

For each Web Capture Page Set it is necessary to store information related to the
location of the source data from which the pages were generated. This information
is stored in a Source Info object (See Section 6.16.2.2, “Source Info Object”
below). The SI (Source Info) key allows one or more Source Info objects to be
associated with a Page Set. If only one such object is present, the value of the SI
key may be the object itself, rather than a single-element array.

6: Document Structure March 11, 1999

154 Adobe Systems Inc.

Multiple Source Info objects may be associated with a Page Set. Each holds
information about a location from which the same source-data bytes were
retrieved. It is not unusual for the exact same source bytes to be referenced by two
or more completely unrelated URLs. If Web Capture detects such a condition (via
ID comparison), only one copy of the PDF pages created from this source-data will
be placed in the file, and only one Page Set will be created for the pages.
Information specific to each source will be recorded in a Source Info object.

The optional TID (Text ID) key may be used to store an ID generated from the text
of the pages grouped by the Page Set. This ID may be used, for example, to
determine whether the text of a document has changed. For calculation info, see
page 160. A Text ID may not be appropriate for some Page Sets (such as ones with
no text), and should be omitted in these cases.

For a Page Set, the order of the indirect references to page objects in the Objects
array is defined to be the same as the order in which the page objects were initially
added to the file.

6.16.2.2 Source Info Object

A Source Info object contains information specific to a single location from which
the source data for a Web Capture Content Set was retrieved. It is possible for a
Content Set to have multiple Source Info objects associated with it.

Table 6.75 Source Info attributes

Key Type Semantics

AU (Aliased URLs object)
string or dictionary (Required) A URL (string) or an Aliased URLs object (dictionary) for this Source

Info object.

TS (TimeStamp) Date (Optional) The date at which the Content Set’s data was last found to be up to date
with the source referenced by this Source Info object.

E (Expires) Date (Optional) The date at which the Content Set’s data should be considered out of
date with the source referenced by this Source Info object.

S (Submitted) integer (Optional) Indicates that the location that this Source Info object describes was
accessed via a form submission, and if so, the type of form submission.

0 Not accessed via a form submission. This is the default value.

1 Accessed via an HTTP GET submission.

2 Accessed via an HTTP POST submission.

C (Command) dictionary (Optional) Web Capture Command object whose execution caused the retrieval of
the source-data referenced by this Source Info object.

March 11, 1999 6.16.2

6: Document Structure 155

The value of the AU (Aliased URLs) key is either a single URL, or an Aliased
URLs object (see Section 6.16.2.3) representing all of the known URLs that map
(through redirection) to the location described by this Source Info object. If there is
only one such URL, an Aliased URLs object is unnecessary; a string storing the
URL is sufficient. For file size efficiency, it is recommended that the entire Aliased
URLs object (excluding the URL strings) be represented as a direct object, as its
internal structure should never be shared or externally referenced.

The TS (TimeStamp) key allows each source location associated with a Content
Set to have its own TimeStamp. This is necessary because the TS (TimeStamp) in
the Content Set itself merely refers to the creation date of the Content Set object. A
hypothetical “Update Web Capture Content Set” command might change the
Source Info TimeStamp to the current time if it found the source data not to have
changed since the last time the TimeStamp was set.

The E (Expires) key allows each source-data location associated with a Content
Set to have an expiration date. If the current date is later than the expiration date,
the data mapped by the Content Set should be considered out of sync with the
original source.

The S (Submitted) key should only be present in Source Info objects which are
referenced by Web Capture Page Sets. The flag indicates whether or not the source
retrieved from the location described by this Source Info object was retrieved as
the result of a form submission.

The C (Command) key should be present only in Source Info objects that are
referenced by Web Capture Page Sets. If present, the value of the key is an indirect
reference to the Web Capture Command object (see Section 6.16.4) whose
execution caused the retrieval of the source-data referenced by this Source Info
object, thus causing this Source Info object to be created. This allows us to take a
PDF page and find out which Web Capture Command generated it.

6.16.2.3 Aliased URLs Object

When a URL is accessed by a user-agent via HTTP, a response header is frequently
returned that indicates that a different URL should be accessed to reach the desired
data. The agent will then access the new URL. This redirection process can
continue indefinitely (though in practice agents should place an upper limit on the
number of URLs that will be accessed). It is not uncommon to find multiple URLs
that eventually lead to the same final URL through one or more redirections. An
Aliased URLs Object represents the set of chains of URLs that lead to a common
URL.

Table 6.76 Aliased URLs Object attributes

Key Type Semantics

URL string (Required) The common (final) URL at which all chains in this object terminate.

C (Chains) array (Optional) An array that holds one or more arrays of strings (URLs).

6: Document Structure March 11, 1999

156 Adobe Systems Inc.

The C (Chains) key should be omitted if the Aliased URLs Object contains only
one URL. If the C key is present, its value is an array of arrays. Each nested array
represents a chain of URLs. The URLs are stored as strings. The order of the URLs
in an array should be the same as the order of the URLs in a chain. The common
URL (the last URL in a chain) may be omitted, since it is already stored in the
URL key.

Implementation note An implementation should use an indirect object reference to a shared URL string
for all URLs in an Aliased URLs Object. These strings may then be shared with
other structures, and among the chains of the Aliased URLs Object.

6.16.2.4 Web Capture Image Set (subtype of Web Capture Content Set)

A Web Capture Image Set is a Web Capture Content Set subtype for groups of
Image XObjects that were generated from the same source (multiple frames of an
animated GIF, for example). In the usual case, only a single Image XObject will be
generated. An Image XObject may not be a member of multiple Web Capture
Image Sets.

Table 6.77 Web Capture Image Set attributes (in addition to those in Table 6.73)

Key Type Semantics

S (Subtype) name (Required) Web Capture Content Set type. Always SIS (Spider Image Set).

R (Refcounts)
integer or array (Required) Reference count for each Image XObject grouped by the Web Capture

Image Set.

SI (Source Info)
dictionary or array (Required) One or more Source Info objects.

The R (Refcounts) key associates a reference count (an integer) with the indirect
reference to an Image XObject in the same position in the Objects array. That is, it
is indexed in parallel with the Objects array. If there is only one Image XObject
mapped by the Web Capture Image Set, the value of the R key may be the integer
itself, rather than a single-element array.

When Web Capture creates a page that references an Image XObject that is
mapped by a Web Capture Image Set, the XObject’s reference count is
incremented (once per page). When a page that references the XObject is copied
inside the same file, the reference count must be incremented as well. When a page
is deleted, the reference count for each Image XObject to which it referred is
decremented. When a reference count reaches zero, it is assumed that there are no
remaining pages that reference the XObject, and that the indirect reference to it
may be removed from the Web Capture Image Set.

Implementation note In Acrobat 4, if this reference is not removed, the XObject will never be garbage-
collected during a Save operation. Thus, the Image Set’s reference to the XObject
may be considered a weak one that is relevant only for caching purposes: when the
last strong reference goes away, so does the weak one.

March 11, 1999 6.16.3

6: Document Structure 157

The SI (Source Info) key allows one or more Source Info objects to be associated
with a Web Capture Image Set. If only one such object is present, the value of the
SI key may be the object itself, rather than a single-element array. Each Source
Info object stores information related to the location of the source from which the
images were generated.

Note Unlike the Refcounts array, the Source Info array is not indexed in parallel with
the Objects array, or any other array.

Multiple Source Info objects may be associated with a Web Capture Image Set.
Each holds information about a location from which the same source data was
retrieved. It is not uncommon for the exact same data to be referenced by two or
more unrelated URLs. Web Capture can detect this condition (via ID comparison),
and place only one copy of the Image XObjects generated from the data into the
file. In this case, only one Web Capture Image Set will be created, but it will have
multiple Source Info objects associated with it.

6.16.3 Web Capture Info Dictionary

A Web Capture Info dictionary may be added to a document’s Catalog. This
provides a place for Web Capture to store information regarding the state of the
file.

Table 6.78 Web Capture Info attributes

Key Type Semantics

V (Version) number (Required) Version number of the Web Capture structures. For PDF 1.3, this
version number is 1.0.

C (Commands) array (Optional) An array of indirect references to one or more Web Capture Command
objects.

As Web Capture builds a PDF file in response to user commands, it can save the
information necessary to replay these commands as Web Capture Command
objects (see the next section). The C key groups one or more of these objects. If the
C key is defined, its value is an array that holds indirect references to Command
objects. The Commands in the array appear in the order in which they were
created.

6.16.4 Web Capture Command

A Web Capture Command is a dictionary that encapsulates the information that
Web Capture uses to execute a command that adds pages to a PDF file.

Table 6.79 Web Capture Command attributes

Key Type Semantics

URL string (Required) Initial URL for this command.

6: Document Structure March 11, 1999

158 Adobe Systems Inc.

L (Levels) integer (Optional) Number of levels to retrieve from the initial URL.

F (Flags) integer (Optional) Collection of flags. The default value is 0.

bit 1 Same-Site flag, indicating that the traversal should not include pages that are not
on the same host.

bit 2 Same-Path flag, indicating that the traversal should not include pages that are not
found under the same path (see below).

bit 3 Submit flag, indicating that the Command represents a form submission (see
below).

P (Post Data)
string or stream (Optional) Data that was posted to the URL.

CT (Content Type) string (Optional) A Content Type that describes the data that was posted to the URL.

H (Headers) string (Optional) Additional HTTP request headers sent to the URL.

S (Settings) dictionary (Optional) A Web Capture Command Settings object.

The value of the URL key is the initial URL to access for the command. The L
(Levels) key specifies the number of levels of pages to retrieve from the initial
URL. If the L key is omitted, its value is assumed to be 1, which specifies the
retrieval of the initial URL only.

The Same-Path flag requires further explanation. (The following description
borrows terminology from RFC 1808 [23].) Each time a URL is considered for
traversal, it is compared to the initial URL. First, the scheme and net_loc
components of the two URLs must match (case insensitive). Finally, the URL in
question is considered to be in the same path as the initial URL if the path
component of the initial URL is identical (case sensitive) to the path component of
the URL in question, up to and including the last forward slash character in the
initial URL. For example,

http://www.adobe.com/foo/bar/bleh.html

is considered to be in the same directory as

http://www.adobe.com/foo/initial.html

because foo/ is present at the start of the path components for both URLs.

If the Submit flag is set, then the Web Capture Command represents a form
submission. If the P (Post Data) key is not present, then the submitted data is
encoded in the URL (an HTTP GET query). If the P key is present, then the Web
Capture Command represents an HTTP POST form submission. In this case, the
value of the Submit flag is ignored. If the Post Data is small enough, a string may
be used to represent it. For large amounts of data, a stream is recommended, as it
can offer compression.

http://www.adobe.com/foo/bar/bleh.html
http://www.adobe.com/foo/initial.html

March 11, 1999 6.16.4

6: Document Structure 159

The CT (Content Type) key is relevant only in a POST situation. It describes the
Content Type (format described in RFC 2045 [26]) of the Post Data stored under
the P key. If the CT key is omitted, the Content Type is assumed to be
application/x-www-form-urlencoded.

The H (Headers) key specifies additional HTTP request headers that were sent in
the request for the URL. Each header line in the string is terminated with a carriage
return and a linefeed. Example:

(Referer: http://foobar.com\015\012Fr\

om: foo@bar.com\015\012)

The HTTP request header format is specified in RFC 2068: Hypertext Transfer
Protocol – HTTP/1.1 [24].

The S (Settings) key references a Web Capture Command Settings dictionary (see
the next section). This object holds settings specific to the conversion engines. If
this key is omitted, default values are assumed. It is recommended that the
Command Settings objects be shared by any Command objects that use the same
settings.

6.16.4.1 Web Capture Command Settings

A Web Capture Command Settings dictionary holds conversion-engine-specific
settings that are needed in the conversion process. Web Capture Command
Settings objects are normally referenced by Web Capture Command objects.

It must be possible to deeply copy a Web Capture Command Settings dictionary
without explicit knowledge of the settings it may contain. To facilitate this
operation, a restriction is placed on the directed graph of PDF objects rooted by the
Web Capture Command Settings dictionary. The graph must not contain indirect
object references to objects that are not solely contained by the graph. Put another
way, if the PDF file’s graph is traversed as a tree starting from the Catalog, each
object that has a Web Capture Command Settings dictionary as an ancestor must
not appear on any path in which it does not have the same Web Capture Command
Settings as an ancestor.

Table 6.80 Web Capture Command Settings attributes

Key Type Semantics

G (Global Settings)
dictionary (Optional) Global conversion engine settings, relevant to all conversions. If this

key is omitted, default settings will be used.

C (Converter Settings)
dictionary (Optional) Settings for specific Content Type conversion engines (e.g., HTML).

Each key in the dictionary is the internal name of a conversion engine. The value
associated with the key is a dictionary containing the settings information
associated with that conversion engine. If the settings for a particular conversion
engine are not found in the dictionary, default settings will be used.

http://foobar.com\015\012Fr\

6: Document Structure March 11, 1999

160 Adobe Systems Inc.

The internal name of a conversion engine should be a name object of the following
form (case sensitive):

<converterName> :=
/<company>:<product>:<version>:<contentType>

company is the name (or abbreviation) of the company that created the conversion
engine. product is the name of the conversion engine; this field may be left blank,
but the trailing colon character is still required. version is the version of the
conversion engine. contentType is an identifier for the content type that the
settings are associated with. This is required because some converters may handle
multiple content-types.

Example: /ADBE:H2PDF:1.0:HTML

6.16.4.2 Page and Image XObject Attributes

A Web Capture Content Set (Page Set or Image Set) points to all the objects (pages
or images) that are derived from its source. It is referred to as the Parent Content
Set of those objects. An object has at most one such parent. There is no direct
pointer in the opposite direction, from a “child” object to its Parent Content Set.
Such a pointer might present problems for an application that traces all pointers
from an object to determine what resources, for example, the object depends on.
Instead, a child object contains an ID string, and the document’s IDS name tree
maps that string to the Parent Content Set, or to an array containing the Parent.
(The Parent is that element of the array whose Objects list contains the child
object.)

In the course of creating PDF pages from HTML files, Web Capture frequently
scales the page contents downward to fit on fixed-sized pages. The PZ (Preferred
Zoom) key specifies a scaling factor by which the page can be scaled to “undo” the
scaling and view the page at its original size. That is, when the page is viewed at
the preferred zoom, one unit in default user space will correspond to one pre-
scaled source pixel.

6.16.4.3 Implementation details

Web Capture Page Set ID

The ID for a Web Capture Page Set is calculated as follows. First, the source-data
for the Web Capture Page Set is fed into the MD5 algorithm described in RFC
1321: The MD5 Message-Digest Algorithm [35]. For an HTML file, the source-
data is the HTML source itself, not any auxiliary data such as referenced images.
Next, the strings representing the IDs of any auxiliary data files are fed into the
MD5 algorithm. It is important that the IDs for the auxiliary data files be fed into
the MD5 algorithm in a deterministic order. This order is defined to be the same as
their order of use in the source-data. An auxiliary data file that is referenced more
than once must have its ID fed only once to the MD5 algorithm, when it is first
referenced by the source-data.

March 11, 1999 6.16.4

6: Document Structure 161

The calculation process combines the IDs of the auxiliary data with the ID of the
source-data to create a composite ID that identifies the visual appearance of the
pages in the Page Set. For two HTML source files that are identical, but for which
the referenced images contain different data (they may have been generated by a
script, or they may be pointed to by relative URLs), the IDs will not be the same.
When Web Capture generates a Page Set from a PDF file, the ID key will be
generated solely from the bytes of the PDF file; there is no auxiliary data.

Web Capture Image Set ID

Web Capture calculates the ID for a Web Capture Image Set by feeding the source-
data for the original image into the MD5 algorithm. For example, the ID for an
Image Set created from a GIF image is calculated from the bytes of the GIF itself.

Web Capture Page Set Text ID

The TID (Text ID) for a Web Capture Page Set is calculated by feeding all of the
rendered text present in the source-data into the MD5 algorithm. For example, for
an HTML file, only the text between markup tags will be considered for the Text
ID. No images are considered in this calculation.

Unique Name Generation

Note In this section, the term “name” refers to a string, not a name object.

In generating PDF pages and a Web Capture Page Set, Web Capture converts
certain items such as hypertext links into named destinations and AcroForms
fields. When updating the file, Web Capture needs to locate all the destinations and
fields that were constructed for the Page Set. The names for these destinations and
fields are derived from their original names, but they must be unique, in order to
avoid conflicts among identical original names used in constructing destinations
and fields for different Page Sets.

The unique name is formed by concatenating an encoded form of the Page Set’s ID
string to the original name. The ID string must be encoded to remove characters
that have special meaning in destinations and fields. For example, period (.) is
used as the field separator in an AcroForms field name, so it must not appear in the
ID portion of the unique name. Period is encoded as #p, NUL (ASCII 0) is
encoded as #0, and # is encoded as ##.

Implementation note See page 465 for information about implementation limits in Web Capture.

6.17 Logical Structure in PDF

PDF 1.3 provides a mechanism by which structural information, such as the
organization of a document into chapters and sections, can be represented in a PDF
file. This mechanism is extensible, allowing PDF producers to choose which
structural information is included and how it is represented, yet it enables PDF
consumers to navigate a PDF file without knowing the producer’s conventions.

PDF 1.3

6: Document Structure March 11, 1999

162 Adobe Systems Inc.

PDF logical structure shares basic features with standard document markup
languages such as HTML, SGML, and XML. A PDF document’s logical structure
is expressed as a hierarchy of structural elements, each represented by a PDF
dictionary. PDF structural elements are analogous to elements in SGML (or XML
or HTML). Like their SGML counterparts, PDF structural elements can have
content and attributes. The content of structural elements can be references to other
structural elements, references to snippets of document content, or both. In PDF,
however, rendered document content takes over the role occupied by text in
SGML, XML, and HTML.

A PDF document’s logical structure is stored apart from its visible content, with
pointers from the logical structure to the physical representation and vice versa.
This separation allows the ordering and nesting of logical elements to be entirely
independent of the order and location of graphic objects on the document’s pages.

6.17.1 Representing logical structure in PDF

The logical structure facilities of PDF comprise several kinds of object:

• The structure tree root (page 163) and structural elements (page 164) make up
the tree that organizes the content of the PDF document. The structure tree root
serves not only as the attachment point for the entire structure hierarchy, but
also as a repository for information about the hierarchy as a whole.

• Attribute objects (page 169) allow structural elements to be annotated with
application-specific information; they also allow such information to be
associated with many elements by means of the class mechanism (page 168).

• The role map (page 177) and the class map (page 178) provide document-wide
information that assists in the interpretation of structural elements. The ID tree
(page 163) provides a document-wide index to structural elements by optional
unique identifiers.

• Marked Content references (page 170) and object references (page 175) serve
an auxiliary role in allowing structural elements to refer to a document’s
graphic content or to other information stored as a PDF dictionary or stream.

• The parent tree (page 163) is another auxiliary structure that forms part of the
mechanism by which marked portions of graphic content refer to their
containing structural elements (page 170).

In addition to these constructs, which exist only to support logical structure, there
are several kinds of items that support logical structure but are located in other
constructs within a PDF document:

• The document’s Catalog dictionary has a key referring to the root of the
document’s structure tree (page 67).

• Marked content within streams (page 351) has a special mechanism allowing
portions of graphic content to refer to their containing structural elements (page
170).

March 11, 1999 6.17.2

6: Document Structure 163

• Certain PDF objects such as Pages and Form Xobjects contain graphic content
that can be referred to from a structural element. Such objects participate in the
special backpointer mechanisms.

6.17.2 Structure tree root

The tree representing a document’s logical structure is accessed from the Catalog
object using the StructTreeRoot key. The structure tree root is the starting point
for access to all of the tree’s elements. Table 6.81 gives the keys that a structure
tree root may contain.

In one respect, the structure tree root is like a structural element: it may have kids.
But because of its special role as the central point of access to a document’s logical
structure, the structure tree contains keys not present in structural elements, and it
may only have structural elements as children.

Table 6.81 Structure tree root attributes

Key Type Semantics

Type name (Required) Object type. Always StructTreeRoot.

K (Kids)
array or dictionary (Optional) The immediate child or children of the structure tree root in the

structure hierarchy. This may be a single dictionary representing a structure
element, or an array of such dictionaries.

RoleMap dictionary (Optional) The role map for logical structure in the document. The role map
(Section 6.17.10) is a dictionary whose keys and values are element types that are
roughly equivalent to each other.

ClassMap dictionary (Optional) The class map for logical structure in the document. The ClassMap
(Section 6.17.12) is a dictionary whose keys are class names and whose values are
one or more attributes objects (Section 6.17.4).

ParentTree Number tree (Required if any element points to Marked Content or a PDF Object) A tree of
indirect references to elements. This tree is part of the mechanism by which
marked content within elements points back to its containing element. The value of
each tree element can be either a reference to an element or an array of such
references. See Section 6.17.5 and Section 6.17.6.

ParentTreeNextKey
integer (Optional) An integer greater than any key in the ParentTree. Maintaining this

value allows new unique StructParents indices to be created easily.

IDTree Name tree (Required if any element has an ID field) A name tree that maps a string to a
structural element having that string as the value of its ID field.

Example 6.19 A structure tree root having one kid

104 0 obj

6: Document Structure March 11, 1999

164 Adobe Systems Inc.

<<

/Type /StructTreeRoot

/IDTree 105 0 R

/K 106 0 R

/ParentTree 107 0 R

/ParentTreeNextKey 3

>>

endobj

Example 6.20 A structure tree root having multiple kids

104 0 obj

<<

/Type /StructTreeRoot

/IDTree 105 0 R

/K [106 0 R 108 0 R]

/ParentTree 107 0 R

/ParentTreeNextKey 3

>>

endobj

6.17.3 Structural elements

Structural elements are represented by PDF dictionaries. The dictionary key-value
pairs common to all structural elements are given in Table 6.82.

Every structural element must have an element type, given by a name associated
with its S key. The element type represents a classification of information within a
document: typically, element types represent divisions of content such as sections,
paragraphs, and figures, but element types may in fact be any name consistent with
the PDF Naming Conventions described in Appendix F.

There is a set of proposed standard element types, defined in Standard Element
Types for Logical Structure in PDF [12], which facilitates data interchange among
PDF applications. Applications may use whatever element types are convenient.
Where an application’s element types correspond in meaning to standard element
types, however, a role map (Section 6.17.10) should be provided to indicate the
relationship.

Attributes of structural element are represented by attribute objects, which are
PDF dictionaries or PDF streams. A structural element can directly reference one
or more attribute objects via the A (Attribute) key. An attribute object can be
referenced by more than one structural element.

Another means of associating attribute objects with structural elements is by class.
Unlike its usage in object-oriented programming, the use of the term class here
does not refer to an inheritance mechanism, but rather to a way of specifying sets
of elements that share certain properties. Structural elements have an optional key
C (Class) key, whose value is the name of the class or classes that the structural
element belongs to. These class names can be used as keys into the structure tree
root’s class map (Section 6.17.12) in order to find the associated attribute.

March 11, 1999 6.17.3

6: Document Structure 165

Attributes created by different applications are differentiated by their O (Owner)
key. Elements have an R (Revision) key that enables Attribute Object owners to
know if other applications have modified either the associated element or the
element’s contents, since both Attribute Object reference mechanisms (direct and
class) specify the element’s R key at the time of association.

Table 6.82 Structural element attributes

Key Type Semantics

Type name Object type. Always StructElem.

S (Subtype) name (Required) Structural element type (e.g., Paragraph, Footnote). Element
subtypes must follow the PDF Name Registry guidelines in Appendix F.

P (Parent) dictionary (Required) A reference to the immediate ancestor of the structural element.

T (Title) Text (Optional) A title for the structural element. It is intended that the title describe the
specific structural element, such as “Chapter 1”, rather than a generic element
type, such as “Chapter”.

ID string (Optional) An identifying string by which the element can be accessed. This string
must be unique among all the elements in a document’s structure tree. The
structure tree root’s ID Tree (page 163) indexes structural elements according to
their ID.

K (Kids) special (Optional) The contents of the structural element. These contents may be either
another structural element or PDF graphic content. PDF graphic content within a
stream is represented either as an MCR object (Section 6.17.7) or as an MCID
(Section 6.17.5); PDF graphic content represented by an entire PDF dictionary or
stream is referenced via an OBJR object (Section 6.17.8).

The actual value associated with the K key may be a single dictionary (in the case
where there is one child of a kind that is represented as a dictionary), a single
integer (in the case of one marked content child when the Pg key is present); or it
may be an array whose elements may each be a dictionary or an integer.

Pg (Page) dictionary (Optional, required under conditions noted below) A page containing some or all
of the structural element’s kids as given under the K attribute.

R (Revision) integer (Optional, required as noted below) Revision count.

A (Attributes) various (Optional) Attribute information associated with the structural element. The value
can be a dictionary, a stream, or an array each of whose elements is a stream or
integer, as explained below.

C (Class) special (Optional) A single name specifying a class, or an array of alternating classes
(names) and revisions (integers) associated with this element.

Alt Text (Optional) An alternate representation of the structural element’s contents.

6: Document Structure March 11, 1999

166 Adobe Systems Inc.

The K (Kids) key identifies all the contents of an element. An element’s contents
can be portions of PDF page descriptions, PDF objects, or other structural
elements.

6.17.3.1 Page description as structural element content

PDF page descriptions are stored in streams. To enable a specific sequence of page
description operators to be referenced from outside the stream, the appropriate
page descriptions must be enclosed in one or more marked content containers (see
Section 8.10.3), abbreviated in this document as MCCs. An MCC containing the
MCID key in its property list dictionary can be indirectly referenced from outside
of the PDF stream by specifying both a reference to the containing PDF stream
object and the specific MCID value. In the general case, a reference to an MCC is
packaged up into a marked content reference (MCR) object, described in Section
6.17.7.

The following example shows how a structural element refers to page content via
an MCID.

Example 6.21 Structural element kid reference via MCID

1 0 obj Structural element object
<</Type /StructElem

/S /P Subtype
/P 5 0 R Parent
/Pg 2 0 R Page

Kid references given as integers will be
interpreted as being in the content of this page.

/K 0 There is only one kid, so an array is not necessary.
>>

endobj

2 0 obj Page object
<</Type /Page

/Contents 3 0 R

…

>>

endobj

3 0 obj Page Contents stream
<</Length 3587>>

stream

…

/P <</MCID 0>> BDC Marked Content, with ID = 0.
(Here is some text) TJ …

EMC

…

endobj

March 11, 1999 6.17.3

6: Document Structure 167

6.17.3.2 PDF objects as structural element content

A structural element can logically contain an entire PDF object, such as an
annotation or a Form XObject. In this case, the reference to that PDF object is
achieved via an object reference object (OBJR), described in Section 6.17.8.

6.17.3.3 Structural elements as structural element content

Structural elements can also contain other structural elements, even if the
containing element also contains PDF page descriptions or other PDF objects. The
contained structural elements are stored in the containing structural element’s K
array. The following example shows a structural element containing other
structural elements and page contents.

Example 6.22 Structural element with mixed content

1 0 obj Parent element object
<</Type /StructElem

/S MixedContainer

/K Three kids:
[2 0 R a structural element (object 2 0),
0 marked content on a page (MCID 0),
3 0 R] and another structural element (object 3 0).

/Pg 4 0 R

>>

endobj

Child elements
2 0 obj <</Type /StructElem … >> endobj

3 0 obj <</Type /StructElem … >> endobj

6.17.3.4 Optimizing page references from structural elements

To reduce file size in the case in which all or most of a structural element’s kids are
on the same page, the Pg key can be supplied. If Pg is present in a structural
element, then two optimizations are possible:

1. MCR objects referencing MCCs and OBJR objects referencing other
objects on that element’s page need not have their own Pg key.

1. PDF page descriptions located in the specified page’s contents stream can
be identified in K simply by their MCID, which is an integer.

This latter form will be the most common case in a typical structured document.

6: Document Structure March 11, 1999

168 Adobe Systems Inc.

6.17.3.5 Structural element attributes

Applications can attach attributes to any element by creating an attribute object
(see Section 6.17.11) to hold them, and referencing the attribute object from the
structural element, either directly via the A (Attributes) key, or indirectly via the C
(Class) key. Applications can keep track of changes made by other clients to a
structural element or its contents via the R (Revision) key.

R is a non-negative integer; it must be incremented by each successive application
that modifies the structural element or its hierarchical contents. If the R key is
absent, the value is assumed to be zero. The R key is used if and only if an
application A modifies a structural element that had attributes attached to it by
another application B, unless that attribute object is removed by application A.

R only counts changes to the structural element itself and its hierarchical contents:
changing the attributes one has attached to a structural element does not change the
revision count. See Section 6.17.13 for a complete discussion of structural element
modification rules.

Note A Revision number is independent of an indirect object’s generation number.

The A key associates attribute objects with a structural element. In the general
case, the associated value is an array of alternating attribute object references and
revision numbers: an attribute object is associated with the element at the revision
number immediately following it in the array. Thus, if the element is subsequently
modified and its revision number incremented, clients accessing the attribute
object will be alerted that the element has changed. To enable a single attribute
object to be associated with many elements (each with different revision numbers),
the revision number is not placed in the attribute object, but in the array that
associates the attribute object with the structural element.

To save file space, if a attribute object is associated with an element whose revision
number is zero, the revision number can be omitted from the A array. Furthermore,
if the array contains only one element (which must be an Attribute Object
reference), the value of A is simply a reference to the Attribute Object. The use of
A in elements that are subsequently modified is further discussed in Section
6.17.11.

6.17.3.6 Structural element class

The C (Class) key associates attribute objects with a structural element, but it does
so indirectly through the class map of the root of the structure tree.

In the general case, the value associated with C is an array of alternating class
names and revision numbers. The names are used as the keys in the class map to
obtain the actual attribute object or objects. As with A, revision numbers can be
omitted from the array if they are zero, and an array with only one element can be
represented just as the name the class. Class names must follow the PDF Name
Registry guidelines (see Appendix F).

March 11, 1999 6.17.4

6: Document Structure 169

C (Class) can also be used by itself, without being associated with any attribute
object. In this case the class map will not contain a key for the class name. Even if
not associated with an attribute object, class names attached to a structural element
with a non-zero revision number must be followed by the revision number.

This class mechanism has nothing to do with object-oriented programming. Class
is not an inheritance mechanism: it is a convenient and compact information
association mechanism.

Use of C is further discussed in Section 6.17.12.

6.17.3.7 Structural element alternative text

Alt is provided as a standard place for applications to locate a human-readable text
representation of the structural element’s contents. For instance, it can be used to
provide text that takes the place of the structural element’s contents when those
contents cannot be displayed by a particular viewing application.

6.17.4 Attribute Objects

Any PDF dictionary or stream may serve as an attribute object as long as it
contains the following key:

Table 6.83 Attribute object attributes

Key Type Semantics

O (Owner) name (Required) The name of the client responsible for the attribute data, such as an
application that processes PDF. The name must follow the PDF Name Registry
guidelines in Appendix F.

6.17.5 Marked Content Containers (MCC)

Marked content containers referenced by structural elements must have
dictionaries that contain the following key:

Table 6.84 Marked content property list attributes

Key Type Semantics

MCID integer (Required) A non-negative integer. This number uniquely identifies the particular
marked content container among all those in a stream (or array of streams forming
the contents of a page).

The MCID value is used to identify which MCC is being referenced by an MCR
object or structural element. Since MCIDs serve as indices into an array in the
parent tree of the structure tree root, assigning MCIDs as small as possible will
conserve space in the array.

6: Document Structure March 11, 1999

170 Adobe Systems Inc.

Note As documented in Section 8.10.3, marked content delimiters associate a named tag
with marked content. This tag name is not used by the structure tree or its reference
mechanisms. However, it is suggested for readability that the tag be the same as
the referencing structural element’s S value.

6.17.6 Parent pointers from streams containing marked content

Marked content is stored in streams. Streams cannot contain PDF object
references, so the marked content cannot refer directly to its parent structural
element. A different mechanism, the StructParents key, is used for this purpose.
It enables applications to find the containing structural element from the marked
content.

Table 6.85 Marked content container dictionary attributes

Key Type Semantics

StructParents integer (Required) Index into the StructTreeRoot’s ParentTree, resulting in a value that is
an array of pointers to elements.

If the marked content is in the contents stream of a Page, then the StructParents
key appears in the Page dictionary; for Form and Image XObjects, the
StructParents key appears in the XObject’s dictionary.

Access to the containing structural element from a marked content container is
accomplished indirectly in two steps:

1. The containing stream’s StructParents value is used as an index into the
number tree stored under the ParentTree in the structure tree root. This
yields an array of references to structural elements.

2. The specific marked content’s MCID value is used as an index into that
array, yielding a reference to the structural element containing the MCC as
one of its kids, either directly or via an MCR object.

See Example 6.23 on page 171.

6.17.7 Marked Content Reference (MCR)

A marked content reference (MCR) is a PDF dictionary whose key-value pairs
indirectly reference a specific MCC (Section 6.17.5). MCRs are typically
referenced via a structural element’s K key value.

Table 6.86 Marked content reference attributes

Key Type Semantics

Type name (Required) Always MCR.

March 11, 1999 6.17.7

6: Document Structure 171

Example 6.23 Accessing containing structural element from marked content

1 0 obj The parent structural element
<< /Type /StructElem

…

/Pg 2 0 R

/K 0 The kid, represented as an MCID
>>

endobj

2 0 obj Page object
<< /Type /Page

/Contents 3 0 R

/StructParents 45 StructParents index of the page
…

>>

endobj

3 0 obj Page contents stream object
<< /Length 3587 >>

stream

…

/P <</MCID 0>> BDC MCID of the marked content
(Here is some text) TJ …
EMC

…

endstream

endobj

100 0 obj The number tree in which to look up the parent
<<

/Nums [

0 101 0 R

1 102 0 R

…

45 [1 0 R]The key we want is 45. Element 0 (the MCID)
of this array is the structural element parent.

…]

>>

endobj

6: Document Structure March 11, 1999

172 Adobe Systems Inc.

Pg (Page) dictionary (Optional, Required under conditions described below) The page on which the
MCC’s contents are rendered.

Stm (Stream) stream (Required if value is not the page’s contents) The stream containing the referenced
MCC.

StmOwn (StreamOwner)
any (Optional) The PDF object owning the stream. (See the text below.)

MCID integer (Required) An integer identifying the specific MCC within the specified stream.

Pg (Page) specifies the page on which the PDF page descriptions inside the
referenced MCC are rendered. Pg is required unless the structural element
referencing the MCR object has a Pg key that matches the page that would be
specified in the MCR.

Stm (Stream) specifies the PDF stream containing the MCC. If this is a stream
that forms all or part of the contents of a page, then the Stm key can be omitted.
Two examples of streams that are not the contents of a page are annotations and
Form XObjects.

If the referenced stream is just a part of a larger PDF object, then that larger object
can be referenced in StmOwn (StreamOwner). For example, an MCC in the
Normal stream of an annotation appearance can reference the annotation in
StmOwn and the actual stream that contains the MCC in Stm.

MCID is an integer that identifies which MCC in the stream is being referenced. It
must be unique within the stream. For the stream or streams which make up a
page’s Contents these integers must be unique within the whole page, whether it
has one content stream or several. Section 6.17.6 describes the requirements placed
on streams that contain MCC’s referenced from a structural element’s K key.

March 11, 1999 6.17.7

6: Document Structure 173

Example 6.24 Referencing page content via an MCR

1 0 obj The containing structural element
<<

/S /P

/K <</Type /MCR

/Pg 3 0 R This key is required in the MCR because
there is no Pg key in the structural element.

/MCID 0>>

/P 2 0 R

>>

endobj

3 0 obj The page containing the content
<<

/Type /Page

/Contents 4 0 R

…

>>

endobj

4 0 obj The content stream of the page
<</Length 1729>>

stream

…

/P <</MCID 0>> BDC

(Here is some text) TJ …
EMC

…

endstream

endobj

6: Document Structure March 11, 1999

174 Adobe Systems Inc.

Example 6.25 Referencing the content of a Form XObject via an MCR

1 0 obj << The containing structural element
/Type /StructElem

/S /P

/K <</Type /MCR /Pg 4 0 R /Stm 3 0 R /MCID 0>>

/P 2 0 R

>> endobj

3 0 obj << The Form XObject stream containing the content
/Type /XObject

/Subtype /Form

/Length …

>> stream

…

/P <</MCID 0>> BDC

(Here is some text) TJ …
EMC

…

endstream

endobj

4 0 obj <<

/Type /Page

/Resources << /XObject << /Fm3 3 0 R >> >>

/Contents 5 0 R

…

>> endobj

5 0 obj <<

/Length …

>> stream

…

/Fm3 Do

…

endstream

endobj

March 11, 1999 6.17.8

6: Document Structure 175

6.17.8 Object reference (OBJR)

There are PDF objects, such as Form XObjects, that specify content that appears
on a page without being part of that page. An object reference (OBJR) is a means
of incorporating such a PDF object as a whole into the content of a structural
element in conjunction with the Page on which it is drawn.

Table 6.87 Object reference attributes

Key Type Semantics

Type name (Required) Always OBJR.

Pg (Page) dictionary (Optional, required under conditions described below) The page on which the
object is rendered.

Obj (Object) any (Required) The referenced object.

Pg (Page) specifies the page that the object is drawn on. Pg is required unless the
structural element referencing the OBJR object has a Pg key that matches the page
that would be specified in the OBJR.

If the referenced object is rendered on multiple pages, then each rendering requires
a separate OBJR object. If it is drawn multiple times on the same page, then only
one OBJR object is needed to identify all of them. Referenced objects may be
Form or Image XObjects, or any other PDF object that is considered part of a
structural element; for instance, an annotation object could be included as the
content of a structural element by means of an OBJR.

Note OBJRs are for referencing an entire PDF object as part of the content of a
structural element. Reference to graphic content within a PDF object is
accomplished via MCR objects.

Note If an application needs to distinguish between multiple Form XObject renditions
on the same page, then the application should access the rendition via a marked
content container enclosing the specific “Do formName” portion of the stream
rather than via an OBJR.

6.17.9 Parent pointers from PDF objects to structural elements

The structural element parent of an object referred to via an OBJR is stored by a
mechanism similar to that used for such references from graphic content stored in
a stream.

In the case of parent pointers from PDF objects, the object itself must contain a
StructParent key, as specified in the following table.

6: Document Structure March 11, 1999

176 Adobe Systems Inc.

Table 6.88 PDF object structure pointer attributes

Key Type Semantics

StructParent integer (Required) Index in the structure tree root’s ParentTree, mapping to a value that
is a reference to the structural element containing the object.

Unlike the mechanism for structural element parent pointers from stream content,
there is only one parent per object having the index into the parent tree. For this
reason, the entry in the parent tree for a PDF object is an indirect reference to the
parent structural element itself, rather than an array of such references.

Example 6.26 Parent pointer from Form XObject

3 0 obj Form XObject
<<

/Type /XObject

/Subtype /Form

…

/Length 1729

/StructParent 45 Index into parent tree
>>

stream

…

endstream

endobj

100 0 obj The number tree in which to look up the parent
<<

/Nums [

0 101 0 R

1 102 0 R

…
45 1 0 R The key we want is 45. This entry is

the structural element parent itself.
…]

>>

endobj

1 0 obj The parent structural element object
<< /Type /StructElem

…

/K <</Type /OBJR /Obj 3 0 R /Pg 2 0 R>>

>>

endobj

March 11, 1999 6.17.10

6: Document Structure 177

6.17.10 The role map

The role map is a dictionary referenced from the structure tree root, whose keys
and value are the names of structural element subtypes considered roughly
equivalent. For instance, an application can create an element whose S value is
TextWithinAPath. By including in the role map a key of TextWithinAPath
whose value is P (which is a standard structural subtype, as proposed in [12]),
applications that don’t know about TextWithinAPath can treat the element as a P
(paragraph) for their purposes.

When non-standard structural element types are used, it is strongly recommended
that the role map be created to map them to the closest standard structural element
types. This enables a structure-creating application to employ structural types of its
own definition while providing clues to other applications as to what role this new
structural element plays.

The association of two structural element types in the role map merely denotes
approximate equivalence of meaning. It is not required that either the keys or the
values in the role map be from any particular set of structural element types.

Structural element types entered as values in the role map can also be present as
keys mapped to some other structural element type. Circular chains of association
are explicitly permitted. Applications making use of the role map should iterate
their lookups until they find either a structural element type they recognize, or else
they encounter a structural element type already encountered. Circular mapping
enables a single role map to define a bidirectional mapping.

6.17.11 Attaching attributes

An application can attach attributes to any structural element, even if the
application did not create that structural element, or if other applications have
already attached their own attributes. This can be achieved with the A (Attributes)
and/or C (Class) element keys.

A (Attributes) element key

If the structural element does not yet have an A value, then the client simply
creates an attribute object and makes that the value of A (including the structural
element revision number if it is not zero, in which case A’s value must be an
array).

If the structural element has an A value that is not an array, the client must create
an array, move the existing attribute object reference into that array, then add the
reference to its own attribute object (and revision number if not zero) in the array.
Other than the association of attributes objects being followed by revision numbers
at time of attachment, the array is unordered, but it is considered good policy to
add new attribute objects to the end so that the structural element originator will
normally have added the first entry in the array as its attribute object.

Similarly, if a client’s attribute object is removed from the array and there remains
only one attribute object, the array should be destroyed and A should again point to
the only attribute object attached to the element.

6: Document Structure March 11, 1999

178 Adobe Systems Inc.

6.17.12 Element class key and class map

If many structural elements share the same set of attribute values, the shared values
can be put into an attribute object (Section 6.17.4) that is associated with a name,
called the class name. This attribute object is indirectly attached to a structural
element by adding that class name and element revision number at time of
attachment to the array of names associated with the structural element’s C (Class)
key. The association of class name to attribute objects is maintained in the
ClassMap dictionary attached to the structure tree root.

The class map is a dictionary whose keys are class names, and whose values are
references to attribute objects. The value of any key can be an individual attribute
object reference, or an array of such references.

6.17.13 Element Modification Rules

If a client wishes to modify a structural element or its contents and the structural
element has attributes attached to it by other clients, the modifying client must do
exactly one of the following:

1. Increment the R (Revision) key of the structural element. If the R key is not
present, one must be added to the structural element, with a value of 1.

2. Remove all unknown attribute objects from A (Attributes) and C (Class)
arrays associated with the structural element.

Which an application chooses (they are mutually exclusive) should be decided on
the degree of structural element modification. Incrementing the revision count is
appropriate for small changes, since it is possible for the other applications to
reconstruct. For large changes, which are likely to destroy the state of the structure
on which the originating application’s attribute information was based, the
outdated attribute information should just be removed.

Note Applications creating attribute objects should be designed keeping in mind that
other applications may delete some or all of them at any time.

6.17.14 Extended example of logical structure

Here is an example showing portions of a PDF file that has a simple document
structure. The Structure Tree Root (object #3) contains a MyChapter (#12) and a
MyP (#15). The MyChapter, titled Chapter 1, contains an H1 (#13) and a MyP
(#14).

Example 6.27 Extended example

1 0 obj << Catalog dictionary
/Type /Catalog

/Pages 2 0 R

/StructTreeRoot 3 0 R

>> endobj

March 11, 1999 6.17.14

6: Document Structure 179

2 0 obj << Page tree
/Type /Pages

/Kids [4 1 R 5 0 R]

/Count 2

>> endobj

3 0 obj << Structure tree root
/Type StructTreeRoot

/K [12 0 R 15 0 R] Two kids, both structural elements
/RoleMap

<< /MyP /P /H1 /H /MyChapter /Chapter >>

/ParentTree 100 0 R

/ParentTreeSize 2

/IDTree 95 0 R

>> endobj

100 0 obj << Parent tree objects (a number tree)
/Nums [

0 101 0 R

1 102 0 R]

>> endobj

101 0 obj Structure parents for page 1
[13 0 R 14 0 R]

endobj

102 0 obj Structure parents for page 2
[14 0 R 15 0 R 15 0 R]

endobj

End of parent tree objects
95 0 obj << ID tree object (a name tree)
/Kids [96 0 R]

>> endobj

96 0 obj <<

/Limits [(Chap1) (Sec1.3)]

/Names [

(Chap1) 12 0 R

(Sec1.1) 13 0 R

(Sec1.2) 14 0 R

(Sec1.3) 15 0 R]

>> endobj End of ID tree objects

4 1 obj << First page object
/Type /Page

/MediaBox [0 0 612 792]

/Parent 2 0 R

/Contents 8 0 R

6: Document Structure March 11, 1999

180 Adobe Systems Inc.

/StructParents 0

/Resources

<<

/Font <</F1 6 0 R /F12 7 0 R>>

/ProcSet [/PDF /Text]

>>

>> endobj

5 0 obj << Second page object
/Type /Page

/MediaBox [0 0 612 792]

/Parent 2 0 R

/Contents 10 0 R

/StructParents 1

/Resources

<<

/Font <</F1 6 0 R /F12 7 0 R>>

/ProcSet [/PDF /Text]

>>

>> endobj

8 0 obj << Page 1’s Contents stream
/Length 842

>> stream

1 1 1 rg

0 0 612 792 re f

BT

/H1 <</MCID 0>> BDC

0 0 0 rg

/F1 1 Tf

30 0 0 30 18 732 Tm

(This is a first level heading. he\

llo world:)Tj

1.1333 TL T* (goodbye universe.)Tj

EMC

/P <</MCID 1>> BDC

/F12 1 Tf

14 0 0 14 18 660.8 Tm

(This is the first paragraph, which spans p\

ages. It has four fairly short and concise s\

entences. This is the next to last) Tj

EMC

ET

endstream

endobj

10 0 obj << Page 2’s Contents stream
/Length 1709

March 11, 1999 6.17.14

6: Document Structure 181

>> stream

1 1 1 rg

0 0 612 792 re f

BT

/P <</MCID 0> BDC

0 0 0 rg

/F1 1 Tf

30 0 0 30 18 732 Tm

(sentence. This is the very last sentence o\

f the first paragraph.) Tj

EMC

/P <</MCID 1>> BDC

/F12 1 Tf

14 0 0 14 18 570.8 Tm

(This is the second paragraph. It has four \

fairly short and concise sentences. This is \

the next to last)Tj

EMC

0 0 m

42 0 l

0 42 l

-42 0 l

0 -42 l

/P <</MCID 2>> BDC

1.1429 TL T*

(sentence. Here is the last sentence of the \

second para.) Tj

EMC

ET

endstream

endobj

12 0 obj Structural element representing the chapter
<<

/Type /StructElem

/S /MyChapter

/ID (Chap1)

/T (Chapter 1)

/P 3 0 R Parent is the Structure Tree Root.
/K [13 0 R 14 0 R] This Chapter contains 2 elements.
>>

endobj

13 0 obj Structural element representing a section
<<

/Type /StructElem

/S /H1

/ID (Sec1.1)

6: Document Structure March 11, 1999

182 Adobe Systems Inc.

/P 12 0 R Parent is the Chapter structural element.
/Pg 4 1 R

/K 0 Reference to the MCC on the first page
>> endobj

14 0 obj << Structural element representing a paragraph
/Type /StructElem

/S /P

/ID (Sec1.2)

/P 12 0 R Parent is the Chapter structural element
/Pg 4 1 R One of the pages containing this element

There are two kids, each on a different page:
/K [1

<</Type /MCR /Pg 5 0 R /MCID 0>>

]

>> endobj

15 0 obj <<Structural element representing another paragraph
/S /P

/ID (Sec1.3)

/P 3 0 R Parent is the structure tree root
/Pg 5 0 R

/K [1 2] Two kids on second page in this paragraph
>> endobj

PDF 1.3 Reference Manual March 11, 1999 7: Common Data Structures

183

CHAPTER 7

Common Data Structures

Chapter 4 describes all the basic object types in PDF. In this chapter, we describe
data structures that are built from these basic types but which occur so often in
PDF files that it is useful to regard them as types in their own right.

7.1 Rectangle

Rectangles are used to describe locations on the page and bounding boxes for
several objects in PDF, such as fonts. A rectangle is represented as an array of four
numbers, [llx lly urx ury], specifying the lower left x, lower left y, upper right x,
and upper right y coordinates of the rectangle, in that order.

Note Many operations permit a rectangle to be described by any two diagonally
opposite corners, not necessarily lower-left and upper-right. PDF consumers
should be prepared to “normalize” rectangles in situations where specific corners
are required.

7.2 Date

PDF defines a standard date format. The PDF date format closely follows the
format defined by the international standard ASN.1 (Abstract Syntax Notation
One, defined in CCITT X.208 or ISO/IEC 8824). A date is a string of the form:

(D:YYYYMMDDHHmmSSOHH'mm')

where

• YYYY is the year.

• MM is the month (01–12).

• DD is the day (01–31).

• HH is the hour (00–23).

• mm are the minutes (00-59).

• SS are the seconds (00-59).

PDF 1.1

�

7: Common Data Structures March 11, 1999

184 Adobe Systems Inc.

• O is one of the characters +. -, or Z, indicating the relation of local time to
GMT. + indicates that local time is later than GMT, - indicates that local time is
earlier than GMT, and Z indicates that local time is GMT.

• HH is the absolute value of the offset from GMT in hours. The quote (') is part
of the syntax.

• mm is the absolute value of the offset from GMT in minutes. The quote (') is
part of the syntax.

Example 7.1 Date string

December 23, 1998, 7:52 PM, US Pacific time is represented by:

D:199812231952-08'00'

The D: prefix permits arbitrary keys to be recognized as dates. However, it is not
required. Trailing fields other than the year are also optional. The default value for
day and month is 1; all other numerical fields default to 0. If no GMT information
is specified, the relationship of the specified time to GMT is considered unknown.
Whether the time zone is known or not, the rest of the date should be specified in
local time.

7.3 Destination

An annotation or Outline entry may specify a destination, which consists of a
page, the location of the display window on that page, and the zoom factor to use
when displaying that page.

A destination may be represented explicitly as an array, or implicitly through a
name; see page 185.

7.3.1 Explicit destinations

Table 7.1 shows the allowed forms of the destination. In the table, top, left, right,
and bottom are numbers specified in the default user space coordinate system.
page is an indirect reference to the destination Page object, except in the case of
the GoToR action, where it is a page number. The page’s bounding box is the
smallest rectangle enclosing all objects on the page. No side of the bounding box is
permitted to be outside the page’s crop box. If it is, that side of the bounding box is
defined by the corresponding side of the crop box.

Table 7.1 Destination specification

Destination Semantics

[page /XYZ left top zoom]

If left, top, or zoom is null, the current value of that parameter is retained. For
example, a destination of [4 0 R /XYZ null null null] specifies the
page object with an object ID of 4, retaining the same top, left, and zoom as the
current page. A zoom of 0 has the same meaning as a zoom of null.

�

March 11, 1999 7.3.2

7: Common Data Structures 185

[page /Fit] Fit the page to the window.

[page /FitH top] Fit the width of the page to the window. top specifies the y-coordinate of the top
edge of the window.

[page /FitV left] Fit the height of the page to the window. left specifies the x-coordinate of the left
edge of the window.

[page /FitR left bottom right top]

Fit the rectangle specified by left bottom right top in the window. If the height
(top − bottom) and width (right − left) imply different zoom factors, the
numerically smaller zoom factor is used, to ensure that the specified rectangle fits
in the window.

[page /FitB] Fit the page’s bounding box to the window.

[page /FitBH top] Fit the width of the page’s bounding box to the window. top specifies the y-
coordinate of the top edge of the window.

[page /FitBV left] Fit the height of the page’s bounding box to the window. left specifies the x-
coordinate of the left edge of the window.

7.3.2 Named destinations

A destination may be represented implicitly, using a string or a name. Both of
these cases are referred to as named destinations. These are especially useful when
the destination is in another PDF file. For example, one file may contain a link to
the first page of Chapter 6 in another file. If the link uses a name such as

/Chap6.begin

rather than an explicit location, such as a certain rectangle on page 42, then the
place where Chapter 6 starts can change without invalidating the link.

The mapping from strings to destinations is a feature of PDF 1.2. The Catalog of
any document may contain a Names key whose value is a dictionary (see Section
6.9, “Names dictionary”). Each value in this dictionary is a Name tree, which maps
strings to indirect objects. The Dests entry in this dictionary is a name tree where
the indirect objects are destinations.

Note The keys in the Dests name tree may be treated as Text for display purposes.

The mapping from names to destinations is a feature of PDF 1.1, and it is
supported in later versions for backwards compatibility. The Catalog of any
document may contain a Dests key. Each key in this dictionary is a name, and the
corresponding value is either a destination or a dictionary. If it is a dictionary, it
must have a D key whose value is a destination. (The dictionary enables named
destinations to have additional attributes.)

Note There are several performance advantages to using strings instead of names for
named destinations. See page 389.

PDF 1.1

PDF 1.1

PDF 1.1

PDF 1.1

PDF 1.2

7: Common Data Structures March 11, 1999

186 Adobe Systems Inc.

If an annotation or Outline entry that contains a named destination also includes a
file specification (F key), then the destination is in the specified file. Otherwise, if
there is no F key, the destination is in the current file.

7.4 File specification

A file specification, together with a file system, describes the location of a file. A
simple file specification is one that does not specify the file system to be used, and
a full file specification includes information related to one or more file systems. A
file specification is represented using a string or a dictionary. Only simple file
specifications may be represented as strings. Both full file specifications and
simple file specifications may be represented as a dictionary. The simple file
specification has a standard format for representing the name of the referenced file;
this format is independent of operating system naming conventions.

Although the files specified by the file specification are normally external to the
PDF file, copies of these external files may be embedded within the PDF file, to
allow transmission of a single PDF file that includes some or all of the files
referenced by that PDF file. Embedding a file does not change the presumption
that the file is external to the PDF file. Therefore, it may be necessary to copy the
embedded files back into a local file system for correct processing of that PDF file.

The correct processing of a PDF file is dependent on the external references in that
PDF file being correct. To enable the maintenance of file specifications, it should
be possible to find all the file specifications that might need to be changed for any
reason. Therefore, the following guidelines are strongly recommended:

• All file specifications should use the dictionary form, with a Type key whose
value is the name Filespec.

• All references to file specifications should be indirect.

When external files are embedded within the PDF, the file specification for these
files must use the indirectly referenced dictionary form of the file specification and
must include a Type key with the value Filespec.

7.4.1 File specification strings

The standard format for a simple file specification divides the string into
component strings separated by the slash character (/). The slash is used as a
generic component-separator that is mapped to the appropriate separator when
generating a system-dependent file name. The component string may be empty,
and if the component string contains one or more slashes (e.g., “in/out”) then each
such literal slash must be preceded by a backslash:

(in\\/out)

Note that the backslash must itself be preceded by a backslash to indicate it is
being used as a character in the string and not as the escape character. The
backlashes are removed in defining the components; they are needed only to

PDF 1.2

PDF 1.3

March 11, 1999 7.4.1

7: Common Data Structures 187

distinguish the component values from the component separators. The component
strings are stored as octets and are passed to the operating system without
interpretation or conversion of any sort.

A simple file specification that begins with a slash is an absolute file specification.
Within an absolute file specification, the last component is the file name, and the
preceding components are the context. The file name may be empty in some file
specifications; for example, URL specifications can specify directories instead of
files. A file specification that begins with a component (i.e., one that does not
begin with a slash) is a relative file specification. A relative file specification is
relative to the file specification of the document that contains the relative file
specification.

In the case of a URL file system, the rules of RFC 1808, Relative Uniform
Resource Locators [23], are used to compute an absolute URL from the
document’s file specification and a relative file specification. Prior to this process,
the relative file reference is converted into a relative URL by using the escape
mechanism of RFC 1738, Uniform Resource Locators [18], to represent any octets
that would be either “unsafe” according to RFC 1738 or not representable in 7-bit
US ASCII. In addition, such URL-based relative file references are limited to
being paths as defined in RFC 1808; the scheme, network location/login, fragment
identifier, query information, and parameters are not allowed.

In the case of other file systems, an absolute file specification is created from a
relative file specification and the file specification of the document that contains
the relative file specification by removing the file name component of the
document's file specification and appending the relative file specification.

The special component “..” allows condensing of a file specification. Proceeding
from left to right, whenever a component that is not “..” is followed by “..”, that
component and the “..” are eliminated from the file specification, and the process
is begun again. This allows relative file specifications that are relative to an initial
segment of an absolute file specification.

The conversion of a file specification into a system-dependent file name is
specified for each file system. For the Macintosh, the components are separated by
colons (:). For UNIX, the components are separated by slashes, and an initial
slash, if present, is preserved. For DOS, the initial component is either a physical
or logical drive identifier or a network resource name as returned by the Microsoft
Windows function WNetGetConnection and is followed by a colon. A
network resource name is constructed from the first two components of the file
specification; the first component is the server name and the second component is
the share name (volume name). All the components are then separated by
backslashes. It is possible to specify an absolute DOS path without a drive by
making the first component empty. (Empty components are ignored by other
platforms.)

Table 7.2 provides examples of file specifications on various platforms.

7: Common Data Structures March 11, 1999

188 Adobe Systems Inc.

Multi-byte strings in file specifications

A string used to specify a file name may contain multi-byte character codes. Since
the slash character <2F> is used as a delimiter for components of a file name, and
the backslash character <5C> is used as an escape character, any occurrence of
either of these bytes in a multi-byte character must be preceded by the ASCII byte
for the backslash character.

For example, a file name that contains the double-byte character code <89 5C>
must be written as <89 5C 5C>. When the viewer processes a file name with this
sequence of bytes, it replaces the sequence with the original double-byte code.

The strings used to specify a file name are interpreted in the platform encoding
where the document is being viewed. Where system portability is required, it is
recommended that file names consisting only of ASCII characters be used; see
Section 7.4.5, “Safe path names.”

7.4.2 File specification dictionaries

A file specification can be either a string, formatted as described above, or a
dictionary. The dictionary form of the file specification provides for platform-
specific file specifications and allows extension of the form of file specifications.
A dictionary that contains a platform-specific file system key or a file system key
(FS) is a full file specification. This provides alternate ways to locate a file.

A viewer should use the appropriate platform-specific key (Mac, DOS, or UNIX).
If it does not find the appropriate platform-specific key and there is no file system
value (FS), it should treat the value of the file specification key (F) as a simple file
specification. The keys need not specify the same file, allowing a single file
specification to describe appropriate but different files for different platforms.

Table 7.3 describes the file specification dictionary attributes.

Table 7.2 Examples of file specifications

System System-dependent path Written as…

Macintosh Mac HD:PDFDocs:spec.pdf (/Mac HD/PDFDocs/spec.pdf)

DOS \pdfdocs\spec.pdf (no drive) (//pdfdocs/spec.pdf)

DOS r:\pdfdocs\spec.pdf (/r/pdfdocs/spec.pdf)

DOS pclib/eng:\pdfdocs\spec.pdf (/pclib/eng/pdfdocs/spec.pdf)

UNIX /user/fred/pdfdocs/spec.pdf (/user/fred/pdfdocs/spec.pdf)

UNIX pdfdocs/spec.pdf (relative) (pdfdocs/spec.pdf)

PDF 1.2

March 11, 1999 7.4.2

7: Common Data Structures 189

Table 7.3 File specification attributes

Key Type Semantics

Type name (Required if an EF or RF key is present; recommended always) Object type.
Always Filespec.

FS (FileSystem) name (Optional) The name of the “file system” to be used to interpret this file
specification. A viewer or plug-in can register a file system. A file system interprets
file specifications, opens files, and provides the usual input and output operations.
If a file specification includes a file system, all other keys are interpreted by this
file system. Note that this key is independent of the F, Mac, DOS, and Unix keys.

F (File) string (Required if the Mac, DOS, and Unix keys are all omitted) A file specification
using the string format described earlier in this section, or (if the file system is
URL) a URL, described in Section 7.4.4 on page 194. A viewer that encounters an
action involving a file specification with no F key and that does not understand any
of the alternative keys need not do anything.

Mac string (Optional) A string that specifies a Macintosh file name using the string format
described above.

DOS string (Optional) A string that specifies a DOS file name using the string format
described above.

Unix string (Optional) A string that specifies a UNIX file name using the string format
described above.

ID array (Optional) An array of two strings. The ID is a file ID as described in Section 6.12,
“File ID. This allows a viewer to find the intended file more often, and it allows
viewers to warn a user if the file has changed since the link was made.

V (Volatile) boolean If V is true, this indicates that the document referenced by the file specification
changes frequently with time. An implementation can use this value to determine
whether it is safe to use a cached copy of a document. For example, a Movie
annotation could reference a URL to a live camera; if V is true, then the
implementation could determine that it should reacquire the Movie each time it is
played. The default value is false.

EF (Embedded files)
dictionary (Optional) The keys in the EF dictionary are a subset of the filename keys in the

file specification dictionary: F, Mac, DOS, and Unix. The value of each such key
is an Embedded File stream (see Section 7.4.3 on page 192), containing the
corresponding file. See Example 7.2 on page 191.

RF (Related Files)
dictionary (Optional) A dictionary which has the same key structure as the EF dictionary.

Each key in the RF dictionary must also be in the EF dictionary. Each value is a
Related Files array (see Section 7.4.2.1 on page 190) that identifies file that are
“related” to the corresponding file in the EF dictionary. See Example 7.2 on page
191.

PDF 1.3

PDF 1.2

PDF 1.3

PDF 1.3

7: Common Data Structures March 11, 1999

190 Adobe Systems Inc.

The string values of the DOS, Mac and Unix keys should not be modified by the
implementation.

If a file specification dictionary contains an EF key or RF key, then it must be
indirectly referenced, and the Type key is required.

7.4.2.1 Related Files array

A Related Files array is used when an external entity consists of more than one file
(all of which must be embedded), such as the set of five files that make up a DCS
1.0 entity, but where only one of those files is mentioned in a file specification.

The array has 2 × N elements which are paired, in the form

[string stream string stream …]

The first element of the pair is a string and the second element is an Embedded File
stream. The string holds the name of the related file, and the Embedded File holds
the contents of the related file.

PDF 1.3

March 11, 1999 7.4.2

7: Common Data Structures 191

10 0 obj A file specification dictionary
<< /Type /Filespec

/Mac (Sunset.eps) The name of the Mac file
/Unix (Sunset.eps)

/DOS (SUNSET.EPS)

/EF << /Mac 19 0 R The embedded Mac file
/Unix 13 0 R

/DOS 14 0 R >>

/RF << /Mac 11 0 R >> Files related to the Mac file
>>

endobj

11 0 obj The files related to the Mac file Sunset.eps
[(Sunset.eps) 19 0 R This include Sunset.eps itself.
(Sunset.C) 20 0 R

(Sunset.M) 21 0 R

(Sunset.Y) 22 0 R

(Sunset.K) 23 0 R]

endobj

19 0 obj An Embedded File stream
<< /Type /EmbeddedFile

/Length … /Filter … >>

stream

… Data for Sunset.eps
endstream

endobj

20 0 obj Another Embedded File stream
<< /Type /EmbeddedFile

/Length … /Filter … >>

stream

… Data for Sunset.C
endstream

endobj

In this example, object 19 is the embedded file stream containing the Mac file
Sunset.eps, object 13 is the embedded file stream containing the Unix file
Sunset.eps, and object 14 is the embedded file stream containing the DOS
file SUNSET.EPS. The RF key specifies a set of embedded files, object 11, that
are related to the Mac file; this is a DCS 1.0 set. The first two are shown here.

Example 7.2 A file specification dictionary with EF and RF keys

7: Common Data Structures March 11, 1999

192 Adobe Systems Inc.

7.4.3 Embedded File streams

In some cases, it is desirable to construct a single PDF file which contains all the
information needed to process that file. For example, when there are OPI
dictionaries in the PDF file that refer to externally stored high-resolution image
data, it may be desirable to embed the high-resolution data in the PDF file for
transmission or archiving of the PDF file. Similarly, when a Movie PLayer
annotation refers to an external, platform-specific move file, it may be useful to
embed the movie file in the PDF file. An Embedded File stream provides for this
kind of embedding of external file data within a PDF file. (These embedded files
are included simply for convenience and need not be directly processed by any
PDF consumer.)

The stream dictionary for an Embedded File contains the standard keys for any
stream (e.g., Length and Filter), plus the additional keys shown in Table 7.4.

Table 7.4 Additional attributes for EmbeddedFile streams

Key Type Semantics

Type name Object type. Always EmbeddedFile.

Subtype name (Optional) A name that indicates the subtype of the embedded file. The subtype
must be a first-class name as defined in Appendix F. The names without a
registered prefix must conform to the MIME Media type names defined in RFC
2046 [27], with the provision that characters not allowed in names must use the
two-character hex code format described in Section 4.5, “Names.”

Params dictionary (Optional) File-specific information. See the next section.

7.4.3.1 Embedded File Params dictionary

The Params dictionary in an Embedded File stream is used to hold information,
other than that explicitly identified in the stream’s dictionary, about an Embedded
File. Use of the Params dictionary will avoid name conflicts between the keys
defined in the stream’s dictionary and keys introduced for a given type of
Embedded File. For example, the Params dictionary may be used to include keys
which would capture information contained in the file system file entry for the file
that is being embedded in the EmbeddedFile stream.

The keys defined within the Params dictionary are shown in Table 7.5.

Table 7.5 Attributes for Params dictionary

Key Type Semantics

Mac dictionary (Optional) See Section 7.4.3.2, “Macintosh-specific file information.”

ModDate Date (Optional) Date when the file was last modified.

CreationDate Date (Optional) Date when the file was created.

PDF 1.3

March 11, 1999 7.4.3

7: Common Data Structures 193

Size integer (Optional) Size of the Embedded File, in bytes.

CheckSum string (Optional) 16-byte string that is the checksum of the bytes of the uncompressed
embedded file. This checksum is calculated by applying the standard MD5
message digest algorithm over the bytes of the stream.

7.4.3.2 Macintosh-specific file information

The Macintosh-Specific File Information dictionary may be specified as the value
of the Mac key in the Params dictionary of an Embedded File stream dictionary.

Table 7.6 Attributes of a Macintosh Specific File Information dictionary

Key Type Semantics

Subtype string (Optional) Macintosh file type

Creator string (Optional) Macintosh file creator.

ResFork stream (Optional) The binary contents of the resource fork associated with the Macintosh
file that was embedded.

7.4.3.3 Finding all the file specifications in a PDF file

File specifications are references to external files. As such, the processing of a
PDF file which contains those references is dependent on the referenced files being
consistent with the PDF file. Therefore, it is desirable to enable a PDF file
management application to easily determine what files are referenced from the
PDF file. This facilitates the following sorts of operations:

• Update the relevant file specifications if one or more referenced files get
renamed.

• Determine the complete collection of files that need to be copied to a mirror
site.

• When making new links to external files, discover existing file specifications
referring to the same files and share them.

• Find the file specifications associated with embedded files to be packed or
unpacked.

It is not, in general, possible to find all file specifications in a PDF file, because
there is no way to determine whether a given string is a file specification string. It
is possible, however, to find all the file specification dictionaries, if they are
indirectly referenced and have a Type key with the value Filespec. It suffices to
traverse the entire cross-reference table (see page 57) and find all the dictionaries
with a Type key whose value is Filespec.

PDF 1.3

7: Common Data Structures March 11, 1999

194 Adobe Systems Inc.

Note If a PDF file uses a direct object for a file specification dictionary, the PDF file is
still valid. However, PDF file-management applications may not be able to locate
such file specifications, since they are neither self-typed nor necessarily reachable
via any standard path of object references.

7.4.3.4 Finding all the embedded files within a PDF file

Files are embedded either directly using the EF dictionary in a File Specification
dictionary, or indirectly using the Related Files arrays that are the values in the RF
dictionary. If the file is embedded using the EF dictionary, the name of the file is
obtained from the value of the corresponding key in the File Specification
dictionary. For example, the EF dictionary in Example 7.2 on page 191 has a DOS
key; the name of the embedded DOS file is the value of the DOS key in the File
Specification dictionary, SUNSET.EPS. If the file is embedded using a Related
Files array, the name of the file is the string that precedes the Embedded File
stream in this array.

7.4.3.5 Determining whether a file is embedded

A given external file many be referenced from more than one file specification.
Therefore, when embedding a file with a given name, it is necessary to check for
other occurrences of that name as the value of the same key in other file
specifications. This involves finding all the embeddable file specifications and, for
each matching key, checking if (1) the string that is the value of that key matches
the name of the file being embedded and (2) that a value has not already been
embedded for that file specification. (If there is already a corresponding key in the
EF dictionary, then a file has already been embedded for that use of the file name.)
There is no requirement that the files associated with a given file name be unique.
The same file name, such as readme.txt, may have be associated with different
embedded files in distinct file specifications.

7.4.4 URL

When the FS key in a file-specification dictionary has the value URL, the value of
the F key in that dictionary is not a file specification string: instead, it is a URL
formatted as specified in RFC 1738 and must follow the character-encoding
requirements of that RFC. Because 7-bit US ASCII is a strict subset of the
PDFDocEncoding, this value may also be considered to be in the
PDFDocEncoding.

Note Protocols most expected to be seen in PDF are “http” and “ftp”.

Example 7.3 URLs

/Movie relativeURL
<</F (AbbeyRoad.mov) >>

/Movie absolute URL
<</F (/Movies/Beatles/AbbeyRoad.mov) >>

/Movie relativeURL

March 11, 1999 7.4.5

7: Common Data Structures 195

<</F <</FS /URL /F (AbbeyRoad.mov) >> >>

/Movie absolute URL
<</F

<<

/FS /URL

/F (ftp://oranda/ftp/Movies/AbbeyRoad.mov)

>>

>>

7.4.5 Safe path names

Care must be taken to use safe path names when creating collections of documents
that are to be used on various file systems. A safe path name is one that can be used
to locate files on the most common file systems. For maximum compatibility, only
a subset of the US ASCII character set should be used: the uppercase alphabetic
(A-Z) characters, the numeric characters (0-9), and the underscore (_). The
period (.) has special meaning as part of a relative path specifier in DOS and
Windows file names, and as the first character in a Macintosh pathname. When
used in file names, the period should be used only to separate a base file name
from a file extension.

Some systems are case-insensitive, so names within a directory should be
distinguishable if lowercase letters are changed to uppercase, or vice versa. On
DOS and Windows 3.1 systems and on some CD-ROM file systems, file names are
limited to eight characters plus a three-character extension. File system software
typically converts long names to short names by retaining the first six or seven
characters and the first three characters after the last period, if any. The seventh or
eighth characters are converted to other values unrelated to the original value.
Therefore, safe file names are distinguishable from the first six characters.

7.5 Resources dictionaries

The marking operations for drawing a page are stored in a stream that is the value
of the Contents key in the Page object’s dictionary. In addition to pages, however,
there are other objects in PDF that also include streams of marking operations:
forms, patterns, and the procedures that draw characters in Type 3 fonts. These are
all referred to as content streams. Chapter 8 describes the operations used in all
content streams, including those in pages.

The marking operations use various types of basic objects such as numbers and
strings; these are represented as direct objects in the contents stream. Other
objects, such as fonts, that are represented by streams or dictionaries may also be
needed by the marking operations, but no indirect objects of any sort, including
streams, may appear in a contents stream. Neither may dictionaries, with the
exception of in-line property lists (see Section 7.19 on page 313). Instead, such
objects are represented by names, and they are called named resources.

ftp://oranda/ftp/Movies/AbbeyRoad.mov

7: Common Data Structures March 11, 1999

196 Adobe Systems Inc.

Each contents stream includes a list of the named resources it uses. This resource
list is stored as a dictionary that is the value of the stream dictionary’s Resources
key, and it serves two functions: it enumerates the named resources in the contents
stream, and it establishes the mapping from the names to the objects used by the
marking operations.

For example, if a certain font were needed by a text operator, it might be referred to
in the contents stream by the name /F42. The Resources dictionary would include
the mapping from the name /F42 to the actual font object.

PDF defines several types of named resources. These include:

• ProcSet (page 198)

• Font (page 198)

• Color space (page 230)

• XObject (page 246)

• Extended graphics state (page 272)

• Pattern (page 287)

• Property list (page 313)

• Shading dictionary (page 294)

Other types of objects may be used during marking operations, but they are not
referred to directly and are therefore not named. These include:

• Font Encoding (page 213)

• Font descriptor (page 222)

• Halftone (page 275)

• Function (page 262)

• CMap (page 215)

Each key in the Resources dictionary is the name of a resource type; each value is
a dictionary or an array. If it is a dictionary, its keys are the resource names, and its
values are indirect references to the PDF objects specifying those resources. If it is
an array, it contains a list of names. Only ProcSet resources are represented as
arrays in the Resources dictionary; all other resource lists are represented as
dictionaries.

The following table shows the attributes of a Resources dictionary.

March 11, 1999 7.4.5

7: Common Data Structures 197

Table 7.7 Resources dictionary

Key Type Semantics

ColorSpace dictionary (Optional) A dictionary in which each key is a resource name, and each value is
either the name of a device-dependent color space or an array describing a color
space, as described in Section 7.12 on page 230.

XObject dictionary (Optional) A dictionary in which each key is a resource name, and each value is an
XObject. See Section 7.13 on page 246.

ExtGState dictionary (Optional) A dictionary in which each key is a resource name, and each value is an
Extended Graphics State dictionary. See Section 7.15 on page 272.

Font dictionary (Optional) A dictionary in which each key is a resource name, and each value is a
font. See Section 7.7 on page 198.

Pattern dictionary (Optional) A dictionary in which each key is a resource name, and each value is a
pattern. See Section 7.17 on page 287.

ProcSet array (Optional) An array of predefined names. See Section 7.6 on page 198.

Properties dictionary (Optional) A dictionary in which each key is a resource name, and each value is a
property list. See Section 7.19 on page 313.

Shading dictionary (Optional) A dictionary in which each key is a resource name, and each value is a
shading dictionary. See Section 7.18 on page 294.

Example 7.4 shows a Resources dictionary containing ProcSets, Fonts, and
XObjects. The ProcSets are specified by an array, as described in the following
section. The Fonts are specified with a dictionary; it contains four names, /F5,
/F6, /F7, and /F8, and these are associated with objects 6, 8, 10, and 12,
respectively, which are fonts. Likewise, the XObject dictionary contains the names
/Im1 and /Im2, associated with objects 13 and 15, respectively, which are
XObjects.

Example 7.4 Resources dictionary

<<

/ProcSet [/PDF /ImageB]

/Font

<< /F5 6 0 R /F6 8 0 R /F7 10 0 R /F8 12 0 R >>

/XObject

<< /Im1 13 0 R /Im2 15 0 R >>

>>

Note The phrase “current Resources dictionary” refers to the Resources dictionary of
the current contents stream. Since Page objects can inherit their attributes (see
page 72) the current Resources dictionary for a Page may be stored in some
ancestor of the Page object.

PDF 1.3

7: Common Data Structures March 11, 1999

198 Adobe Systems Inc.

7.6 ProcSets

The types of instructions that may be used in a PDF contents stream are grouped
into independent sets of related instructions. Each of these sets, called a ProcSet,
may or may not be used in a particular stream. ProcSets contain implementations
of the PDF operators and are used only when a page or other stream is printed. The
Resources dictionary for each contents stream must contain a ProcSet key whose
value is an array consisting of the names of the ProcSets used in that contents
stream. Each of the entries in the array must be one of the predefined names shown
in Table 7.8. For an example of a ProcSet key, see the Resources dictionary in
Example 7.4.

Table 7.8 Predefined ProcSets

ProcSet Name Required if the page has any…

/PDF marks in the contents stream whatsoever

/Text text

/ImageB grayscale images or image masks

/ImageC color images

/ImageI indexed images (also called color-table images)

7.7 Fonts

A font is represented in PDF as a dictionary specifying the type of font, its
PostScript font name, its encoding, and information that can be used to provide a
substitute when the font is not available. PDF defines the following types of fonts:

• Type 1, including subsets and Multiple Master “snapshots”

• Type 3

• TrueType, including subsets

• Type 0

Any font may include a Name attribute; this is required only in PDF 1.0. The
name is used as the operand of the Tf operator when selecting the font. If Name is
supplied, it should match the name used in the Font dictionary within the current
Resources dictionary.

All fonts specify the width of the characters in the font. The width of a character
refers to the horizontal offset between the origin of the character and the origin of
the next character when writing in horizontal mode, as shown in Figure 7.1. In
horizontal mode, the vertical offset is always 0.

�

PDF 1.2

�

March 11, 1999 7.7.1

7: Common Data Structures 199

Note In a PDF document, the character widths and metrics for Type 1, Multiple Master
Type 1, True Type, and Type 0 font resources are measured in units in which 1000
units corresponds to 1 unit in text space.

Figure 7.1 Character metrics

Figure 7.2 shows the relationship between fonts, encodings, CMaps, and
descriptors. Three types of fonts are shown: Type 1, TrueType, and Type 0. Note
that the descriptors use different keys to refer to an embedded font file. (For
illustration purposes only, the figure shows nested direct objects instead of indirect
objects.)

The term glyph is used to refer to an element of a font, particularly in a multi-byte
font, where the term character, which is the more common term, might be
confused with byte.

Table 7.9 Attributes common to Type 1, Type 3, True Type and Type 0 fonts

Key Type Semantics

Type name Object type. The value must be Font.

Subtype name (Required) Type of font.

BaseFont name (Required) The “PostScript name” of the font, as described on page 201. There are
special cases for True Type fonts, Multiple Master fonts, and font subsets.

Encoding various A map from character codes to glyph procedures.

ToUnicode stream (Optional) A mechanism for mapping character codes to Unicode values. See
Section 7.10.1 on page 219.

7.7.1 Type 1 fonts

Type 1 fonts, described in detail in Adobe Type 1 Font Format [5], are special-
purpose PostScript language programs used for defining fonts. As compared to
Type 3 fonts, Type 1 fonts can be defined more compactly, make use of a special
procedure for drawing the characters that results in higher quality output at small

bounding
box

next
character
origin

character
origin

character width

PDF 1.3

7: Common Data Structures March 11, 1999

200 Adobe Systems Inc.

Figure 7.2 Fonts, encodings, CMaps, and FontDescriptors

<< /Type /Font
/Subtype /Type1
/Encoding << /Type /Encoding

/Differences […]
/BaseEncoding … >>

/FirstChar …
/LastChar …
/FontDescriptor << /Type /FontDescriptor

/Flags …
…
/FontFile stream >>

… >>

<< /Type /Font
/Subtype /TrueType
/Encoding << /Type /Encoding

/Differences […]
/BaseEncoding … >>

/FirstChar …
/LastChar …
/FontDescriptor << /Type /FontDescriptor

/Flags …
…
/FontFile2 stream >>

… >>

<< /Type /Font
/Subtype /Type0
/Encoding << /Type /CMap

/CIDSystemInfo …
… >>

/DescendantFonts [<< /Type /Font
/Subtype /CIDFontType0
/CIDSystemInfo …
/FontDescriptor << /Type /FontDescriptor

/Flags …
…
/FontFile3 stream >>

/BaseFont … >>
…]

… >>

March 11, 1999 7.7.1

7: Common Data Structures 201

sizes and low resolution, and have a built-in mechanism for specifying hints, which
are data that indicate basic features of the character shapes not directly expressible
by the basic PostScript language operators.

Table 7.10 shows the attributes of Type 1 fonts.

Table 7.10 Type 1 font attributes (in addition to those in Table 7.9)

Key Type Semantics

Subtype name (Required) Type of font. Always Type1.

BaseFont name (Required) The name of the base font, described below.

FirstChar integer (Required except for base 14 Type 1 fonts listed in Table 7.11) Specifies the first
character code defined in the font’s Widths array.

LastChar integer (Required except for base 14 Type 1 fonts) Specifies the last character code defined
in the font’s Widths array.

Widths array (Required except for base 14 Type 1 fonts; indirect reference preferred) An array of
(LastChar FirstChar + 1) widths. For character codes outside the range
FirstChar to LastChar, the value of MissingWidth from the font’s descriptor
is used (see page 222). The units in which character widths are measured depend
on the type of font.

Encoding dictionary (Optional) An Encoding dictionary that specifies the font’s character encoding. If
this key is not present, the font’s built-in encoding is used. Appendix C describes
the predefined encodings (MacRomanEncoding, MacExpertEncoding, and
WinAnsiEncoding).

Note To display correctly, fonts that do not use a predefined encoding must be embedded
in the PDF file.

FontDescriptor
dictionary (Required except for base 14 fonts; must be indirect reference) A font descriptor

describing the font’s metrics other than its character widths.

BaseFont is the “PostScript name” of the font, that is, the name used by the
definefont and findfont operators in a PostScript language program. This is
usually the value of the FontName key in the PostScript language font dictionary
of the font. For more information, see Section 5.2 of the PostScript Language
Reference Manual, Third Edition [1].

Example 7.5 shows the font dictionary for the Adobe Garamond Semibold font.
The font has an encoding (object 25), although neither the encoding nor the font
descriptor (object 7) is shown in the example.

Example 7.5 Type 1 font and character widths array

14 0 obj <<

/Type /Font

7: Common Data Structures March 11, 1999

202 Adobe Systems Inc.

/Subtype /Type1

/BaseFont /AGaramond-Semibold

/Encoding 25 0 R

/FontDescriptor 7 0 R

/FirstChar 0

/LastChar 255

/Widths 21 0 R

>> endobj

21 0 obj

[255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 280 438 510 510 868 834

248 320 320 420 510 255 320 255 347 510 510 510 510

510 510 510 510 510 510 255 255 510 510 510 330 781

627 627 694 784 580 533 743 812 354 354 684 560 921

780 792 588 792 656 504 682 744 650 968 648 590 638

320 329 320 510 500 380 420 510 400 513 409 301 464

522 268 259 484 258 798 533 492 516 503 349 346 321

520 434 684 439 448 390 320 255 320 510 255 627 627

694 580 780 792 744 420 420 420 420 420 420 402 409

409 409 409 268 268 268 268 533 492 492 492 492 492

520 520 520 520 486 400 510 510 506 398 520 555 800

800 1044 360 380 549 846 792 713 510 549 549 510 522

494 713 823 549 274 354 387 768 615 496 330 280 510

549 510 549 612 421 421 1000 255 627 627 792 1016

730 500 1000 438 438 248 248 510 494 448 590 100 510

256 256 539 539 486 255 248 438 1174 627 580 627 580

580 354 354 354 354 792 792 790 792 744 744 744 268

380 380 380 380 380 380 380 380 380 380]

endobj

7.7.2 The base 14 Type 1 fonts

Table 7.11 lists the PostScript names of fourteen Type 1 fonts known as the “base
14 fonts.” These fonts include members of the Courier, Helvetica*, and Times*

families, along with Symbol and ITC Zapf Dingbats. These fonts, or their font
metrics and suitable substitution fonts, are guaranteed to be available to the
Acrobat program. For more information on font metrics, see Adobe Font Metrics
File Format Specification [13].

March 11, 1999 7.7.3

7: Common Data Structures 203

Table 7.11 Base 14 fonts

Courier
Courier-Bold
Courier-BoldOblique
Courier-Oblique
Helvetica
Helvetica-Bold
Helvetica-BoldOblique
Helvetica-Oblique
Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic
Symbol
ZapfDingbats

7.7.3 TrueType fonts

The TrueType font format was developed by Apple Computer. A TrueType font,
shown in Table 7.12, has the same keys as a Type 1 font. The Subtype and
BaseFont keys have different values than those in a Type 1 font.

Note Character widths in TrueType fonts are measured in units in which 1,000 units
corresponds to 1 unit in text space.

Table 7.12 TrueType font attributes (in addition to those in Table 7.9)

Key Type Semantics

Subtype name (Required) Type of font. Always TrueType.

BaseFont name (Required) A name containing a “style” specifying the base TrueType font,
described below.

FirstChar integer (Required) The same as for Type 1.

LastChar integer (Required) The same as for Type 1.

Widths array (Required; indirect reference preferred) The same as for Type 1.

Encoding dictionary (Optional) The same as for Type 1.

FontDescriptor
dictionary (Required; must be indirect reference) The same as for Type 1.

For TrueType fonts, the BaseFont key in the font dictionary is a name that may
contain a style. If the font is a bold, italic, or bold italic font for which no
PostScript name is available, the BaseFont key contains the base name of the

7: Common Data Structures March 11, 1999

204 Adobe Systems Inc.

font with any spaces removed, followed by a comma, followed by a style. The
style is one of Italic, Bold, or BoldItalic. For example, the italic variant of the New
York font has a BaseFont that is written as

/NewYork,Italic

Example 7.6 TrueType font

17 0 obj <<

/Type /Font

/Subtype /TrueType

/BaseFont /NewYork,Bold

/FirstChar 0

/LastChar 255

/Widths 23 0 R

/Encoding /MacRomanEncoding

/FontDescriptor 7 0 R

>> endobj

23 0 obj

[0 333 333 333 333 333 333 333 0 333 333 333 333 333

333 333 333 333 333 333 333 333 333 333 333 333 333

333 333 0 333 333 333 303 500 666 666 882 848 303

446 446 507 666 303 378 303

… omitted data …
303 530 1280 757 605 757 605 605 355 355 355 355 803

803 790 803 780 780 780 340 636 636 636 636 636 636

636 636 636 636]

endobj

7.7.4 Font Subsets

PDF permits documents to include subsets of Type 1 and TrueType fonts. The font
and the descriptor that describe a font subset are slightly different from those of
ordinary fonts. These differences allow an application to recognize font subsets
and to merge documents containing different subsets of the same font.

The value of the font’s BaseFont key and the font descriptor’s FontName key
use the following format:

pseudoUniqueTag+PostScriptName

pseudoUniqueTag consists of exactly six uppercase alphabetic characters.
PostScriptName must be the name of the complete Type 1 font. A plus sign
separates pseudoUniqueTag and PostScriptName. For example,
EOODIA+Poetica is the name of a subset of the Poetica® font. The purpose of
the tag is to identify the subset. Different subsets should have different tags.

Note Both the BaseFont and the FontName must use this format for subset fonts.

PDF 1.1

March 11, 1999 7.7.5

7: Common Data Structures 205

7.7.5 Multiple master Type 1 fonts

The multiple master font format is an extension of the Type 1 font format that
allows the generation of a wide variety of typeface styles from a single font. This is
accomplished through the presence of various design dimensions in the font.
Examples of design dimensions are weight (light to extra-bold) and width
(condensed to expanded). Coordinates along these design dimensions (such as the
degree of boldness) are specified by numbers.

To specify the appearance of the font, numeric values must be supplied for each
design dimension of the multiple master font. A completely specified multiple
master font is referred to as an snapshot of the multiple master font.

The note Type 1 Font Format Supplement [6] describes multiple master fonts. A
snapshot of a multiple master font, shown in Table 7.13, has the same keys as an
ordinary Type 1 font.

Note Character widths in multiple master Type 1 fonts are measured in units in which
1,000 units corresponds to 1 unit in text space.

Table 7.13 Multiple master Type 1 font attributes (in addition to those in Table
7.9)

Key Type Semantics

Subtype name (Required) Type of font. Always MMType1.

BaseFont name (Required) Specifies the PostScript name of the snapshot. If the name contains
spaces (such as “MinionMM 366 465 11”), these spaces are replaced with
underscores (e.g., /MinionMM_366_465_11).

FirstChar integer (Required) The same as for Type 1.

LastChar integer (Required) The same as for Type 1.

Widths array (Required; indirect reference preferred) The same as for Type 1.

FontDescriptor
dictionary (Required; must be indirect reference) The same as for Type 1.

Encoding dictionary (Optional) The same as for Type 1.

Example 7.7 Multiple master font and character widths array

7 0 obj <<

/Type /Font

/Subtype /MMType1

/BaseFont /MinionMM_366_465_11

/FirstChar 32

/LastChar 255

/Widths 19 0 R

7: Common Data Structures March 11, 1999

206 Adobe Systems Inc.

/Encoding 5 0 R

/FontDescriptor 6 0 R

>>

endobj

19 0 obj

[187 235 317 430 427 717 607 168 326 326 421

619 219 317 219 282 427 427 427 427 427 427

427 427 427 427 219 219 619 619

… omitted data …
301 301 301 569 569 0 569 607 607 607 239 400

400 400 400 253 400 400 400 400 400]

endobj

7.7.6 Type 3 fonts

Type 3 fonts, also known as user-defined fonts, are described in Section 5.7 of the
PostScript Language Reference Manual, Third Edition [1]. PDF provides a variant
of Type 3 fonts in which characters are defined by streams of PDF page-marking
operators. These streams, known as CharProcs, are associated with the character
names. As with any font, the character names are accessed via an encoding vector.

PDF Type 3 fonts differ from the other fonts supported by PDF. A Type 3 font
defines the font itself, while the other font dictionaries simply contain information
about the font.

Type 3 fonts are more flexible than Type 1 fonts because the character-drawing
streams may contain arbitrary PDF marking operators. However, Type 3 fonts have
no mechanism for improving output at small sizes or low resolutions, and no built-
in mechanism for hinting. Table 7.14 shows the attributes specific to Type 3 fonts.

Table 7.14 Type 3 font attributes (in addition to those in Table 7.9)

Key Type Semantics

Subtype name (Required) Type of font. Always Type3.

FirstChar integer (Required) The same as for Type 1.

LastChar integer (Required) The same as for Type 1.

Widths array (Required; indirect reference preferred) The same as for Type 1.

CharProcs dictionary (Required) Each key in this dictionary is a character name; the value associated
with that key is a stream object that draws the character. Any operator that can be
used in a PDF page description can be used in this stream. However, the stream

must include as its first operator either d0 (d zero) or d1 (d one).1

1. These are equivalent to the PostScript language setcharwidth and setcachedevice operators.

March 11, 1999 7.7.7

7: Common Data Structures 207

FontBBox Rectangle (Required) The font’s bounding box. The coordinates are measured in character
space. The bounding box is the smallest rectangle enclosing the shape that would
result if all characters in the font were placed with their origins coincident, and
then painted. FontBBox is identical to the PostScript Type 3 font FontBBox.

FontMatrix array (Required) Specifies the transformation from character space to text space.
FontMatrix is identical to the PostScript Type 3 font FontMatrix.

Resources dictionary (Optional, but strongly recommended) A list of the named resources such as fonts
and images required by the CharProcs in this font (see page 195). If this dictionary
is not present, then the resources used by the CharProcs are specified in the
Resources dictionary of the Page on which this font is used.

Encoding dictionary (Required) The same as for Type 1.

When a PDF viewer needs to find the CharProc for a glyph in a Type 3 font, it must
first look in the Encoding array to find the glyph name corresponding to the
character code, then look up the CharProc for that glyph name in the CharProcs
dictionary. For example, if the Encoding array says [0 /h …], then the
CharProcs dictionary must contain an entry for the key /h.

Example 7.8 Type 3 font

6 0 obj <<

/Type /Font

/Subtype /Type3

/Name /T36

/CharProcs 1928 0 R

/FontBBox [−3 −241 875 856]

/FontMatrix [.001 0 0 .001 0 0]

/FirstChar 3

/LastChar 101

/Widths 7 0 R

/Encoding 1927 0 R

>> endobj

7 0 obj

[55 0 0 589 0

0 0 0 0 0 0 0 0 0 0 0 0 0 31 31 0 0 0 270 0 0 410 40

640 40 0 40 0 40 40 0 0 0 0 0 0 0 0 60 0 58 61 54 52

603 0 29 0 0 853 73 60 62 504 0 659 44 58 60 60 0 0

603 0 0 0 0 0 0 0 0 0 35 0 35]

endobj

7.7.7 Type 0 Fonts

Type 0 fonts support single-byte or multi-byte encodings and can refer to one or
more descendant fonts; see Figure 7.2 on page 200. These fonts are analogous to
the Type 0 or composite fonts supported by PostScript interpreters. However PDF

PDF 1.2

�

PDF 1.2

7: Common Data Structures March 11, 1999

208 Adobe Systems Inc.

Type 0 fonts only support character encodings defined by a CMap, which maps
character codes to glyphs in the descendant fonts. The details of a CMap are
defined in Section 7.10 on page 215.

The following table shows the attributes of a Type 0 font.

Table 7.15 Type 0 font attributes (in addition to those in Table 7.9)

Key Type Semantics

Subtype name (Required) Type of font. Always Type0.

BaseFont name (Required) The PostScript name of the font, or a name with a style specifying the
TrueType font.

DescendantFonts array (Required) An array of one or more fonts. These fonts are selected by the font
number defined in the CMap.

Encoding
name or stream (Required) The name of a predefined CMap, or a stream containing a CMap.

Implementation note Acrobat 3.0 and Acrobat 4.0 support only one entry in the DescendantFonts
array.

Type 0 fonts can also be used to embed fonts where the characters are encoded
using an unknown character encoding. An example of this is when characters are
encoded using glyphIndex values or CID values from an unknown character
collection. GlyphIndex and CID values are two-byte values that are used to
directly index glyph procedures in CIDFontType2 fonts (TrueType, see Section
7.8.2 on page 212) or CIDFontType0 fonts (see Section 7.8.1 on page 211).

The following example shows a Type 0 font which refers to a single CIDFont. The
CMap used is one of the predefined CMaps and is referenced by name.

Example 7.9 Type 0 font referring to a single CIDFont

14 0 obj <<

/Type /Font

/Subtype /Type0

/BaseFont /HeiseiMin-W5-90ms-RKSJ-H

/Encoding /90ms-RKSJ-H

/DescendantFonts [15 0 R]

>> endobj

7.7.8 Vertical Writing

Vertical writing is specified by the WMode entry in a CMap. When this value is 1,
the Type 0 font that uses the CMap will position text for vertical writing.

March 11, 1999 7.7.8

7: Common Data Structures 209

In vertical writing, the character position is described by a position vector from the
origin used for horizontal writing (origin 0) to the origin used for vertical writing
(origin 1). See the PostScript Language Reference Manual, Third Edition [1],
section 5.4, for a detailed explanation of vertical writing.

Figure 7.3 illustrates the metrics for horizontal and vertical writing modes.

The left diagram illustrates the character metrics associated with writing mode 0,
horizontal writing. The coordinates ll and ur specify the bounding box of the
character relative to origin 0. w0 is the displacement vector that specifies how the
current point is changed after the character is shown in writing mode 0. Its x
component (horizontal displacement or character width) may be different from the
width of the bounding box. Its y component (vertical displacement) is always 0.

The center diagram illustrates writing mode 1, vertical writing. w1 is the
displacement vector for writing mode 1; its x component is always 0.

In the right diagram, v is the position vector that defines the position of origin 1
relative to origin 0.

In vertical writing, the default position vector and displacement vector are
specified by the DW2 attribute, which is an array of two values: the y component
of the position vector, and the y component of the displacement vector. The x value
of the position vector is always half the character width. The x component of the
displacement vector is always 0. For example, if the DW2 entry is:

/DW2 [880 -1000]

the position vector and displacement vectors are:

v = (hw ÷ 2, 880)

w = (0, –1000)

where hw is the character width. Note that a negative value for the y component
will place the origin of the next character below the current character, because in a
standard coordinate system, the positive direction of the y-axis points upward.

Figure 7.3 Horizontal and vertical writing metrics

Writing mode 0 Writing mode 1 Position vector

new current
point

ur

w0origin
0

ll
new current point

w1

origin
0

v

origin 1 origin 1

7: Common Data Structures March 11, 1999

210 Adobe Systems Inc.

Glyphs whose vertical metrics differ from the defaults must be included in the W2
array. In this array, the position vector and displacement vector are defined by three
numbers: the x and y values of the position vector, and the y component of the
displacement vector. There are two formats that can be used to define these
vectors, as shown below:

/W2 [

c [w1,y v1,x v1,y w2,y v2,x v2,y …]

cfirst clast w1,y v1,x v1,y

]

In the first entry, c gives a starting CID and is followed by an array. The array
contains sets of three numbers: the y value for the displacement vector, followed by
the x and y values for the position vector. The sets of three numbers defines the
vertical metrics for consecutive character codes starting with CID value c. The
second format defines a range of CIDs from cfirst to clast. These ranges use the same
format as defined for the W array. The range is followed by three numbers that
define the vertical metrics for all CIDs in the range.

Following is an example of a W2 entry.

/W2

[

120 [-1000 250 772]

7080 8032 -1000 500 900

]

This entry defines the writing mode 1 (vertical) displacement vector for character
CID 120 as (0,–1000) and the position vector as (250, 772). The second list in the
array defines the displacement vector to be (0, –1000) and the position vector of
(500, 900), for CIDs in the range 7080 to 8032.

7.8 CIDFonts

A CIDFont is a font-like object designed to contain a large number of glyph
procedures. Instead of being accessed by a name, each glyph procedure is accessed
by an integer known as a character identifier or CID.

Although its Type is Font, a CIDFont is not actually a font; it does not have an
Encoding attribute, and it cannot be used as the operand to the Tf operator. It is
used only as a descendant of a Type 0 font. It is the CMap in the Type 0 font that
defines the encoding that maps character codes to CIDs in the CIDFont.

There are two types of CIDFonts. A Type 0 CIDFont contains glyph procedures
based on Adobe’s Type 1 font format; a Type 2 CIDFont contains glyph
procedures based on the TrueType font format.

PDF 1.2

March 11, 1999 7.8.1

7: Common Data Structures 211

7.8.1 CIDFontType 0

A Type 0 CIDFont uses Adobe Type 1 charstrings for glyph procedures and the
CIDFont file format.

Table 7.16 CIDFontType 0 attributes

Key Type Semantics

Type name Object type. Always Font.

Subtype name (Required) Always CIDFontType0.

BaseFont name (Required) The PostScript name of the CIDFont.

CIDSystemInfo
dictionary (Required) A dictionary containing the Registry, Ordering, and Supplement

attributes that define the character collection of the CIDFont. See Table 7.17.

FontDescriptor
dictionary (Required; must be an indirect reference) A font descriptor describing the

CIDfont’s default metrics other than its character widths.

DW integer (Optional) Default width for glyphs in the CIDFont.

W array (Optional) The W array consists of a set of lists that define the widths for the
glyphs in the CIDfont. Each list can specify individual widths for consecutive
CIDs, or one width for a range of CIDs. (See the section below for more details on
this format.)

DW2 array (Optional; applies only to CIDFonts that are used for vertical writing) The default
metrics for writing mode 1 (see Section 7.7.8, “Vertical Writing,” for a description
of writing mode 1 and examples of the DW2 key). This entry is an array of two
numbers: the y component of the position vector and the y component of the
displacement vector for writing mode 1. The x component of the position vector is
always half the width of the character. The x component of the displacement vector
is always 0. The default value is [880 -1000].

W2 array (Optional; applies only to CIDFonts that are used for vertical writing) This array
defines the metrics for vertical writing (see Section 7.7.8, “Vertical Writing,” for a
description of vertical writing and examples of the W2 key). Its format is similar to
the format of the W array. It defines the x and y components of the position vector,
and the y component of the displacement vector for individual CID values. The x
component of the displacement vector is always 0. The contents of this array is
described in detail below.

7: Common Data Structures March 11, 1999

212 Adobe Systems Inc.

Table 7.17 Entries in a CIDSystemInfo dictionary

Key Type value

Registry string (Required) A string identifying an issuer of character collections—for example,
Adobe. For information about assigning a registry identifier, consult the Adobe
Developer Relations Web site (see the Bibliography) or send e-mail to the Adobe
Unique ID Coordinator at fontdev-person@adobe.com.

Ordering string (Required) A string that uniquely names a character collection issued by a specific
registry—for example, Japan1.

Supplement integer (Required) The supplement number of the character collection. An original
character collection has a supplement number of 0. Whenever additional CIDs are
assigned in a character collection, the supplement number is increased.
Supplements do not alter the ordering of existing CIDs in the character collection.
This value is not used in determining compatibility between character collections.

7.8.2 CIDFontType 2

A Type 2 CIDFont uses TrueType glyph procedures.

Table 7.18 CIDFontType 2 attributes

Key Type Semantics

Type name Object type. Always Font.

Subtype name (Required) Always CIDFontType2.

BaseFont name (Required) A name with a style specifying the TrueType font.

CIDToGIDMap
stream or name (Optional) If the value of this key is a stream, the bytes in the stream contain the

mapping from CID to glyphindex (“GID”). The glyphindex for a particular CID
value c is a 2-byte value stored in bytes 2c and 2c+1; the first byte is the high-
order byte. If the value of this key is a name, it must be Identity, indicating that
the mapping between CIDs and glyphindices is the identity mapping. The default
is the name Identity.

CIDSystemInfo
dictionary (Required) The same as for CIDFontType 0. See Table 7.17.

FontDescriptor
dictionary (Required; must be an indirect reference) The same as for CIDFontType 0.

DW integer (Optional) Default width for glyphs in the CIDFont.

W array (Optional) The same as for CIDFontType 0.

DW2 array (Optional; applies only to CIDFonts that are used for vertical writing) The same as
for CIDFontType 0.

March 11, 1999 7.8.3

7: Common Data Structures 213

W2 array (Optional; applies only to CIDFonts that are used for vertical writing) The same as
for CIDFontType 0.

7.8.3 Character widths in CIDFonts

In any font, the width of a character (glyph) refers to the horizontal displacement
between the origin of the character and the origin of the next character when
writing in horizontal mode. In this mode, the vertical displacement between origins
is always 0.

Widths for a CIDFont are defined using the DW and the W attributes. The DW
entry defines the default width. This entry is particularly useful for Chinese,
Japanese, and Korean fonts, where many of the characters have the same width.
The W attribute allows the definition of widths for single CIDs or a range of CIDs.
The entry is an array of lists in either of the following two formats:

c [w1 w2 … wn]

cfirst clast w

In the first list, c is an integer specifying a starting CID value. It is followed by an
array of n numbers which specify the widths for n consecutive CIDs, starting with
c. The second list defines the same width, w, for all the CIDs in the range cfirst to
clast. If the DW key is present, the W attribute need not specify the width of a CID
that uses the default width.

Following is an example of a W attribute.

/W

[

120 [400 325 500]

7080 8032 1000

]

In this example, the CIDs 120, 121, and 122 have widths 400, 325, and 500 units
respectively. The second list in this example specifies that CIDs in the range 7080
to 8032 have a width of 1,000 units.

See Section 7.7.8, “Vertical Writing for a description of the W2 and DW2 keys.

7.9 Font encodings

An encoding describes a font’s character encoding, the mapping between numeric
character codes and character names. These character names are keys in the font
dictionary and are used to retrieve the code which draws the character. Thus, the
font encoding provides the link which associates numeric character codes with the
glyphs drawn when those codes are encountered in text. For details on the mapping
from character codes to glyphs, see Section 5.11.5 in PostScript Language
Reference Manual, Third Edition [1].

7: Common Data Structures March 11, 1999

214 Adobe Systems Inc.

An encoding is represented as a dictionary whose contents are shown in Table
7.19.

Table 7.19 Font encoding attributes

Key Type Semantics

Type name Object type. Always Encoding.

BaseEncoding name (Optional) Specifies the encoding from which the new encoding differs. This key
is not present if the encoding is based on the base font’s encoding. Otherwise it
must be one of the predefined encodings MacRomanEncoding,
MacExpertEncoding, or WinAnsiEncoding, described in Appendix C.

Differences array (Optional) Describes the differences from the base encoding.

The value of the Differences key is an array of character codes and glyph names
organized as follows:

code1 name1,1 name1,2 ...
code2 name2,1 name2,2 ...
...
coden namen,1 namen,2 ...

Each code is the first index in a sequence of characters to be changed. The first
glyph name after the code becomes the name corresponding to that code.
Subsequent names replace consecutive code indexes until the next code appears in
the array or the array ends.

For example, in the encoding in Example 7.10, the glyph quotesingle (’) is
associated with character code 39. Adieresis (Ä) is associated with code 128,
Aring (Å) with 129, and trademark (™) with 170.

Example 7.10 Font encoding

25 0 obj

<<

/Type /Encoding

/Differences [39 /quotesingle 96 /grave 128

/Adieresis /Aring /Ccedilla /Eacute /Ntilde

/Odieresis /Udieresis /aacute /agrave

/acircumflex /adieresis /atilde /aring /ccedilla

/eacute /egrave /ecircumflex /edieresis /iacute

/igrave /icircumflex /idieresis /ntilde /oacute

/ograve /ocircumflex /odieresis /otilde /uacute

/ugrave /ucircumflex /udieresis /dagger /degree

/cent /sterling /section /bullet /paragraph

/germandbls /registered /copyright /trademark

/acute /dieresis 174 /AE /Oslash 177 /plusminus 180

/yen /mu 187/ordfeminine /ordmasculine 190

March 11, 1999 7.8.3

7: Common Data Structures 215

/ae /oslash /questiondown /exclamdown /logicalnot

196 /florin 199 /guillemotleft /guillemotright

/ellipsis 203 /Agrave /Atilde /Otilde /OE /oe

/endash /emdash /quotedblleft /quotedblright

/quoteleft /quoteright /divide 216 /ydieresis

/Ydieresis /fraction /currency /guilsinglleft

/guilsinglright /fi /fl /daggerdbl

/periodcentered /quotesinglbase /quotedblbase

/perthousand /Acircumflex /Ecircumflex /Aacute

/Edieresis /Egrave /Iacute /Icircumflex

/Idieresis /Igrave /Oacute /Ocircumflex 241

/Ograve /Uacute /Ucircumflex /Ugrave /dotlessi

/circumflex /tilde /macron /breve /dotaccent

/ring /cedilla /hungarumlaut /ogonek /caron]

>>

endobj

7.10 CMaps

A CMap is used with a Type 0 composite font to define the mapping from
character codes to a font number and a character selector. (A CMap serves the
same function for a Type 0 font as an Encoding does for a Type 1 font.) The font
number selects the font from the DescendantFonts array in the Type 0 font. The
character selector selects the glyph from the descendant font. A character selector
can be a CID or a character code. A CMap can handle encodings that use single-
byte or multi-byte character codes.

Implementation note In Acrobat 3.0 and 4.0, Type 0 fonts may contain only one descendant font, so the
CMaps must always map character codes to font number 0.

The following table shows the predefined CMap names. These CMaps map
character codes to CIDs in a single descendant CIDFont.

Table 7.20 Predefined CJK CMap names

Name Description

Chinese (Simplified)
GB-EUC-H Microsoft Code Page 936 (lfCharSet 0x86), GB 2312-80 character set, EUC-CN

encoding
GB-EUC-V Vertical version of GB-EUC-H
GBpc-EUC-H Macintosh, GB 2312-80 character set, EUC-CN encoding, Script Manager code 2
GBpc-EUC-V Vertical version of GBpc-EUC-H
GBK-EUC-H Microsoft Code Page 936 (lfCharSet 0x86), GBK character set, GBK encoding
GBK-EUC-V Vertical version of GBK-EUC-V
UniGB-UCS2-H Unicode (UCS-2) encoding for the Adobe-GB1 character collection
UniGB-UCS2-V Vertical version of UniGB-UCS2-H.

Chinese (Traditional)
B5pc-H Macintosh, Big Five character set, Big Five encoding, Script Manager code 2

PDF 1.2

7: Common Data Structures March 11, 1999

216 Adobe Systems Inc.

B5pc-V Vertical version of B5pc-H
ETen-B5-H Microsoft Code Page 950 (lfCharSet 0x88), Big Five character set with ETen

extensions
ETen-B5-V Vertical version of ETen-B5-H
ETenms-B5-H Microsoft Code Page 950 (lfCharSet 0x88), Big Five character set with ETen

extensions; this uses proportional forms for half-width Latin characters.
ETenms-B5-V Vertical version of ETenms-B5-H
CNS-EUC-H CNS 11643-1992 character set, EUC-TW encoding
CNS-EUC-V Vertical version of CNS-EUC-H
UniCNS-UCS2-H Unicode (UCS-2) encoding for the Adobe-CNS1 character collection
UniCNS-UCS2-V Vertical version of UniCNS-UCS2-H.

Japanese
83pv-RKSJ-H Macintosh, JIS X 0208 character set with KanjiTalk6 extensions, Shift-JIS

encoding, Script Manager code 1
90ms-RKSJ-H Microsoft Code Page 932 (lfCharSet 0x80), JIS X 0208 character set with NEC

and IBM extensions
90ms-RKSJ-V Vertical version of 90ms-RKSJ-H
90msp-RKSJ-H Same as 90ms-RKSJ-H, but replaces half-width Latin characters with

proportional forms
90msp-RKSJ-V Vertical version of 90msp-RKSJ-H
90pv-RKSJ-H Macintosh, JIS X 0208 character set with KanjiTalk7 extensions, Shift-JIS

encoding, Script Manager code 1
Add-RKSJ-H JIS X 0208 character set with Fujitsu FMR extensions, Shift-JIS encoding
Add-RKSJ-V Vertical version of Add-RKSJ-H
EUC-H JIS X 0208 character set, EUC-JP encoding
EUC-V Vertical version of EUC-H
Ext-RKSJ-H JIS C 6226 (JIS78) character set with NEC extensions, Shift-JIS encoding
Ext-RKSJ-V Vertical version of Ext-RKSJ-H
H JIS X 0208 character set, ISO-2022-JP encoding
V Vertical version of H
UniJIS-UCS2-H Unicode (UCS-2) encoding for the Adobe-Japan1 character collection
UniJIS-UCS2-V Vertical version of UniJIS-UCS2-H
UniJIS-UCS2-HW-H Same as UniJIS-UCS2-H, but replaces proportional Latin characters with half-

width forms
UniJIS-UCS2-HW-V Vertical version of UniJIS-UCS2-HW-H

Korean
KSC-EUC-H KS X 1001:1992 character set, EUC-KR encoding
KSC-EUC-V Vertical version of KSC-EUC-H
KSCms-UHC-H Microsoft Code Page 949 (lfCharSet 0x81), KS X 1001:1992 character set plus

8,822 additional hangul, Unified Hangul Code (UHC) encoding
KSCms-UHC-V Vertical version of KSCms-UHC-H
KSCms-UHC-HW-H Same as KSCms-UHC-H, but replaces proportional Latin characters with half-

width forms
KSCms-UHC-HW-V Vertical version of KSCms-UHC-HW-H
KSCpc-EUC-H Macintosh, KS X 1001:1992 character set with MacOS-KH extensions, Script

Manager Code 3
UniKS-UCS2-H Unicode (UCS-2) encoding for the Adobe-Korea1 character collection
UniKS-UCS2-V Vertical version of UniKS-UCS2-H

Generic

March 11, 1999 7.8.3

7: Common Data Structures 217

Identity-H The horizontal identity mapping for two-byte CIDs. This may be used with
CIDFonts using any Registry, Ordering and supplement. It maps two-byte
character codes from 1 to 65536 to the same two-byte CID value.

Identity-V Vertical version of the Identity-H mapping. The mapping is the same as for
Identity-H. However the writing mode (WMode) value is set to 1 to indicate
vertical writing.

For character encodings that are not predefined, the PDF file must contain a stream
that defines the CMap. The stream dictionary contains the entries defined in the
table below in addition to the standard entries for streams. The data in the stream
defines the mapping from character codes to a font number and a character
selector. The data must follow the syntax defined in the Adobe CMap and CIDFont
File Specification [4].

Table 7.21 CMap attributes

Key Type Semantics

Type name (Required) Must be CMap. (Note that although this object is the value of the key
named Encoding in a Type 0 font, its type is CMap.)

CMapName name (Required) A name from Table 7.20.

CIDSystemInfo
dictionary or array (Required) This entry defines the Registry, Ordering, and Supplement attributes

that define the character collection of the CIDFont; see Table 7.17. If the CMap
refers to a single CIDFont then the entry may be a dictionary. If this CMap refers
to more than one descendant font, then an array must be supplied. The elements of
the array correspond to the font numbers of the descendant fonts. If the descendant
font is a CIDFont, a CIDSystemInfo dictionary must be supplied. If the descendant
font is not a CIDFont, then null should be used for that element of the array.

WMode integer (Optional) An integer specifying the writing direction of the Type 0 font that uses
this CMap. A value of 0 indicates a horizontal writing direction, and a value of 1
indicates a vertical writing direction. The default is 0.

UseCMap
name or stream (Optional) The name of a predefined CMap, or a stream containing a CMap, that is

to be used as the base for this CMap. This allows the CMap to be defined with only
the character mappings that differ from the base CMap.

Below is a sample CMap for a Japanese Shift-JIS encoding. Character codes in this
encoding can either be one or two bytes in length. In this CMap all character codes
are mapped to CIDs in font number 0. This CMap could be used with a CIDFont
that uses the same CID ordering as specified in the CIDSystemInfo entry. Note that
several of the entries in the stream dictionary are also replicated in the stream data
itself.

7: Common Data Structures March 11, 1999

218 Adobe Systems Inc.

Example 7.11 CMap Encoding

22 0 obj <<

/Type /CMap

/CIDSystemInfo <<

/Registry (Adobe)

/Ordering (Japan1)

/Supplement 2 >>

/CMapName /90ms-RKSJ-H

/WMode 0

/Length 23 0 R

>>

stream

%!PS-Adobe-3.0 Resource-CMap

%%DocumentNeededResources: ProcSet (CIDInit)

%%IncludeResource: ProcSet (CIDInit)

%%BeginResource: CMap (90ms-RKSJ-H)

%%Title: (90ms-RKSJ-H Adobe Japan1 2)

%%Version: 1.402

%%Copyright: Copyright 1990-1994 Adobe Systems Inc.

%%Copyright: All Rights Reserved.

%%Copyright:

%%Copyright: Patents Pending

%%EndComments

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo 3 dict dup begin

/Registry (Adobe) def

/Ordering (Japan1) def

/Supplement 2 def

end def

/CMapName /90ms-RKSJ-H def

/CMapVersion 1 def

/CMapType 1 def

/UIDOffset 950 def

/XUID [1 10 25343] def

/WMode 0 def

4 begincodespacerange

<00> <80>

<8140> <9FFC>

March 11, 1999 7.10.1

7: Common Data Structures 219

<A0> <DF>

<E040> <FCFC>

endcodespacerange

1 beginnotdefrange

<00> <1f> 231

endnotdefrange

100 begincidrange

<20> <7d> 231

<7e> <7e> 631

<8140> <817e> 633

<8180> <81ac> 696

<81b8> <81bf> 741

<81c8> <81ce> 749

... additional ranges …
<fb40> <fb7e> 8518

<fb80> <fbfc> 8581

<fc40> <fc4b> 8706

endcidrange

endcmap

CMapName currentdict /CMap defineresource pop

end

end

%%EndResource

%%EOF

endstream

endobj

Note A CMap contained in a PDF file must not use the usematrix,
beginrearrangedfont, or endrearrangedfont operators.

7.10.1 ToUnicode CMaps

In font dictionaries for Type 0 fonts, as well as for single-byte fonts (Type 1, Type
3, and TrueType), the value of the ToUnicode key is a CMap (see Section 7.10 on
page 215) that defines the mapping from character codes to Unicode values. This
entry is recommended for fonts that do not use one of the predefined CMaps or that
use the Identity-H or Identity-V CMap with a CIDFont with an unknown
character collection. If present, this entry allows text strings that use this font to be
converted to Unicode values for export to other applications or plug-ins. The
CMap defined in the ToUnicode entry must follow the syntax for CMaps defined
in the Adobe CMap and CIDFont File Specification [4]. It must contain
begincodespacerange and endcodespace range operators and use the
beginbfrange, endbfrange, beginbfchar, and endbfchar operators to

7: Common Data Structures March 11, 1999

220 Adobe Systems Inc.

define the mapping from character codes to 16-bit Unicode values. These operators
have been extended to handle cases where a single character code maps to one or
more Unicode values. See Example 7.5 on page 201.

Implementation note The known character collections in Acrobat 4.0 are Adobe-Japan1-2, Adobe-
Korea1-1, Adobe-CNS1-0, and Adobe-GB1-2.

Following is an example of an embedded TrueType font that uses glyphIndices for
character codes in the strings used by text operators in the page content stream.

Example 7.12 Type 0 font that uses a ToUnicode entry

14 0 obj <<

/Type /Font

/Subtype /Type0

/BaseFont /Ryumin-Light

/Encoding /Identity-H

/DescendantFonts [15 0 R]

/ToUnicode 16 0 R

>> endobj

The value of the ToUnicode entry is a stream object that contains the definition
of the CMap. An example is shown below.

Example 7.13 CMap used for a ToUnicode entry

16 0 obj <<

/Length 433

>>

stream

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo

<<

/Registry (Adobe)

/Ordering (UCS)

/Supplement 0

>> def

/CMapName /Adobe-Identity-UCS def

/CMapType 2 def

1 begincodespacerange

<0000> <FFFF>

endcodespacerange

2 beginbfrange

<0000> <005e> <0020>

<005f> <0061> [<00660066> <00660069>

<00660066006c>]

endbfrange

endcmap

March 11, 1999 7.10.1

7: Common Data Structures 221

CMapName currentdict /CMap defineresource pop

end

end

endstream

endobj

The begincodespacerange and endcodespacerange operators in the above
CMap define the source character code range to be the two-byte character codes
from <00 00> to <FF FF>. The specific mapping for several of the character codes
are shown. For example, <00 00> to <00 5E> are mapped to the Unicode values of
U+0020 to U+007E. This is followed by a the definition of a mapping used where
the character code represents more than one Unicode value:

<005f> <0061> [<00660066> <00660069>

<00660066006c>]

In this case the original character codes are the glyphIndices for the glyphs for the
ligatures ff, fi, and ffl. The entry defines the mapping from the character codes
<00 5F>, <00 60>, and <00 61> to the string of Unicode values with a code for
each character in the ligature: U+0066 U+0066 is the unicode for ff, U+0066
U+0069 is the Unicode for fi, and U+0066 U+0066 U+006c is the sequence for ffl.

The CMap example above illustrates several extensions to the way destination
values can be defined. To support mappings from a source code to a string of
destination codes, the following extension has been made to the ranges defined
after a beginbfchar operator:

n beginbfchar

srcCode dstString
endbfchar

where dstString can be a string of up to 512 bytes. Likewise mappings after the
beginbfrange operator maybe defined as:

n beginbfrange

srcCode1 srcCode2 dstString
endbfrange

In this case the last byte of the string will be incremented for each consecutive
code in source code range. When defining ranges of this type, care must be taken
to ensure that the value of the last byte in the string is less than or equal to
255 - (srcCode2 - srcCode1). This ensures that the last byte of the string will not
be incremented past 255. If this occurs, the result of mapping is undefined and an
error will occur.

To support more compact representations of mappings from a range of source
character codes to a noncontiguous range of destination codes, the CMaps used for
the ToUnicode entry may use the following syntax for the mappings following a
beginbfrange definition:

n beginbfrange

7: Common Data Structures March 11, 1999

222 Adobe Systems Inc.

srcCode1 srcCodeN
[dstStr1 dstStr2 … dstStrN]

endbfrange

Consecutive codes starting with srcCode1 and ending with srcCodeN are
mapped to the destination strings in the array starting with dstStr1 and ending
with dstStrN.

7.11 Font descriptors

A font descriptor specifies a font’s metrics and attributes. These metrics provide
information for a viewing application to create a substitute multiple master font,
where appropriate, or to select a similar font when the original font is unavailable.
The font descriptor may also be used to embed the original font in the PDF file.

A font descriptor is a dictionary, as shown in Table 7.22, whose keys specify
various font attributes. All integer values are units in character space. The
conversion from character space to text space depends on the type of font. See the
discussion in Section 7.7, “Fonts.”

Note For detailed information on the coordinate system in which characters are defined,
see Section 5.4 in the PostScript Language Reference Manual, Third Edition [1] or
Section 3.1 in the Adobe Type 1 Font Format [5].

Table 7.22 Attributes shared by all font descriptors

Key Type Semantics

Type name Object type. Always FontDescriptor.

Ascent integer (Required) The maximum height above the baseline reached by characters in this
font, excluding the height of accented characters.

CapHeight integer (Required) The y-coordinate of the top of flat capital letters, measured from the
baseline.

Descent integer (Required) The maximum depth below the baseline reached by characters in this
font. Descent is a negative number.

Flags integer (Required) Collection of flags defining various characteristics of the font. See
Table 7.24.

FontBBox Rectangle (Required) The font’s bounding box, which is the smallest rectangle enclosing the
shape that would result if all characters in the font were placed with their origins
coincident, and then painted.

FontName name (Required) The PostScript name of the font. (See page 204 for restrictions on the
name.)

March 11, 1999 7.11.1

7: Common Data Structures 223

ItalicAngle integer (Required) Angle in degrees counterclockwise from the
vertical of the dominant vertical strokes of the font.
ItalicAngle is negative for fonts that slope to the right, as
almost all italic fonts do.

StemV integer (Required) The width, measured in the x direction, of the dominant vertical stems
of glyphs in the font.

AvgWidth integer (Optional) The average width of characters in this font. The default value is 0.

FontFile stream (Optional) A stream that defines a Type 1 font.

FontFile2 stream (Optional) A stream that defines a TrueType font.

FontFile3 stream (Optional) A stream that contains an embedded font. The format of the font is
specified by the Subtype in the stream dictionary.

Leading integer (Optional) The desired spacing between lines of text. The default value is 0.

MaxWidth integer (Optional) The maximum width of characters in this font. The default value is 0.

MissingWidth integer (Optional) The width to use for unencoded character codes. The default value is 0.

StemH integer (Optional) The vertical width of the dominant horizontal stems of glyphs in the
font. The default value is 0.

XHeight integer (Optional) The y-coordinate of the top of flat non-ascending lowercase letters,
measured from the baseline. The default value is 0.

CharSet string (Optional) A string which lists the glyph names corresponding to the entries in the
CharStrings dictionary if the font described is a subset font. Each name must be
preceded by a slash. The names may appear in any order. The name .notdef
should be omitted; it is assumed to exist in the font subset.

7.11.1 Font files

Implementation note Font substitution is performed in Acrobat 1.0 through Acrobat 3.0 using multiple
master Type 1 fonts. This substitution can be performed only for fonts that use the
Adobe Roman Standard Character Set as defined in Appendix E.5 of the PostScript
Language Reference Manual, Third Edition [1]. In Acrobat 3.0.1 and later, Type 0
fonts which use a CMap whose CIDSystemInfo defines the Adobe-Japan1,
Adobe-Korea1, Adobe-GB1, or Adobe-CNS1 character collection can also be
substituted. To make a document portable, it is necessary to embed fonts that
cannot be substituted. The only exceptions are the fonts Symbol and ITC Zapf
Dingbats, which are assumed to be present.

Fonts are embedded using the FontFile mechanism. If the embedded font is
referred to by the FontFile key in Table 7.22, then the font must be in the standard
Type 1 format. If the embedded font is referred to by the FontFile2 key, then the

-90º

0º

90º

PDF 1.1

PDF 1.2
�

PDF 1.1

7: Common Data Structures March 11, 1999

224 Adobe Systems Inc.

font must be in the TrueType format. If the embedded font is referred to by the
FontFile3 key, then the format of the font is specified by the Subtype key in the
FontFile stream dictionary.

A standard Type 1 font definition, as described in the Adobe Type 1 Font Format
[5], consists of three parts: a clear text portion, an encrypted portion, and a fixed-
content portion. The fixed-content portion contains 512 ASCII zeros followed by a
cleartomark operator, and perhaps followed by additional data. The stream
dictionary for a font file contains the standard Length and Filter keys plus the
additional keys shown in Table 7.23. While the encrypted portion of a standard
Type 1 font may be in binary or ASCII hexadecimal format, PDF supports only the
binary format. Example 7.14 shows the structure of an embedded standard Type 1
font.

Type 1 Compact fonts [7] (also known as CFF) may be embedded in a PDF 1.2 file
using the FontFile3 key. The Subtype value must be Type1C.

TrueType fonts are embedded using the FontFile2 mechanism. The font descriptor
for an embedded TrueType font should contain a FontFile2 key whose value is a
stream that contains the TrueType font definition as described in TrueType 1.0 Font
Files. The stream dictionary should include a Length1 key as specified in Table
7.23; that key specifies the length in bytes of the font file after it has been decoded
using the filters specified by the stream’s Filter key. The Length2 and Length3
keys should not be used for TrueType fonts.

CIDFontType0 fonts are embedded using the FontFile3 key with a Subtype
value of CIDFontType0C. These fonts are embedded using the Compact Font
Format described in the Compact Font Format Specification [7].

CIDFontType2 fonts are based on the TrueType font format and therefore are
embedded using the FontFile2 key. Glyphs in an embedded CIDFontType2 font
are accessed by glyphIndex; therefore, the embedded TrueType font does not
require the cmap table to map from character code to glyphIndex. The following
TrueType tables are required: head, hhea, loca, maxp, cvt_, prep, glyf,
hmtx, and fpgm. For details on this format, see The Type 2 Charstring Format
[8].

Due to the large number of characters in Chinese, Korean and Japanese fonts, the
embedded font typically contains only the subset of glyphs that are used in the
PDF document.

Table 7.23 Additional attributes for FontFile stream

Key Type Semantics

Length1 integer (Required) Length in bytes of the ASCII portion of the Type 1 font file after it has
been decoded using the filters specified by the stream’s Filter key.

Length2 integer (Required for Type 1 fonts) Length in bytes of the encrypted portion of the Type 1
font file after it has been decoded using the filters specified by the stream’s Filter
key.

PDF 1.2

PDF 1.3

PDF 1.3

March 11, 1999 7.11.2

7: Common Data Structures 225

Length3 integer (Required for Type 1 fonts) Length in bytes of the portion of the Type 1 font file
that contains the 512 zeros, plus the cleartomark operator, plus any following
data. This is the length of the data after it has been decoded using the filters
specified by the stream’s Filter key. If Length3 is zero, it indicates that the 512
zeros and cleartomark have not been included in the FontFile and must be
added.

Subtype name (Required if in FontFile3) The name specifies the format of the embedded font.
The name must be Type1C for Type 1 Compact fonts. For CIDFontType0
Compact fonts, use CIDFontType0C. When additional font formats are added to
PDF, more values will be defined for Subtype.

Note Font descriptors for Type 0 fonts contain additional attributes. See Section 7.11.3
on page 227.

Example 7.14 Embedded Type 1 font definition

12 0 obj

<<

/Filter /ASCII85Decode

/Length 41116

/Length1 2526R

/Length2 32393

/Length3 570

>>

stream

,p>`rDKJj'E+LaU0eP.@+AH9dBOu$hFD55nC

… omitted data …
JJQ&Nt')<=^p&mGf(%:%h1%9c//K(/*o=.C>UXkbVGTrr~>

endstream

endobj

7.11.2 Font descriptor flags

The value of the Flags key in a font descriptor is a 32-bit integer that contains a
collection of boolean attributes. These attributes are true if the corresponding bit is
set to 1 in the integer. Table 7.24 specifies the meanings of the bits, with bit 1 being
the least significant. Reserved bits must be set to zero.

Table 7.24 Font flags

Bit position Semantics

1 Fixed-width font

2 Serif font

3 Symbolic font

4 Script font

5 Reserved

PDF 1.2

7: Common Data Structures March 11, 1999

226 Adobe Systems Inc.

6 Uses the Adobe Standard Roman Character Set

7 Italic

8–16 Reserved

17 All-cap font

18 Small-cap font

19 Force bold at small text sizes

20–32 Reserved

Note Bits 3 and 6 may not both be zero.

All characters in a fixed-width font have the same width, while characters in a
proportional font have different widths. Characters in a serif font have short
strokes drawn at an angle on the top and bottom of character stems, while sans
serif fonts do not have such strokes. A symbolic font contains symbols rather than
letters and numbers. Characters in a script font resemble cursive handwriting. An
all-cap font, which is typically used for display purposes such as titles or
headlines, contains no lowercase letters. It differs from a small-cap font in that
characters in the latter, while also capital letters, have been sized and their
proportions adjusted so that they have the same size and stroke weight as
lowercase characters in the same typeface family. Figure 7.4 shows examples of
these types of fonts.

Bit 6 in the flags field indicates that the font’s character set is the Adobe Standard
Roman Character Set, or a subset of that, and that it uses the standard names for
those characters. The characters in the Adobe Standard Roman Character Set are
shown in the first column of Table C.1 on page 448 (A, Æ, Á, etc.); the character
names are shown in column 2 (A, AE, Aacute, etc.).

Finally, bit 19 is used to determine whether or not bold characters are drawn with
extra pixels even at very small text sizes. Typically, when characters are drawn at
small sizes on very low resolution devices such as display screens, features of bold

Figure 7.4 Characteristics represented in the Flags field of a font descriptor

The quick brown fox jumped… Fixed-width font

The quick brown fox jumped… Sans serif font

The quick brown fox jumped… Serif font

��������	�
��
������������� Symbolic font

The quick brown fox jumped… Script font

The quick brown fox jumped… Italic font

The quick brown fox jumped All cap font

The quick brown fox jumped… Small cap font

PDF 1.1

March 11, 1999 7.11.3

7: Common Data Structures 227

characters may appear only one pixel wide. Because this is the minimum feature
width on a pixel-based device, ordinary non-bold characters also appear with one-
pixel wide features, and cannot be distinguished from bold characters. If bit 19 is
set, features of bold characters may be thickened at small text sizes.

Example 7.15 Font descriptor

7 0 obj

<<

/Type /FontDescriptor

/FontName /AGaramond-Semibold

/Flags 262192 Bits 5, 6, and 19
/FontBBox [-177 -269 1123 866]

/MissingWidth 255

/StemV 105

/StemH 45

/CapHeight 660

/XHeight 394

/Ascent 720

/Descent -270

/Leading 83

/MaxWidth 1212

/AvgWidth 478

/ItalicAngle 0

>>

endobj

7.11.3 Font descriptors for CID fonts

The following table lists the additional entries that may be found in the
FontDescriptor dictionaries of Chinese, Japanese, or Korean CIDFonts.

Table 7.25 Additional FontDescriptor attributes

Key Type Semantics

Style dictionary (Optional) This entry is a dictionary that contains key-value pairs that describe the
style of the glyphs in the font. See Table 7.26 for valid entries in this dictionary.

Lang name (Optional) This entry indicates the language of the font. It is used for encodings
where the language is not implied by the encoding itself. The possible values are
the two character names defined by ISO639; see Appendix I.

FD dictionary (Optional) The keys in this dictionary identify a subset of characters in a CIDFont.
The values are dictionaries with entries that override the values in the
FontDescriptor dictionary for the subset of characters.

CIDSet stream (Optional) This entry identifies which CIDs are present in the CIDFont file. It
contains only a subset of the glyphs in the character collection defined by the
CIDSystemInfo. If this entry is missing, then it is assumed that the CIDFont file
contains all the glyphs for the character collection. The stream’s length should be

PDF 1.2

7: Common Data Structures March 11, 1999

228 Adobe Systems Inc.

rounded up to the nearest multiple of 8. The bits should be stored in bytes with the
high-order bit first. Each bit corresponds to a CID. The first bit of the first byte
corresponds to CID 0, the next bit corresponds to CID 1, and so on. If the subset
contains a CID, the bit for that CID should be set. For compactness the stream may
use one of the compression filters to encode the data.

Style

The Style dictionary contains a set of key-value pairs that define style attribute and
value for the font. Currently only the Panose key is defined. The value of the
Panose key is the 12-byte string containing the Family Class ID, Family
SubClass ID, and 10 bytes for the Panose classification number for the font. For
additional details on the Panose number see the Japanese TrueType Font Property
Selection Guidelines by the TrueType Conference Technical Committee [36]. The
following is an example of a Style entry in the FontDescriptor:

/Style

<< /Panose <01 05 02 02 03 00 00 00 00 00 00 00>

>>

FD

A CIDFont may be made up of different types of characters, each type requiring
different sets of metrics. Numeric characters, for example, may require different
metrics from ideographic characters. The font descriptor defines a set of default
metrics that apply to all characters in the CIDFont; the FD entry in the font
descriptor contains exceptions to these defaults. Each key in an FD dictionary is
the name of a type of character; each type is defined as a particular subset of
characters in the font.

It is strongly recommended that the FD dictionary contain at least the metrics for
the proportional Roman characters. With the information for the proportional
Roman characters, a more accurate substitution font can be created. For CIDFonts
that use the Adobe-Japan1 character collection, the name for the proportional
Roman characters is Proportional. For CIDFonts that use the Adobe-CNS1,
Adobe-GB1, and Adobe-Korea1 character collections, the name for the
proportional Roman characters is Alphabetic.

The following table gives the valid keys for the Adobe-Japan1, Adobe-Korea1,
Adobe-Japan2, Adobe-GB1, and Adobe-CNS1 character collections.

Table 7.26 Character Subsets in CJK fonts

Character collection Key Character subset

Adobe-Japan1
AlphaNum Numeric characters
Alphabetic Full-width Roman characters

Dingbats Special symbols
HKana Half-width Katakana characters.

HRoman Half-width Roman characters

March 11, 1999 7.11.3

7: Common Data Structures 229

Following is an example with two entries in the FD dictionary.

Example 7.16 FD entry

/FD

<<

/Proportional 25 0 R

/HKana 26 0 R

>>

25 0 obj

<<

/Type /FontDescriptor

/FontName /HeiseiMin-W3-Proportional

/Flags 2

/AvgWidth 478

/MaxWidth 1212

/MissingWidth 250

/StemV 105

/StemH 45

/CapHeight 660

/XHeight 394

/Ascent 720

/Descent -270

Kana Full-width Kana characters
Kanji Full-width ideographic characters

Proportional Proportional Roman characters
Adobe-Korea1

Alphabetic Proportional Roman characters
Dingbats Special symbols

Hangul Full-width ideographic and Hangul characters
Adobe-Japan2

Alphabetic Roman characters
Dingbats Special symbols

HojoKanji Full-width ideographic characters
Adobe-GB1

Alphabetic Proportional Roman characters
GBHanzi Full-width ideographic characters
Dingbats Special symbols

Kana Japanese Kana characters
Adobe-CNS1

Alphabetic Proportional Roman characters
CNSHanzi Full-width ideographic characters
Dingbats Special symbols

Kana Japanese Kana characters

Table 7.26 Character Subsets in CJK fonts

Character collection Key Character subset

7: Common Data Structures March 11, 1999

230 Adobe Systems Inc.

/Leading 83

>>

endobj

26 0 obj

<<

/Type /FontDescriptor

/FontName /HeiseiMin-W3-HKana

/Flags 3

/Style Gothic

/AvgWidth 500

/MaxWidth 500

/MissingWidth 500

/StemV 50

/StemH 75

/Ascent 720

/Descent 0

/Leading 83

>>

endobj

7.12 Color spaces

A color space specifies how color values should be interpreted. While some PDF
operators implicitly specify the color space they use, others require that a color
space be specified explicitly. As shown in Figure 7.5, PDF 1.3 supports eleven
color space families:

DeviceGray

DeviceRGB

DeviceCMYK

CalGray

CalRGB

Indexed

Device-dependent

Device-independent

Special

Figure 7.5 Color space families

Lab

Separation

DeviceN

Pattern

ICCBased

PDF 1.3

March 11, 1999 7.11.3

7: Common Data Structures 231

• three device-dependent color space families, DeviceGray, DeviceRGB, and
DeviceCMYK;

• four device-independent color space families, CalGray, CalRGB, Lab, and
ICCBased;

• and four special color space families, Indexed, Pattern, Separation, and
DeviceN.

The color spaces follow the semantics described in Section 4.8 of the PostScript
Language Reference Manual, Third Edition [1].

A color space is an instance of a color space family. For example, there are many
possible color spaces in the CalGray family. A color space is specified by an array
whose first element is the family name and whose remaining elements are
parameters that define the particular instance. There is only one member of each of
the device-dependent families, DeviceGray, DeviceRGB, and DeviceCMYK,
so they are treated as color spaces and may be specified with just the name. For
example, the DeviceGray color space may be written as either

[/DeviceGray]

or just

/DeviceGray

Pattern color spaces that represent colored tiling patterns or shading patterns may
also be written with just the name, /Pattern. Uncolored tiling patterns,
however, require an array; see Section 7.12.11, “Pattern color spaces.”

In a device-dependent color space, the color values are interpreted as specifying
the percentage of device colorant to be used. This means that the exact color
produced depends on the characteristics of the output device. For example, in the
DeviceRGB color space, a value of 1 for the red component means “turn red all
the way on.” If the output device is a monitor, the color displayed depends strongly
on the settings of the monitor’s brightness, contrast, and color balance adjustments.
In addition, the precise color displayed depends on the chemical composition of
the compound used as the red phosphor in the particular monitor being used, the
length of time the monitor has been turned on, and the age of the monitor.

In a device-independent color space, color values are defined by a mapping from
the device-independent color space into a standard color space, the CIE
(Commission Internationale de l’Éclairage) 1931 XYZ color space. Since the
values in the XYZ space can be measured colorimetrically, this establishes a
device-independent specification of the desired color. When a device-independent
color value is rendered on a device, the rendered color is based on the device-
independent color specification as well as the color characteristics of the device.
This may or may not result in a true colorimetric rendering. Variations from a
colorimetric rendering may occur as a consequence of gamut limitations and
rendering intents. See the discussion in Section 7.13.4, “Color rendering intent.”

See the PostScript Language Reference Manual, Third Edition [1] for further
explanation of device-independent color.

PDF 1.3

PDF 1.1

7: Common Data Structures March 11, 1999

232 Adobe Systems Inc.

7.12.1 DeviceGray color spaces

Colors in the DeviceGray color space are specified by a single value: the
intensity of achromatic light. In this color space, 0 is black, 1 is white, and
intermediate values represent shades of gray.

7.12.2 DeviceRGB color spaces

Colors in the DeviceRGB color space are represented by three values in the range
0 to 1: the intensity of the red, green, and blue components in the output.
DeviceRGB is commonly used for video displays because they are generally
based on red, green, and blue phosphors.

7.12.3 DeviceCMYK color spaces

Colors in the DeviceCMYK color space are represented by four values in the
range 0 to 1. These values are the amounts of the cyan, magenta, yellow, and black
components in the output. This color space is commonly used for color printers,
where they are the colors of the inks traditionally used for four-color printing.
Only cyan, magenta, and yellow are strictly necessary, but black is generally also
used in printing because black ink produces a better black than a mixture of cyan,
magenta, and yellow inks, and because black ink is less expensive than the other
inks.

Note In PDF 1.1, a color space named CalCMYK was partially defined with the
expectation that its definition would be completed in a future version of PDF. That
is no longer being considered. PDF 1.3 supports calibrated 4-component color
spaces by means of ICC profiles; see Section 7.12.7, “ICCBased color spaces.”
PDF consumers should ignore CalCMYK color space attributes and render
colors specified in this color space as if they had been specified using
DeviceCMYK.

7.12.4 CalGray color spaces

Colors in a CalGray color space are represented by a single value. Input values
are in the range 0 to 1, where 0 is black, 1 is white and intermediate values are
gray.

A CalGray color space is specified by an array of the form

[/CalGray dict]

where the contents of dict are described in Table 7.27.

PDF 1.3

PDF 1.1

March 11, 1999 7.12.5

7: Common Data Structures 233

Table 7.27 CalGray attributes

Key Type Semantics

WhitePoint array (Required) Three numbers [Xw Yw Zw] that specify the CIE 1931 (XYZ)-space
tristimulus value of the diffuse white point. The numbers Xw and Zw must be
positive, and Yw must be equal to 1. See discussion in 4.8.3 in the PostScript
Language Reference Manual, Third Edition [1] for further details.

BlackPoint array (Optional) Three numbers [Xb Yb Zb] that specify the CIE 1931 (XYZ)-space
tristimulus value of the diffuse black point. The numbers must be non-negative.
The default value is [0 0 0]. See discussion in 4.8.3 in the PostScript Language
Reference Manual, Third Edition [1] for further details.

Gamma number (Optional) Defines the exponential relationship between the gray component and
Y. The governing equation is Y = gray Gamma. Gamma must be positive and is
generally greater than or equal to 1. The default value is 1.

7.12.5 CalRGB color spaces

Colors in a CalRGB color space are represented by three values: the red, green,
and blue components of the color. Each value is in the range 0 to 1.

A CalRGB color space is specified by an array of the form:

[/CalRGB dict]

where the contents of dict are described in Table 7.28.

Table 7.28 CalRGB attributes

Key Type Semantics

WhitePoint array (Required) Same as for CalGray.

BlackPoint array (Optional) Same as for CalGray.

Gamma array (Optional) Three numbers [Gr Gg Gb] that specify the gamma for the red, green,
and blue components respectively. The governing equations are R′ = RGr, G′ = GGg,
and B′ = BGb, where R, G, and B are the input calibrated RGB values, and R′, G′,
and B′ are the gamma-modified values. The default value is [1 1 1].

Matrix array (Optional) Nine numbers [Xr Yr Zr Xg Yg Zg Xb Yb Zb] that specify the linear
interpretation of the gamma-modified red, green, and blue components, R′, G′, and
B′. The default value is the identity matrix, [1 0 0 0 1 0 0 0 1]. The
transformation from R′G′B′ to XYZ is given by:

X = R′ × Xr + G′ × Xg + B′ × Xb

Y = R′ × Yr + G′ × Yg + B′ × Yb

Z = R′ × Zr + G′ × Zg + B′ × Zb

PDF 1.1

7: Common Data Structures March 11, 1999

234 Adobe Systems Inc.

An example of a CalRGB color space is shown here for D65 white point, 1.8
gammas, and Trinitron phosphor chromaticities.

12 0 obj

[/CalRGB

<<

/WhitePoint [0.9505 1 1.0890]

/Gamma [1.8 1.8 1.8]

/Matrix [0.4497 0.2446 0.0252

0.3163 0.6720 0.1412

0.1845 0.0833 0.9227]

>>]

endobj

7.12.6 Lab color spaces

Colors in a Lab color space are represented by three values: the L*, a* and b*
components of the color. The ranges of each of the three values are specified under
the Range key in Table 7.29. For details about Lab color spaces, see Section 4.8.3
of The PostScript Language Reference Manual, Third Edition [1].

A Lab color space is specified by an array of the form:

[/Lab dict]

where the contents of dict are described in Table 7.29.

Table 7.29 Lab attributes

Key Type Semantics

WhitePoint array (Required) Same as for CalGray.

BlackPoint array (Optional) Same as for CalGray.

Range array (Optional) Four numbers [amin amax bmin bmax] specifying the range of the a* and
b* components, which must be between -128 and 127. That is, a* and b* are
limited by -128 ≤ amin ≤ a* ≤ amax ≤ 127, and -128 ≤ bmin ≤ b* ≤ bmax ≤ 127. The
default value is [-100 100 -100 100]. The range of L* is always 0 to 100.

7.12.7 ICCBased color spaces

An ICCBased color space contains a color profile as defined by the International
Color Consortium (ICC). See the ICC specification [29] for details of the profile
format.

An ICCBased color space is specified as an array:

[/ICCBased stream]

PDF 1.1

PDF 1.3

PDF 1.3

March 11, 1999 7.12.7

7: Common Data Structures 235

The stream contains the ICC profile. In addition to keys that are defined for any
stream, the stream has the following keys:

Table 7.30 ICCBased attributes

Key Type Semantics

N integer (Required) The number of color components in the color space described by ICC
profile data. This number must match the number of components actually in the
ICC profile. In PDF 1.3, N must be 1, 3, or 4, and there are additional restrictions;
see below.

Alternate color space (Optional) Provides an alternate color space to be used in the case where the color
space specified in the stream data isn’t supported. It can be any valid color space,
except a Pattern color space, that has the same number of components as the
color space specified by the stream data (N). For example, one might want to
provide an alternate space if using an ICCBased color space not allowed in PDF
1.3, but permitted in a later version of PDF. If this key is omitted, and the ICC
profile data is not understood by the PDF processor, and the value of the N key is
1, 3 or 4, then a PDF consumer treats the color space as being DeviceGray,
DeviceRGB, or DeviceCMYK, respectively. Note that there is no conversion of
color values, such as a tint transformation, when using the alternate color space.
Color values that are within the range of the ICCBased color space may not be
within the range of the alternate color space; in this case, the nearest values within
the alternate’s range will be used.

Range array (Optional) An array of 2 × N numbers, [min0 max0 min1 max1 …], specifying the
minimum and maximum values that the corresponding color components may
have. This must match the information in the ICC profile. Default: [0 1 0 1 …].

The ICC specification is an evolving standard. The ICCBased color spaces
supported in PDF 1.3 are based on version 3.3 of the ICC specification. Early
versions of the ICC specification are also supported. (The version number is
available in the ICC profile’s header.)

PDF 1.3 supports only the profile types shown in the following table; other types
may be supported in the future. (Profiles must satisfy both the criteria shown in the
table. The terminology is taken from the ICC specifications.)

Table 7.31 ICC profile types

Header field Required value

deviceClass icSigInputClass (‘scnr’)
icSigDisplayClass (‘mntr’)
icSigOutputClass (‘prtr’)

or icSigColorSpaceClass (‘spac’)

7: Common Data Structures March 11, 1999

236 Adobe Systems Inc.

colorSpace icSigGrayData (’GRAY’)
icSigRgbData (‘RGB ‘)
icSigCmykData (‘CMYK’)

or icSigLabData (‘Lab ‘)

An example of an ICCBased color space is shown here. The profile’s data has
been encoded in hexadecimal representation for readability.

Example 7.17 ICCBased color space

12 0 obj

[/ICCBased 15 0 R]

endobj

15 0 obj

<<

/N 3

/Alternate /DeviceRGB

/Length 524

/Filter /ASCIIHexDecode

>>

stream

00 00 02 0C 61 70 70 6C 02 00 00 00 6D 6E 74 72

52 47 42 20 58 59 5A 20 07 CB 00 02 00 16 00 0E

00 22 00 2C 61 63 73 70 41 50 50 4C 00 00 00 00

61 70 70 6C 00 00 04 01 00 00 00 00 00 00 00 02

00 00 00 00 00 00 F6 D4 00 01 00 00 00 00 D3 2B

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 09 64 65 73 63 00 00 00 F0 00 00 00 71

72 58 59 5A 00 00 01 64 00 00 00 14 67 58 59 5A

00 00 01 78 00 00 00 14 62 58 59 5A 00 00 01 8C

00 00 00 14 72 54 52 43 00 00 01 A0 00 00 00 0E

67 54 52 43 00 00 01 B0 00 00 00 0E 62 54 52 43

00 00 01 C0 00 00 00 0E 77 74 70 74 00 00 01 D0

00 00 00 14 63 70 72 74 00 00 01 E4 00 00 00 27

64 65 73 63 00 00 00 00 00 00 00 17 41 70 70 6C

65 20 31 33 22 20 52 47 42 20 53 74 61 6E 64 61

72 64 00 00 00 00 00 00 00 00 00 00 00 17 41 70

70 6C 65 20 31 33 22 20 52 47 42 20 53 74 61 6E

64 61 72 64 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 58 59 5A 58 59 5A 20 00 00 00 00 00 00 63 0A

00 00 35 0F 00 00 03 30 58 59 5A 20 00 00 00 00

00 00 53 3D 00 00 AE 37 00 00 15 76 58 59 5A 20

00 00 00 00 00 00 40 89 00 00 1C AF 00 00 BA 82

March 11, 1999 7.12.7

7: Common Data Structures 237

63 75 72 76 00 00 00 00 00 00 00 01 01 CC 63 75

63 75 72 76 00 00 00 00 00 00 00 01 01 CC 63 75

63 75 72 76 00 00 00 00 00 00 00 01 01 CC 58 59

58 59 5A 20 00 00 00 00 00 00 F3 1B 00 01 00 00

00 01 67 E7 74 65 78 74 00 00 00 00 20 43 6F 70

79 72 69 67 68 74 20 41 70 70 6C 65 20 43 6F 6D

70 75 74 65 72 73 20 31 39 39 34 00

endstream

endobj

The terminology used in PDF color spaces and ICC color profiles is similar, but
sometimes the same terms are used with different meanings. For example, the
default value for each component in an ICCBased color space is zero. The range
of each color component is a function of the color space specified by the profile,
and is indicated in the ICC specification. The ranges for several ICC color spaces
are shown in the following table; not all of these are supported in PDF.

Table 7.32 Ranges for typical ICC color spaces

ICC Color space Component ranges

Gray [0 1]

RGB [0 1]

CMYK [0 1]

L*a*b* L*: [0 100]; a* and b*: []

L*a*b* (16-bit) L*: [0 100]; a* and b*: []

XYZ []

Note that the ranges on color spaces described by Colorspace Conversion Profiles,
e.g., L*a*b* and XYZ, are a bit unusual and depend on the bit depth of the profiles
themselves.

Since the ICCBased color space is being used for the specification of a source
color space, only the “to CIE” (AToB in ICC parlance) profile information is used;
the “from CIE” (BToA) information is ignored when present.

The size of the ICC profile in the PDF file can be reduced by using a lossless
compression filter, e.g., Flate (page 47) or LZW (page 45).

PDF 1.1 introduced support for device-independent color spaces: CalGray,
CalRGB, and Lab. In PDF 1.3, the ICCBased color space also provides for
device-independent color specifications. The CalGray, CalRGB, and Lab color
spaces of PDF 1.1 provide a more compact representation of the color spaces they
specify. The ICCBased color space provides support for additional color spaces.
In those cases where the desired color space can be expressed by either a PDF 1.1
device-independent color space, or by the ICCBased color space, the resulting
colors are expected to be rendered similarly, independent of the method selected
for representation.

128– 127

128– 127
255
256
--------- 

 +

0 1
32767
32768
--------------- 

 +

7: Common Data Structures March 11, 1999

238 Adobe Systems Inc.

PDF 1.1 also introduced support for rendering intents. The rendering intent for the
graphics state is set using the ri operator (see page 333). Images also have an
optional Intent field. The default rendering intent in both cases is
RelativeColorimetric. ICC profiles also contain a rendering intent in their
header. The rendering intent specified in the ICC profile’s header is ignored in
PDF, in order that the same color space information can be used for different
objects in a PDF with different rendering intents. The rendering intents specified
by the ri operator for the graphics state, by the Intent field for images, or by
default in either case, specify the rendering intent.

7.12.8 Separation color spaces

Colors in a Separation color space are represented by a single value, called a tint,
in the range of 0 to 1. The value 0 represents the minimum amount of colorant; 1
represents the maximum amount.

A Separation color space is specified as a 4-element array:

[/Separation name alternateSpace tintTransform]

name is the name of the separation or colorant. At the moment when the color
space is set to a separation color space on a printer or viewer, if the device can
produce the named separation, then it does so, and the remaining elements of the
array are ignored.

If the device cannot produce the named separation, then subsequent painting
operations are performed in the color space specified by alternateSpace. The
alternate color space can be a device-dependent color space or a device-
independent color space, but not a special color space. The color used in the
alternate space is determined by applying tintTransform to the tint value.
tintTransform is a Function (see page 262) whose input is the tint and whose
output is a set of color values, one for each of the color components in the alternate
color space.

7.12.9 DeviceN color spaces

A DeviceN color space can be thought of as a generalization of a Separation
color space from one colorant to n colorants. It provides for the composite
specification of an arbitrary number of device-dependent color components. This
color space provides greater control with respect to overprint between the
components. Previously, for example, to paint only the cyan, magenta, and yellow
colorants on a CMYK device and leave the black colorant unaltered required using
the Separation color space once each for cyan, magenta, and yellow (and turning
overprint on); a composite description of this color is not permitted using the
DeviceCMYK color space without altering the black component. In contrast, the
DeviceN color space allows you to create a composite description for the cyan,
magenta, and yellow color components, while leaving the black component
unaltered.

PDF 1.2

�

PDF 1.3

March 11, 1999 7.12.9

7: Common Data Structures 239

It is also often desirable to use data for a single component to paint multiple color
components. For example, a single gray image can be used to produce a duotone.
The DeviceN color space, used in conjunction with an Indexed color space,
provides this functionality.

A DeviceN color space is specified as follows:

[/DeviceN names alternateSpace tintTransform]

or

[/DeviceN names alternateSpace tintTransform attributes]

Color values in the DeviceN color space are tint components in the range 0 to 1.
The value 0 represents the minimum amount of colorant; the value 1 represents the
maximum. The scn and SCN operators set the current color in the graphics state
to a set of tint values; the initial value is 1 for each tint. A sampled image can also
be treated as a source of tint values.

The number of color components is derived from the length of the names, which is
an array containing name objects, specifying the individual colorants. It is an error
for the names array to contain any name more than once. When DeviceN is the
current color space, the scn and SCN operators take a number of arguments equal
to the length of the names array.

At the moment the color space is set to DeviceN on a rendering device (printer or
viewer), if all named colorants are available on that device, then subsequent
painting operations use the named device colorants, and the parameters
alternateSpace and tintTransform are ignored. If not all the named colorants are
available, then subsequent painting operations are performed using the
alternateSpace color space. The alternateSpace color space enables the colors to
be approximated by colors in some other color space.

The alternateSpace parameter may be any device-dependent or device-
independent color space, but not a special color space.

The tintTransform procedure is a Function (see page 262) that provides an n-to-m
transformation, where m is the number of color components in the
alternateSpace. During subsequent painting operations, if the named colorants
are not available on the device, this procedure is used to transform n tint values
into m color component values in the alternate color space.

In a DeviceN color space, one or more of the colorant names (in the names
array) can be None. This indicates that the corresponding color component is
never marked on the page, consistent with the behavior of a Separation color
space for the None colorant. When a DeviceN color space is marking the named
device colorants directly, color components corresponding to None colorants are
discarded. However, when the DeviceN color space reverts to its alternate color
space, those components are passed to the tintTransform function, which may use
them in any desired manner.

�

7: Common Data Structures March 11, 1999

240 Adobe Systems Inc.

The optional attributes parameter is a dictionary containing additional
information about the color space. The only attribute (key) currently defined for
this dictionary is Colorants. The value of this key is a dictionary whose keys are
names of colorants and whose values are Separation color spaces corresponding to
those colorants. The Colorants dictionary may contain entries for any colorants,
not just the ones used in the DeviceN color space; it may be shared among several
DeviceN color spaces using different sets of colorants, so long as all of them use
consistent definitions for any colorants.

Example 7.18 A DeviceN color space with a Colorants dictionary

30 0 obj

[/DeviceN [/Orange /Green /None]

/DeviceCMYK

tintTransform1
<</Colorants 45 0 R>>

]

endobj

45 0 obj

<</Orange [/Separation /Orange

/DeviceCMYK tintTransform2]

/Green [/Separation /Green

/DeviceCMYK tintTransform3]

/PANTONE#20131 [/Separation /PANTONE#20131

/DeviceCMYK tintTransform4]

>>

endobj

In this example, the DeviceN color space, object 30, has an attributes dictionary
that contains an indirect reference to a Colorants dictionary, object 45, which
might also be referenced by other attributes dictionaries. tintTransform1 maps 3
color components (orange, green, and “none”) to 4 color components (CMYK).
tintTransform2 maps a single color component (an orange tint) to 4 CMYK
components. Likewise,tintTransform3 maps a green tint to CMYK, and
tintTransform4 maps a tint of Pantone 131 to CMYK.

7.12.10 Indexed color spaces

Indexed color spaces allow colors to be specified by small integers that are used
as indexes into a table of color values. The values in this table are colors specified
in some other “base” color space. For example, an indexed color space can have
white as color number 1, dark blue as color number 2, turquoise as color number 3,
and black as color number 4.

An Indexed color space is specified as follows:

[/Indexed base hival lookup]

PDF 1.2

March 11, 1999 7.12.10

7: Common Data Structures 241

The base color space is specified by base. In PDF 1.0 and PDF 1.1 it must be
either DeviceRGB or DeviceCMYK. In PDF 1.2 it may be any color space
except a Pattern color space, another Indexed color space, or a Separation
color space. In PDF 1.3, it may be any color space except a Pattern color space or
another Indexed color space; in particular, Separation, DeviceN, and
ICCBased color spaces are allowed. The maximum valid index value, specified
by hival, is determined by the number of colors desired in the Indexed color
space; it may not be greater than 255.

Colors are specified by integers in the range 0 to hival. The color table values are
contained in lookup, which must be a stream in PDF 1.0 and 1.1 but may also be a
string in later versions of PDF. The stream or string contains m × (hival + 1) bytes
where m is the number of color components in the base color space. Each byte is
an unsigned integer in the range 0 to 255 that is scaled to the range of the
corresponding color component in the base; that is, 0 corresponds to the minimum
value in the range for that component, and 255 corresponds to the maximum value
in the range.2

The color components for each entry in the table are adjacent in the stream. For
example, if the base color space is DeviceRGB and the indexed color space
contains two colors, the order of bytes in the stream is: R0 G0 B0 R1 G1 B1, where
letters are the color component and numbers are the table entry.

Example 7.19 shows an indexed color space. Colors in the table are specified in the
DeviceRGB color space, and the table contains 256 entries. The stream
containing the table has been LZW and ASCII base-85 encoded.

Example 7.19 Indexed color space

12 0 obj

[/Indexed /DeviceRGB 255 13 0 R]

endobj

13 0 obj <<

/Filter [/ASCII85Decode /LZWDecode]

/Length 554

>>

stream

J3Vsg-=dE=!]*)rE$,8^$P%cp+RI0B1)A)g_;FLE.V9

… omitted data …
bS/5%"OmlTJ=PC!c2]]^rh(A~>

endstream

endobj

2. This is different than lookup-strings in Indexed color spaces in PostScript,
where the values are always divided by 255, yielding a color component value in
the range 0 to 1. Lookup-strings in PostScript can therefore be used only for color
spaces whose components are all in the range 0 to 1. For wider ranges, such as
L*a*b*, PostScript uses procedures in place of strings.

7: Common Data Structures March 11, 1999

242 Adobe Systems Inc.

7.12.10.1 Indexed DeviceN (duotones)

DeviceN color spaces can be used for objects that have an arbitrary number of
color components. A duotone image is a 1-component image that is printed with
two inks to add tonal depth. Similarly, monotones, tritones, and quadtones use 1, 3,
and 4 inks. A duotone image can be easily represented, therefore, with an Indexed
DeviceN color space. An Indexed color space has 1 component; its lookup table
maps the single index into the N color components of the DeviceN color space,
whose colorants are the desired inks.

For example, an image that uses two inks, Black and Gold (a “spot” color), might
use the following color space:

[/Indexed

[/DeviceN [/Black /Gold]

[/CalRGB <</WhitePoint [1 1 1]

/Gamma [2.2 2.2 2.2] >>]

tintTransform]

255

lookupTable]

In this example, the lookup table would have 512 bytes (256 entries in the table × 2
bytes per entry), mapping each index to a 2-component (black + gold) color. The
alternate for this DeviceN color space is a calibrated RGB; this would be used
when printing to a device that does not support black and gold colorants (and when
previewing the image in Acrobat). tintTransform is a function that converts a 2-
component color in the DeviceN color space to a 3-component color in the
CalRGB color space.

Specifying a 2-in, 3-out tint transform function may require a Type 0 function with
a large number of sample points to represent the function accurately. If each input
variable were sampled in 256 places between 0 and 1, that would require 2562

samples. But in the case of an indexed image, there are only 256 possible
combinations of input values, so a more compact way to represent this information
is to put the alternate color values directly into the lookup table along with the
DeviceN color values. Doing this with the previous example would result in the
following color space:

[/Indexed

[/DeviceN [/Black /Gold /None /None /None]

[/CalRGB <</WhitePoint [1 1 1]>>]

tintTransform]

255

lookupTable]

In this example, each entry in the lookup table has five components, two for the
black and gold colorants, and three for the CalRGB colors (the “None” colorants).
If the DeviceN color space is used when printing, the None components are
ignored. If the alternate color space is used, the tint transform will be used to
convert a 5-component color into a 3-component CalRGB color, but by

PDF 1.3

March 11, 1999 7.12.10

7: Common Data Structures 243

construction, the third, fourth, and fifth components are the CalRGB components,
so the tint transform function can merely discard the first two components. The
way to express that is with a Type 4 (“PostScript calculator”) function:

20 0 obj <<

/FunctionType 4

/Length 21

>> stream

{5 3 roll pop pop}

endstream

endobj

Example 7.20 shows a quadtone (4-component) image that uses Indexed
DeviceN.3

In this example, we start with the grayscale image shown on the left. We want to
print this with four inks: black and three Pantone spot color. The alternate color
space is a simple calibrated RGB. The DeviceN color space, then, will have seven
components: the four inks plus the three components of the alternate. Here is the
PDF object representing the quadtone image:

4 0 obj <<

/Type /XObject

/Subtype /Image

/Width 288

/Height 288

/BitsPerComponent 8

/ColorSpace 8 0 R

3. This method of representing duotones is used by Adobe Photoshop® 5.0.2 and subsequent ver-
sions, when exporting EPS files. Acrobat 4.0 exports Level 3 EPS files using this method, and it can also
export Level 1 EPS files that use the “Level 1 separation” conventions of Adobe Tech Note 5044 to emit
multi-tone images as calls to “customcolorimage” with overprinting, which can then be placed in page

layout applications such as Adobe PageMaker®, Adobe InDesign™, and QuarkXPress.

Example 7.20 Quadtone image using Indexed DeviceN

1-component (“grayscale”) image Quadtone image

7: Common Data Structures March 11, 1999

244 Adobe Systems Inc.

/Length 105278

/Filter /ASCII85Decode

>> stream

... The data for the grayscale image ...
endstream

endobj

This is the color space used by the quadtone image:

8 0 obj

[/Indexed

7 0 R The base color space, shown below.
255 The table has 256 entries.
12 0 R] The lookup table, shown below.

endobj

7 0 obj

[/DeviceN

[/Black Four inks (black + 3 spot colors).
/PANTONE#20216#20CVC

/PANTONE#20409#20CVC

/PANTONE#202985#20CVC

/None Three components for the alternate.
/None

/None]

6 0 R The alternate color space.
10 0 R] The tint transform function.
endobj

6 0 obj The alternate color space.
[/CalRGB << /WhitePoint [1 1 1] >>]

endobj

10 0 obj << The tint transform function.
/FunctionType 4

/Domain 7 input values (the DeviceN components)
[0 1 0 1 0 1 0 1 0 1 0 1 0 1]

/Range 3 output values (the CalRGB components)
[0 1 0 1 0 1]

/Length 28

>> stream

{7 3 roll pop pop pop pop} Discard the first 4 values.
endstream

endobj

12 0 obj << The lookup table for the Indexed color space
/Length 1975

/Filter [/ASCII85Decode /FlateDecode]

March 11, 1999 7.12.11

7: Common Data Structures 245

>> stream

8;T1BB2"M7*!"psYBt1k\gY1T<D&tO]r*F7Hga*

... Each entry in the table has 7 components.
endstream

endobj

7.12.11 Pattern color spaces

Colors in a Pattern color space are represented by Patterns (see page 287). A
pattern is either a tiling pattern (PatternType 1) or a shading pattern (PatternType
2). A tiling pattern is either colored, in which case the colors it uses are contained
in the pattern’s contents stream; or it is uncolored, in which case its color must be
specified whenever the pattern is used, and an underlying color space must be
specified with the pattern color space.

A Pattern color space for an uncolored tiling pattern is specified as a 2-element
array:

[/Pattern base]

base is the underlying color space, which may be any color space except a
Pattern color space. A Pattern color space for a colored tiling pattern or a
shading pattern is specified as the name Pattern or an array containing just the
name Pattern. It may also be specified by the 2-element array shown above; in
this case, base is ignored.

7.12.12 Default color spaces

When a rendering device is performing a marking operation, there is always a
current color space, which is established using the operators of Section 8.5.2,
“Color operators,” the ColorSpace key of an Image XObject, or the CS key of
an in-line image. When the current color space is DeviceGray, the ColorSpace
dictionary of the current Resources dictionary is checked for the presence of the
DefaultGray key. If this key is present, then the color space that is the value of
that key is used as the color space for the operation currently being performed. The
value of the DefaultGray key may be the DeviceGray color space, a CalGray
color space, a Separation color space, or (in PDF 1.3) a 1-component
ICCBased or DeviceN color space.

Similarly, when the current color space is DeviceRGB, the ColorSpace dictionary
of the current Resources dictionary is checked for the presence of the
DefaultRGB key. If this key is present, then the color space that is the value of
that key is used as the color space for the operation currently being performed. The
value of the DefaultRGB key may be the DeviceRGB color space, a CalRGB
color space specification, or (in PDF 1.3) a 3-component ICCBased or DeviceN
color space.

In PDF 1.3, when the current color space is DeviceCMYK, the ColorSpace
dictionary of the Resources dictionary is checked for the presence of the
DefaultCMYK key. If this key is present, then the color space that is the value of

PDF 1.2

PDF 1.1

PDF 1.3

PDF 1.3

PDF 1.3

7: Common Data Structures March 11, 1999

246 Adobe Systems Inc.

that key is used as the color space for the operation currently being performed. The
value of the DefaultCMYK key may be the DeviceCMYK color space or a 4-
component ICCBased or DeviceN color space.

7.13 XObjects

XObjects are named resources. PDF supports three types of XObjects: images,
forms, and pass-through PostScript language fragments. In the future it may
support other object types.

XObjects are passed by name to the Do operator, described on page 348. The
action taken by the Do operator depends on the subtype of XObject passed to it. In
the case of images and forms, the Do operator draws the XObject.

7.13.1 Images

An Image is an XObject whose Subtype is Image. Images allow a contents
stream to specify a sampled image or image mask. PDF supports image masks, 1-
bit, 2-bit, 4-bit, and 8-bit grayscale images, and color images with 1, 2, 4, or 8 bits
per component. Color images may have one color component (indexed-color
values or separation tints), three color components (RGB, CalRGB, or Lab), four
color components (CMYK), or an arbitrary number (DeviceN).

All PDF images have a size of 1 × 1 unit in user space, and the data is specified left
to right, top to bottom. PDF images are sized and positioned by adjusting the
current transformation matrix in the contents stream.4

An Image XObject is specified by a stream object. The stream dictionary must
include the standard keys required of all streams as well as additional ones
described in Table 7.33.5

An image mask has 1-bit samples. Each bit indicates whether paint should be
applied at that position; by default, a sample value of 1 indicates that the sample is
masked, that is, that no paint should be applied there, so the color already at that
position “shows through the mask.” A sample value of 0 indicates that paint is
applied there. (The Decode array can be used to reverse the meaning of the bit.)
Used by itself, an image mask paints using the current color. In PDF 1.3, an image
mask can also be used to indicate where another image should be painted; the mask
is specified as the value of the Mask key of that other image. Alternatively, the
Mask key can specify which colors in an image should be painted and which ones
should not.

4. The format and interpretation of the sample data conform to the conventions required by the Post-
Script image and imagemask operators. However, PostScript images have a separate matrix, while
PDF images are always defined in a 1 × 1 square. Also, PostScript image data is specified bottom to top,
while PDF image data is specified top to bottom.

5. Several of the keys are the same as those required by the PostScript language image and image-
mask operators. Matching keys have the same semantics.

�

PDF 1.3

March 11, 1999 7.13.1

7: Common Data Structures 247

Table 7.33 Image XObject attributes

Key Type Semantics

Type name Object type. Always XObject.

Subtype name (Required) XObject subtype. Always Image.

Name name (Required only for compatibility with PDF 1.0) Resource name, used as an
operand of the Do operator. Name must match the name used in the XObject
dictionary within the page’s Resources dictionary.

Width integer (Required) Width of the source image in samples.

Height integer (Required) Height of the source image in samples.

BitsPerComponent
integer (Required) The number of bits used to represent each color component. The value

must be 1, 2, 4, or 8.

ColorSpace
name or array (Required for images, not allowed for image masks) Color space used for the

image samples. This may be any type of color space except Pattern. Separation
color spaces are not permitted before PDF 1.2. DeviceN color spaces are not
permitted before PDF 1.3.

Decode array (Optional) An array of numbers specifying the mapping from sample values in the
image to values appropriate for the current color space. The number of elements in
the array must be twice the number of color components in the color space
specified in the ColorSpace key. The default value results in the image sample
values being used directly. Decode arrays are described further on page 249. For an
image mask, the Decode array is either [0 1] or [1 0]. If it is [0 1] (the
default), then 0-bits in the image data indicate where paint is applied; 1-bits are
masked (not painted). If the array is [1 0], the opposite happens: 0-bits are
masked, and 1-bits are painted.

Interpolate boolean (Optional) If true, requests that image interpolation be performed. Interpolation
attempts to smooth transitions between sample values. Interpolation may be
performed differently by different devices, and not at all by some. The default
value is false.

ImageMask boolean (Optional) Specifies whether the image should be treated as a mask. If true, the
image is treated as a mask: BitsPerComponent must be 1, ColorSpace should
not be provided, and the mask is drawn using the current fill color. If false, the
image is not treated as a mask. The default value is false.

Intent name (Optional) A name which is a color rendering intent indicating the style of color
rendering that should occur. For example, one might want to render images in a
perceptual or pleasing manner while rendering line art colors with exact color
matches. Intents are meaningful only for the device-independent color spaces. For
further details, see page 252.

�

PDF 1.2

PDF 1.1

7: Common Data Structures March 11, 1999

248 Adobe Systems Inc.

OPI dictionary (Optional) An OPI dictionary. See page 258. This key is ignored if ImageMask is
true.

Mask stream or array (Optional) If Mask is a stream, then the image is masked by position, as described
in Section 7.13.5, “Masking images by position.” If it is an array, then the image is
masked by color, as described in Section 7.13.6, “Masking images by color.” If the
value of the ImageMask key is true, the Mask key is not permitted.

Alternates array (Optional) Alternate versions of this image. See page 250. This key can only
appear in a base image. It must not appear in alternate images. The order of
elements in this array has no significance. Note that the attributes of the base
image (e.g., OPI) do not apply to the alternates.

ID string (Optional; indirect reference preferred) An ID that can be used to locate a
SpiderContentSet array in the IDs name tree. See page 160.

PZ (Preferred Zoom)
number (Optional) A scaling factor by which the image can be scaled to achieve the

“natural” zoom level. See page 160.

Example 7.21 shows an image object. It is a monochrome image (1 bit per
component, DeviceGray) that is 24 samples wide and 23 samples high.
Interpolation is not requested and the default decode array is used.

Example 7.21 Image with length specified as an indirect object

5 0 obj

<<

/Type /XObject

/Subtype /Image

/Width 24

/Height 23

/BitsPerComponent 1

/ColorSpace /DeviceGray

/Filter /ASCIIHexDecode

/Length 6 0 R

>>

stream

003B00 002700 002480 0E4940 114920 14B220 3CB650

75FE88 17FF8C 175F14 1C07E2 3803C4 703182 F8EDFC

B2BBC2 BB6F84 31BFC2 18EA3C 0E3E00 07FC00 03F800

1E1800 1FF800>

endstream

endobj

6 0 obj

174

endobj

PDF 1.2

PDF 1.3

�

PDF 1.3

PDF 1.3

PDF 1.3

March 11, 1999 7.13.2

7: Common Data Structures 249

7.13.2 Decode arrays

A Decode array can be used to invert the colors in an image or to compress or
expand the range of values specified in the image data. Each pair of numbers in a
Decode array specifies the upper and lower values to which the range of sample
values in the image is mapped. A Decode array contains one pair of numbers for
each component in the color space specified in the image. The mapping for each
color component is a linear transformation. That is, it uses the following formula
for linear interpolation:

Note Generally this is used to convert a value x between xmin and xmax to a
corresponding value y between ymin and ymax, projecting along the line defined by
the points (xmin, ymin) and (xmax, ymax). While this formula applies to values outside
the range xmin to xmax, and does not require that , interpolation used for
color-conversion, such as the Decode array, does require that , and it
“clips” x values to this range, so that for all , we have , and for all

, we have .

For a Decode array of the form [Dmin Dmax], this can be written as:

where:

n is the value of BitsPerComponent

x is the input value, in the range 0 to 2n – 1

Dmin and Dmax are the values specified in the Decode array

y is the output value, to be interpreted in the color space of the image.

Samples with a value of zero are mapped to Dmin, samples with a value of 2n - 1 are
mapped to Dmax, and samples with intermediate values are mapped linearly
between Dmin and Dmax. The default Decode array for each color component is
[0 1], causing sample values in the range 0 to 2n - 1 to be mapped to color values
in the range 0 to 1. Table 7.34 shows the default Decode arrays for various color
spaces.

Table 7.34 Default Decode arrays for various color spaces

Color space Default Decode array

DeviceGray [0 1]

y Interpolate x xmin xmax ymin ymax, , , ,()=

ymin x xmin–()
ymax ymin–

xmax xmin–
--------------------------- 

 ×+=

xmin xmax<
xmin xmax<

x xmin≤ y ymin=
x xmax≥ y ymax=

y Interpolate x 0 2
n

1– Dmin Dmax, , , ,()=

Dmin x
Dmax Dmin–

2
n

1–
------------------------------×+=

7: Common Data Structures March 11, 1999

250 Adobe Systems Inc.

DeviceRGB [0 1 0 1 0 1]

DeviceCMYK [0 1 0 1 0 1 0 1]

CalGray [0 1]

CalRGB [0 1 0 1 0 1]

Lab [0 100 amin amax bmin bmax] where amin, amax, bmin,
and bmax correspond to the entries in the Range array of
the image’s color space. 0 and 100 are the first two
entries since the range of L* is always 0 to 100.

Separation [0 1]

DeviceN [0 1 0 1 …] where there are n pairs of 0 and 1.

Indexed [0 N] where N = 2n–1

Pattern (cannot be used with images)

As an example of a Decode array, consider a DeviceGray image with 8 bits per
component. The color of each sample in a DeviceGray image is represented by a
single number. The default Decode array, [0 1],maps a sample value of 0 to a
color value of 0 and a sample value of 255 to a color value of 1. A negative image
is produced by specifying a Decode array of [1 0], which maps a sample value
of 0 to a color value of 1 and a sample value of 255 to a color value of 0. If the
image contains only values from 0 to 63 and is to be displayed using the full gray
range of 0 to 1, a Decode array of [0 4] should be used. With this Decode
array, a sample value of 0 maps to a color value of 0, a sample value of 255 maps to
a color value of 4, and a sample value of 63 (the maximum value in the example)
maps to a color value of 0.99.

7.13.3 Alternate images

Alternate images provide a straightforward and backwards-compatible way to have
at least one viewing-resolution and at least one printing-resolution version of each
Image XObject in a PDF file. The primary goal is to substantially reduce the need
for authors to maintain two versions of each PDF document (one version with low-
resolution images for viewing on the Web, and a separate version with high-
resolution images for printing).

In PDF 1.3, a base image (i.e., the Image XObject referred to in a Resources
dictionary) can contain an Alternates key. The value of this key is an array that
specifies alternate versions of the image. These alternates may differ, for example,
in resolution or in color space. This permits a single PDF file to contain low-
resolution versions of each image (for on-line use), and high-resolution versions
(for printing).

Each alternate version is a dictionary that specifies the Image XObject for that
alternate, as well as properties of the alternate. Table 7.35 shows the contents of the
dictionary representing an alternate image.

PDF 1.3

March 11, 1999 7.13.3

7: Common Data Structures 251

Table 7.35 Alternate image dictionary

Key Type Semantics

Image stream (Required) The Image XObject for the alternate.

DefaultForPrinting
boolean (Optional; may be true in at most one alternate for each base image) If true, this

alternate is the default for printing. If no alternate has DefaultForPrinting set to
true, then the base image is the default image for printing.

Example 7.22 shows an image with a single alternate. In this example, the base
image is a grayscale image. The alternate is a high-resolution RGB image stored
on a Web server.

Example 7.22 Image XObject with a single alternate

10 0 obj <<

/Type /XObject

/Subtype /Image

/Width 100

/Height 200

/BitsPerComponent 8

/ColorSpace /DeviceGray

/Filter /DCTDecode

/Length 2167

/Alternates 18 0 R

>>

stream

… image data …
endstream

endobj

18 0 obj

[<< /Image 98 0 R /DefaultForPrinting true >>]

endobj

98 0 obj <<

/Type /XObject

/Subtype /Image

/Width 1000

/Height 2000

/BitsPerComponent 8

/ColorSpace /DeviceRGB

/FFilter /DCTDecode

/Length 0 This is an external stream.
/F <<

/FS /URL

/F (http://www.myserver.mycorp.com/im\

http://www.myserver.mycorp.com/im\

7: Common Data Structures March 11, 1999

252 Adobe Systems Inc.

ages/exttest.jpg) >>

>>

stream

endstream

endobj

7.13.4 Color rendering intent

The supported color rendering intents and their meanings are given below in Table
7.36. Other intents are permitted, but a viewer based on the PDF 1.1 specification
will most likely ignore other values. The default intent is RelativeColorimetric.

Table 7.36 Color rendering intents

Name Semantics

AbsoluteColorimetric Requests an exact color (hue, saturation, and brightness) match. This is appropriate
for uses such as some line art or spot colors. If the exact color cannot be displayed,
the closest available one is substituted.

RelativeColorimetric Requests an exact hue/saturation match, but scales the brightness range so that all
brightnesses fit into the display device’s brightness range. This is often appropriate
for line art and spot color. As a result of the brightness scaling, the exact colors
produced will differ on devices having different brightness range capabilities. If
the exact hue/saturation cannot be displayed, the closest available one is
substituted.

Perceptual Scales the hue, saturations, and brightness ranges so that all values can be
displayed on the output device. This generally provides a pleasing rendering of
scanned images. As a result of the scaling, all colors are modified somewhat.

Saturation Emphasizes saturation. This is appropriate for business graphics.

7.13.5 Masking images by position

Within the graphics arts industry and page-layout applications, it is common to
take an image in a photograph, for example, “mask” out the background, and then
place the cropped image on a different background. This is commonly done by
drawing a clipping path between the pixels of the source image. Such paths need
many line segments. Depending on the capability of the device on which the image
is to be printed, this can lead to errors.

Masked images enable these constructs to be represented and processed more
efficiently. Conventional images contain n color components per pixel; masked
images contain n color components plus one mask component per pixel. Image
XObjects that are masked in this way (i.e., by position) have a Mask key whose
value is an imagemask, i.e., another Image XObject whose ImageMask key is
true. This imagemask contains only the one mask component; the n color
components are stored in the first Image XObject in the normal way.

PDF 1.1

�

PDF 1.3

March 11, 1999 7.13.5

7: Common Data Structures 253

Although the Height and Width of the imagemask are independent of the Height
and Width of the image, both the image and the imagemask are defined on the unit
square, as all PDF images are, so the rasterizer determines exactly which pixels are
masked, when the image and imagemask have been mapped to device space.

The following example shows the use of an image masked by position.

In this example, a bitmapped (1-component, 1 bit per component) image of a
flower (center) is used to mask a color image of clouds (left), producing a “cloud-
colored flower” (right).

5 0 obj << The masked image
/Type /XObject

/Subtype /Image

/Mask 4 0 R The mask, shown below.
/Width 144 /Height 144 144 samples in x and y
/BitsPerComponent 8

/ColorSpace /DeviceRGB

/Length 78959

/Filter /ASCII85Decode

>> stream

... RGB data for the clouds ...
endstream

endobj

4 0 obj << The image that serves as the mask
/Type /XObject

/Subtype /Image

/Width 900 /Height 900 900 samples in x and y
/BitsPerComponent 1

/ImageMask true

Example 7.23 An image masked by position

The base image The imagemask The masked image

7: Common Data Structures March 11, 1999

254 Adobe Systems Inc.

/Length 129083

/Filter /ASCII85Decode

>>

stream

... bitmap data for the flower...
endstream

endobj

Note that in this example, the mask has a much higher resolution than the base
image, 900 samples per unit as opposed to 144. Since all images in PDF are
defined on the unit square, a single scaling factor will apply uniformly to the image
and its mask.

7.13.6 Masking images by color

In addition to masking certain positions in an image, it is also useful to mask
certain colors in an image. For example, an image containing a particular shade of
blue might be painted over a background. If that shade of blue were the masked
color, then the background would show through wherever the image contained
blue pixels.

If the value of the Mask key is an array, then it is an array of 2 × n integers,
[min1 max1 … minn maxn], where n is the number of color components in the

image’s color space. Each integer must be in the range 0 to 2BitsPerComponent - 1,
representing color values before decoding. Any image sample whose color value,
before decoding, is c1 … cn, where mini ≤ ci ≤ maxi for 1 ≤ i ≤ n, is masked (not
painted).

The following example shows an image that is masked by color.

In this example, an image or a world map (left) is printed, and then a separate
image of a weather man (center) is printed at the same location. If there were no
masking, then the center picture would completely obscure the map. But if the
center image specifies a blue color mask, then when it is printed on top of the map,
the blue samples are not painted, so the map shows through (right). In this
example, the center image uses a DeviceRGB color space, and the Image XObject
contains this key-value pair:

�

PDF 1.3

Example 7.24 An image masked by color

March 11, 1999 7.13.7

7: Common Data Structures 255

/Mask [0 2 40 42 136 139]

This specifies a narrow range of RGB colors centered around dark blue.

Why doesn’t the weather man ever wear a blue tie?

This effect of masking by color is also known as chroma-key or blue-screen
masking, and it is commonly used in video, where a TV weather man, for example,
stands in front of a blue screen. The blue is being masked and is therefore
transparent, so he appears to be standing in front of a large map or other image
coming from a separate source. When an image is masked by color, all the image
samples within that color range are transparent, regardless of where they appear in
the image. Example 7.25 shows what would happen if the weather man wore a tie
that was within the range of masked colors.

7.13.7 Form XObjects

A form is a self-contained description of any text, graphics, or sampled images that
may be drawn on several pages or more than once on a single page.

Note In PDF 1.2, the term “form” also refers to a completely different object, a
database described on page 129 and stored in the file’s Catalog under the name
AcroForm. There is only of those per document. The form described here is a
subtype of XObject, corresponding to forms in the PostScript language. There can
be any number of these forms in a document. These forms are referred to as “Form
XObjects.”

A Form XObject is specified by a PDF stream. It is a contents stream (see page
195). As usual, the stream must also include a Length key and may include Filter
and DecodeParms keys if the stream is encoded. Table 7.37 describes the
attributes of a Form XObject.6

6. The keys in the stream dictionary correspond to the keys in a PostScript language Form dictionary.
Unlike a PostScript language Form dictionary, however, the PDF Form dictionary does not contain a
PaintProc key. Instead, the stream contents specify the painting procedure.

Example 7.25 Unintended transparency

7: Common Data Structures March 11, 1999

256 Adobe Systems Inc.

To draw a Form XObject, the Do operator is used, with the name of the Form
XObject to be drawn given as an operand. As discussed in the introduction on page
195, this name is mapped to an object using the current Resources dictionary.

Table 7.37 Form XObject attributes

Key Type Semantics

Type name Object type. Always XObject.

Subtype name (Required) XObject subtype. Always Form.

BBox Rectangle (Required) The form’s bounding box, in the form coordinate system. This
bounding box is used to clip the output of the form and to determine its size for
caching.

FormType integer (Required) Must be 1.

Matrix matrix (Required) A transformation matrix that maps the form’s coordinate space into
user space.

Name name (Required only for compatibility with PDF 1.0) Resource name, used as an
operand of the Do operator. Name must match the name used in the XObject
dictionary within the Resources dictionary of the contents stream where the form
appears.

Resources dictionary (Optional but strongly recommended) A list of the resources such as fonts and
images required by this form.

In PDF 1.0 and 1.1, all named resources used in the form must be included in the
Resources dictionary of each Page object on which the form appears, regardless of
whether or not they also appear in the Resources dictionary of the form. It can be
useful to specify them in the form’s own Resources dictionary as well, in order to
determine which resources are used inside the form. If a resource is included in
both dictionaries, it should have the same name in both locations.

In PDF 1.2 and later versions, forms can be independent of the contents streams in
which they appear, and this is strongly recommended although not required. In an
independent form, the Resources dictionary of the form is required and contains all
the named resources used by the form. Those resources are not “promoted” to the
outer contents stream’s Resources dictionary, although that stream’s Resources
dictionary will refer to the form itself.

XUID array (Optional) An ID that uniquely identifies the form. This allows the form to be
cached after the first time it has been drawn in order to improve the speed of
subsequent redraws.

XUID arrays may contain any number of elements, all of which are integers. The
first element in an XUID array is the organization ID. Forms that are used only in
closed environments may use 1000000 as the organization ID. Any value can be
used for subsequent elements, but the same values must not be used for different
forms. Organizations that plan to distribute forms widely and wish to use XUIDs

PDF 1.2

March 11, 1999 7.13.8

7: Common Data Structures 257

must obtain an organization ID from Adobe Systems Incorporated, as described in
Appendix E. Section 5.6 of the PostScript Language Reference Manual, Third
Edition [1] provides a further explanation of XUIDs.

OPI dictionary (Optional) An OPI dictionary. See Section 7.13.9 on page 258.

PieceInfo dictionary (Optional) A PieceInfo dictionary. PieceInfo is described in Section 7.13.10,
“Page-Piece Dictionary.”

LastModified Date (Optional unless PieceInfo key is present) Time of the most recent alteration of
the content of the Form XObject.

Example 7.26 Form XObject

6 0 obj

<<

/Type /XObject

/Subtype /Form

/FormType 1

/BBox [0 0 1000 1000]

/Matrix [1 0 0 1 0 0]

/Length 38

>>

stream

0 0 m 0 1000 l 1000 1000 l 1000 0 l f

endstream

endobj

7.13.8 PostScript XObjects

PDF enables a document to include PostScript language fragments in a page
description. These fragments are printer-dependent and take effect only when
printing on a PostScript printer. They have no effect either when viewing the file or
when printing to a non-PostScript printer. In addition, applications that understand
PDF are unlikely to be able to interpret the PostScript language fragments. Hence,
this capability should be used only if there is no other way to achieve the same
result.

A PostScript XObject is an XObject whose Subtype key has the value PS. When
a document is printed to a PostScript printer, the contents of the XObject’s stream
replace the Do command that references the XObject. This stream is copied
without interpretation and may include PostScript comments. In any other case, the
XObject is ignored. When printing to a PostScript Level 1 printer, if the XObject
contains a Level1 key, the value of that key, which must be a stream, is used
instead of the contents of the PostScript XObject’s stream.

The PostScript fragment may use Type 1 and TrueType fonts listed in the current
Resources dictionary. It may not use Type 3 fonts.

PDF 1.3

PDF 1.3

PDF 1.1

7: Common Data Structures March 11, 1999

258 Adobe Systems Inc.

Note PostScript XObjects should be used with extreme caution and only to obtain results
not otherwise possible in PDF. Inappropriate use of PostScript XObjects can cause
PDF files to print incorrectly.

Table 7.38 PostScript XObject attributes

Key Type Semantics

Type name Object type. Always XObject.

Subtype name (Required) XObject subtype. Always PS.

Level1 stream (Optional) A contents stream to be used in place of the XObject’s stream when
printing to a Level 1 PostScript printer.

The PostScript XObject is not compatible with 1.0 viewers.

7.13.9 OPI dictionary

In PDF 1.2, Image and Form XObjects can contain an OPI key. OPI stands for
Open Prepress Interface. It is a mechanism for representing a placeholder for an
image, typically a high-resolution image. The placeholder often includes a low-
resolution image or proxy, which might be a downsampled version of the high-
resolution image. Before a document containing OPI references is printed, it
typically passes through a filter known as an OPI server, which replaces the
proxies with the high-resolution images.

The workflow in a prepress environment often involves several applications in
areas such as graphic design, photo manipulation, word processing, page layout,
and document construction. As pieces of the final document are moved from one
application to another, it is useful to maintain an “indirect reference” or external
pointer to the data of high-resolution images; they can be quite large, many times
the size of the rest of the document.

The Open Prepress Interface, originally developed by Aldus Corporation, is
represented in PostScript language programs by a set of comments surrounding the
PostScript code for the proxy. In PDF, the proxy may be represented as an Image
XObject if the proxy is, in fact, a single image, with no changes in the graphics
state; otherwise the proxy, which can be any set of graphic objects such as a gray
rectangle with text or nothing at all, is represented as a Form XObject. (For OPI
2.0, a Form is always used, because there will be changes in the graphics state.) In
either case, the information that corresponds to the OPI comments in a PostScript
file is stored in the XObject’s dictionary under the name OPI.

PDF 1.2

�

March 11, 1999 7.13.9

7: Common Data Structures 259

Table 7.39 OPI dictionary

Key Type Semantics

version dictionary There are two standard versions of OPI, the older version 1.3 and the newer
version 2.0, which is replacing 1.3. While they serve the same purpose, they
represent information in different ways; an OPI dictionary contains one of the keys
1.3 or 2.0. The value of each key is a version-specific dictionary containing the
OPI information, described below.

Note The keys in an OPI dictionary are name objects, as all keys are in PDF
dictionaries. An OPI dictionary would be written thus:

<< OPI 1.3 dictionary
/1.3 20 0 R

>>

<< OPI 2.0 dictionary
/2.0 27 0 R

>>

The following two tables describe the version-specific OPI dictionaries. For details
on the meaning of these keys and the effect they have on OPI servers, refer to the
Open Prepress Interface Specifications for both versions 1.3 and 2.0. These are
available on Adobe’s Web site. The tables show the relevant OPI comment for each
attribute.

Table 7.40 OPI 1.3 dictionary

Key Type Semantics and OPI comment

Type name Object type. Always OPI.

Version number (Required) The version of OPI used in this dictionary. Must be the number 1.3 (not
the name 1.3, as in the OPI dictionary).

F (File) File specification (Required) An external file containing image data. In PDF 1.3, the file
specification must be a dictionary (strings are not permitted), and the dictionary
must have a Type key with the value Filespec. (%ALDImageFilename)

CropRect array (Required) An array of integers [left top right bottom] specifying the portion of
the external image that is to be included. (%ALDImageCropRect)

Color array (Optional) An array of 4 numbers and a string, [C M Y K colorname]. Default
is [0 0 0 1 (Black)]. (%ALDImageColor)

ColorType name (Optional) Must be one of Spot, Process, or Separation. Default is Spot.
(%ALDImageColorType)

Comments Text (Optional) Documentation. (%ALDObjectComments)

�

PDF 1.3

7: Common Data Structures March 11, 1999

260 Adobe Systems Inc.

CropFixed array (Optional) An array of real numbers [left top right bottom] with the same
semantics as CropRect. (%ALDImageCropFixed)

GrayMap array (Optional) An array of 2n 16-bit numbers, where n is the number of bits per
sample (1, 4, or 8), recording changes made to the brightness or contrast of the
image. (%ALDImageGrayMap)

ID string (Optional) An identifier for TIFF images in the external file. (%ALDImageID)

ImageType array (Optional) An array of 2 integers, [samplesPerPixel bitsPerSample].
(%ALDImageType)

Overprint boolean (Optional) Default is false. (%ALDImageOverprint)

Position array (Required) An array [llx lly ulx uly urx ury lrx lry] of user-space coordinates, for the
placement of the image on the page. (%ALDImagePosition)

Resolution array (Optional) An array [horizRes vertRes] specifying the resolution of the image,
in samples per inch. (%ALDImageResolution)

Size array (Required) An array of 2 integers, [pixelsWide pixelsHigh].
(%ALDImageDimensions)

Tags array (Optional) An array of pairs [tagNumber tagName …] describing the TIFF
ASCII tag values in the external file. Each tagNumber is an integer; each
tagName is a string. (%ALDImageASCIITag<NNN>)

Tint number (Optional) Default is 1. (%ALDImageTint)

Transparency boolean (Optional) Default is true. (%ALDImageTransparency)

Table 7.41 OPI 2.0 dictionary

Key Type Semantics

Type name Object type. Always OPI.

Version number (Required) The version of OPI used in this dictionary. Must be the number 2 or 2.0
(not the name 2.0, as in the OPI dictionary).

F (File) File specification (Required) An external file containing image data. (%%ImageFileName)

Size array (Optional; see note) An array of two positive numbers, [width height],
specifying the width and height of the proxy image. (%%ImageDimensions)

CropRect array (Optional; see note) An array of numbers [left top right bottom] specifying the
portion of the external image that is to be included. It is required that 0 ≤ left <
right and that 0 ≤ top < bottom. (Note that in this coordinate space, the positive y
axis extends vertically downward. Hence the requirement that top < bottom.)
(%%ImageCropRect)

�

�

March 11, 1999 7.13.10

7: Common Data Structures 261

Note Size and CropRect should both be specified, or both omitted. If they are
specified, it is required that right ≤ width and that bottom ≤ height.

IncludedImageDimensions
array (Optional) An array of two nonnegative integers, [width height].

(%%IncludedImageDimensions)

IncludedImageQuality
number (Optional) Legal values are 1, 2, and 3. (%%IncludedImageQuality)

Inks name or array (Optional) Legal values include:

/full_color

/registration

[/monochrome name tint name tint …]

where each name is a string and each tint is a real number. (%%ImageInks)

MainImage string (Optional) (%%MainImage)

Overprint boolean (Optional) Default is false. (%%ImageOverprint)

Tags array (Optional) An array of pairs [tagNumber tagName …], describing the TIFF
ASCII tag values in the external file. Each tagNumber is an integer; each
tagName is be either a string or an array of strings. (%%TIFFASCIITag)

7.13.10 Page-Piece Dictionary

In PDF 1.3, Form XObjects and Page objects can contain a PieceInfo key. The
PieceInfo is a mechanism for associating an application and its private data with
the Form or Page. This enables the Form or Page to retain all of the information
that the application associates with the content. An example of such application
data is the Layer information of Adobe Photoshop®.

Note A Form XObject drawn on a page with a Do operator inherits the graphics state
that exists at the point of the Do. A Form XObject that is a Page-Piece should, in
its contents stream, explicitly set all of the graphics state that it requires unless its
semantics specifically include the notion of inheriting graphic state from the
environment.

Table 7.42 PieceInfo dictionary

Key Type Semantics

<application name>
dictionary An Application Data dictionary. See Table 7.43.

PDF 1.3

7: Common Data Structures March 11, 1999

262 Adobe Systems Inc.

There may be several key-value pairs in the PieceInfo dictionary. Each is keyed
by a distinct application name that identifies the type of the data in the Application
Data Dictionary.

Although we call the identifier an application name, it may be the name of an
application or the name of a popular data-type understood by a family of
applications.

Table 7.43 Application Data dictionary

Key Type Semantics

LastModified Date (Required) Time of the most recent alteration of the Form XObject or Page by this
application.

Private
any, typically dictionary (Optional) Private data values.

The LastModified value indicates when this application last altered the Form or
Page. If there are several Application Data dictionaries in the PieceInfo, their
LastModified dates can be compared with the LastModified date of the Form
or Page to ascertain which Application Data corresponds to the current Form or
Page.

If two or more Application Data dictionaries have a LastModified date that
agrees with the Form or Page, then all of them correspond to the current content.
This can be used to identify extensions of data formats. For example, if the data
format PictureEdit2 is extended and becomes PictureEdit3, and it is a pure
extension, then by storing two Application Data dictionaries, one keyed as
PictureEdit2 and one as PictureEdit3additions, the Form or Page can be
correctly processed either by an application looking for PictureEdit2 data or by
one looking for PictureEdit3 data as the pairing {PictureEdit2,
PictureEdit3additions}.

Note Some platforms on which editing occurs may only have an approximate value for
the time. Others may not understand about time zones. This is why we arrange
things so that LastModified dates need to be compared only for equality.

The Private value may be any data type. Typically it will be a dictionary. It
contains all of the application’s private data: the data, other than the PDF page or
Form content, that represents the page-piece to the application.

7.14 Functions

PDF is not a programming language; a PDF file is not a program. However, PDF
does provide several types of function objects that represent parameterized classes
of functions, including mathematical formulas and sampled representations with

PDF 1.2

March 11, 1999 7.13.10

7: Common Data Structures 263

arbitrary resolution. Functions are used in two areas: device-dependent
rasterization information for high-quality printing (halftoning and transfer
functions), and color specification for smooth shading.

Each class of function has a function type that specifies the representation of the
function, the set of attributes that parameterize that representation, and the
additional data needed by that representation.

Functions in PDF represent static, self-contained numerical transformations. A
function to add two numbers has two input values and one output value:

Similarly, a function that computes the average of two numbers and the square root
of their product could be viewed as a function of two input values and two output
values:

In general, a function can take any number (m) of input values and produce any
number (n) of output values:

In PDF functions, all the input values and all the output values are numbers, and
functions have no side effects.

Each function definition includes a domain, the set of legal values for the input.
Some types of function also define a range, the set of legal values for the output.
Values passed to the function are clipped to the domain, and values produced by
the function are clipped to the range. For example, suppose the function
f(x) = x + 2 is defined with a domain of [−1 1]. If the function is called with the
value 6, that value is replaced with the nearest value in the defined domain, 1,
before the function is evaluated, and the result is therefore 3. Similarly, if the
function f(x0, x1) = 3 × x0 + x1 is defined with a range of [0 100], and if the values
−6 and 4 are passed to the function (and are within its domain), then the value
produced by the function, −14, is replaced with 0, the nearest value in the defined
range.

Some function objects are represented as dictionaries; others are represented as
streams. Since every stream includes a dictionary, every function has a dictionary.

Four types of functions are available, as indicated by the dictionary’s
FunctionType entry:

• A sampled function (type 0) uses a table of sample values to represent the
function. Various techniques are used to interpolate values between the sample
values.

• An exponential interpolation function (type 2) defines a set of coefficients for
an exponential function.

f x0 x1,() x0 x1+=

f x0 x1,()
x0 x1+

2
---------------- x0 x1×,=

f x0 … xm 1–, ,() y0 … yn 1–, ,=

7: Common Data Structures March 11, 1999

264 Adobe Systems Inc.

• A stitching function (type 3) is a combination of other functions, partitioned
across a domain.

• A “PostScript calculator” function (type 4) uses a few operators from the
PostScript language to describe an arithmetic expression.

All function dictionaries share the following attributes:

Table 7.44 Attributes shared by all functions

Key Type Semantics

FunctionType integer (Required) The function type:

0 Sampled function
2 Exponential interpolation function
3 Stitching function
4 PostScript calculator function

Domain array (Required) An array of 2 × m numbers, where m is the number of input values. For
each i from 0 to m − 1, Domain2i must be less than or equal to Domain2i+1, and

the ith input value, xi, must lie in the interval Domain2i ≤ xi ≤ Domain2i+1. Input

values outside the declared domain are clipped to the nearest boundary value.

Range array (Required for type 0 functions, optional otherwise; see below) An array of 2 × n
numbers, where n is the number of output values. For each j from 0 to n − 1,
Range2j must be less than or equal to Range2j+1, and the jth output value, yj,
must lie in the interval Range2j ≤ yj ≤ Range2j+1. Output values outside the
declared range are clipped to the nearest boundary value. If the Range entry is
absent, no clipping is done.

In addition, each type of function dictionary must include attributes appropriate to
the particular function type. The number of output values can usually be inferred
from other attributes of the function; if not (as is always the case for type 0
functions), the Range attribute is required. The dimensionality of the function
implied by the Domain and Range attributes must be consistent with the
dimensionality implied by other attributes of the function.

7.14.1 Sampled functions (Function Type 0)

Type 0 function dictionaries use a sequence of sample values to provide an
approximation for functions whose domains and ranges are bounded. The samples
are organized as an m-dimensional table in which each entry has n components.

Sampled functions are highly general and offer reasonably accurate
representations of arbitrary analytic functions at low expense. For example, a 1-
input sinusoidal function can be represented over the range [0 180] with an average

March 11, 1999 7.14.1

7: Common Data Structures 265

error of only 1%, using just ten samples and linear interpolation. Two-input
functions require significantly more samples, but usually not a prohibitive number,
so long as the function does not have high frequency variations.

The dimensionality of a sampled function is restricted only by implementation
limits. However, the number of samples required to represent high-dimensionality
functions multiplies rapidly unless the sampling resolution is very low. Also, the
process of multilinear interpolation becomes computationally intensive if m is
greater than 2. The multidimensional spline interpolation is even more
computationally intensive.

A function of Type 0 includes the following attributes:

Table 7.45 Attributes of sampled functions (FunctionType 0)

Key Type Semantics

FunctionType integer (Required) Specifies a sampled function. Always 0.

Domain array (Required) As in Table 7.44.

Range array (Required) As in Table 7.44.

Size array (Required) An array of m positive integers specifying the number of samples in
each input dimension of the sample table.

BitsPerSample integer (Required) Specifies the number of bits used to represent each sample value.
Limited to 1, 2, 4, 8, 12, 16, 24, or 32.

Order integer (Optional; default is 1) The order of interpolation between samples. Allowed
values are 1 or 3, specifying linear or cubic-spline interpolation, respectively.

Encode array (Optional) An array of 2 × m numbers specifying the linear mapping of input
values into the domain of the function’s sample table. Default value:
[0 (Size0 1) 0 (Size1 1) …].

Decode array (Optional) An array of 2 × n numbers specifying the linear mapping of sample
values into the range of values appropriate for the function’s output values. Default
value: Same as the value of Range.

other stream attributes (Optional) The sample values that specify the function are provided in a stream.
The stream’s attributes are included in the function dictionary, as appropriate. See
below for details.

The Domain, Encode, and Size attributes determine how the function’s input
variable values are mapped into the sample table. For example, if Size is [21 31],
the default Encode array is [0 20 0 30], which maps the entire domain into the
full set of sample table entries. Other values of Encode may be used.

To explain the relationship between Domain, Encode, Size, Decode, and
Range, we use the following notation:

�

7: Common Data Structures March 11, 1999

266 Adobe Systems Inc.

For a given value of x, Interpolate calculates the y value on the line defined by the
two points (xmin, ymin) and (xmax, ymax).

When a sampled function is called, each input value xi, for 0 ≤ i < m, is clipped to
the domain:

That value is encoded:

That value is clipped to the size of the sample table in that dimension:

The encoded input values are real numbers, not restricted to integers. Interpolation
is then used to determine output values from the nearest surrounding values in the
sample table. Each output value rj, for 0 ≤ j < n, is then decoded:

Finally, each decoded value is clipped to the range:

Sample data is represented as a stream of unsigned 8-bit bytes (integers in the
range 0 to 255). The bytes constitute a continuous bit stream, with the high-order
bit of each byte first. Each sample value is represented as a sequence of
BitsPerSample bits. Successive values are adjacent in the bit stream; there is no
padding at byte boundaries.

For a function with multidimensional input (more than one input variable), the
sample values in the first dimension vary fastest, and the values in the last
dimension vary slowest. For example, for a function f(a, b, c), where a, b, and c
vary from 0 to 9 in steps of 1, the sample values would appear in this order:
f(0, 0, 0), f(1, 0, 0), …, f(9, 0, 0), f(0, 1, 0), f(1, 1, 0), …, f(9, 1, 0), f(0, 2, 0),
f(1, 2, 0), …, f(9, 9, 0), f(0, 0, 1), f(1, 0, 1), and so on.

For a function with multidimensional output (more than one output value), the
values are stored in the same order as Range.

Example 7.27 illustrates a sampled function with 4-bit samples in an array
containing 21 columns and 31 rows. The function takes two arguments, x and y, in
the domain [1 1], and returns one value, z, in that same range.

y Interpolate x xmin xmax ymin ymax, , , ,)(x xmin–)(
ymax ymin–)(
xmax xmin–)(

------------------------------- ymin+×==

x′i min max xi Domain2i,)(Domain2i 1+,)(=

ei Interpolate x ′i Domain2i Domain2i 1+ Encode2i Encode2i 1+, , , ,)(=

e′i min max ei 0,)(Sizei 1–,)(=

r ′j Interpolate rj 0 2BitsPerSample 1– Decode2j Decode2j 1+, , , ,)(=

yj min max r′j Range2j,)(Range2j 1+,)(=

March 11, 1999 7.14.2

7: Common Data Structures 267

Example 7.27 Sampled function

14 0 obj

<<

/FunctionType 0

/Domain [–1 1 –1 1]

/Size [21 31]

/Encode [0 20 0 30]

/BitsPerSample 4

/Range [–1 1]

/Decode [–1 1]

/Length …

/Filter …

>>

stream

… 651 sample values …
endstream

endobj

The x argument is linearly transformed by the encoding to the domain [0 20] and
the y argument to the domain [0 30]. Using bilinear interpolation between sample
points, the function computes a value for z, which (because BitsPerSample is 4)
will be in the range [0 15], and the decoding transforms z to a number in the range
[-1 1] for the result. The sample array is stored in a string of 326 bytes, calculated
as follows (rounded up):

326 bytes = 31 rows × 21 samples/row × 4 bits/sample ÷ 8 bits/byte

The first byte contains the sample for the point (1, 1) in the high-order 4 bits and
the sample for the point (0.9, 1) in the low-order 4 bits.

The Decode array can be used creatively to increase the accuracy of encoded
samples corresponding to certain values in the range. For example, if the desired
range of the function is [-1 1] and BitsPerSample is 4, the usual value of
Decode would be [-1 1] and the sample values would be integers in the interval
[0 15] (as shown in Figure 7.6). But if these values were used, the midpoint of the
range, 0, would not be represented exactly by any sample value, since it would fall
halfway between 7 and 8. On the other hand, if the Decode array were
[-1 1.1429] (1.1429 ≅ 16/14) and the sample values supplied were in the
interval [0 14], then the desired effective range of [-1 1] would be achieved, and
the range value 0 would be represented by the sample value 7.

7.14.2 Exponential Interpolation Function (FunctionType 2)

Type 2 functions include a set of parameters that define an exponential
interpolation of one input value and n output values:

In addition to the entries listed in Table 7.44, a type 2 function dictionary includes
the entries listed in Table 7.46.

PDF 1.3

f x() y0 … yn 1–, ,=

7: Common Data Structures March 11, 1999

268 Adobe Systems Inc.

Table 7.46 Entries specific to a type 2 function dictionary

Key Type Semantics

FunctionType integer (Required) Must be 2, for an exponential interpolation function.

C0 array (Optional) An array of n numbers defining the function result when x = 0 (hence
the “0” in the name). Default value: [0].

C1 array (Optional) An array of n numbers defining the function result when x = 1 (hence
the “1” in the name). Default value: [1].

N number (Required) The interpolation exponent. Each input value x will return n values,

given by yj = C0j + xN × (C1j − C0j), for 0 ≤ j < n.

Values of Domain must constrain x in such a way that if N is not an integer, all
values of x must be greater than or equal to 0, and if N is negative, no value of x
may be 0.

For typical use as an interpolation function, Domain will be declared as [0 1],
and N will be a number greater than 0. The Range parameter is optional and can
be used to clip the output to a desired range.

Note that when N is 1, the function performs a linear interpolation between C0
and C1. This can also be expressed as a sampled function (FunctionType 0).

Figure 7.6 Mapping with the Decode array

1

-1

+1

7 8 15
0

1 7 8 14

-1

+1

0

samples

samples

ra
ng

e
ra

ng
e

/Decode [-1 1]

/Decode [-1 1.1429]

March 11, 1999 7.14.3

7: Common Data Structures 269

7.14.3 1-Input Stitching Function (FunctionType 3)

Type 3 functions define a “stitching” of the subdomains of several 1-input
functions to produce a single new 1-input function. Since the resulting stitching
function is a 1-input function, the domain is given by a two-element array,
[Domain0 Domain1]. This domain is partitioned into k subdomains, as
indicated by the dictionary’s Bounds array, which is an array of k − 1 numbers
that obey the following relationships (with exceptions as noted below):

The Bounds array describes a series of half-open intervals, closed on the left,
open on the right (except the last, which is closed on the right as well). The value
of the Functions entry is an array of k functions. The first function applies to x
values in the first subdomain, Domain0 ≤ x < Bounds0; the second function
applies to x values in the second subdomain, Bounds0 ≤ x < Bounds1; and so
on. The last function applies to x values in the last subdomain, which includes the
upper bound: Boundsk−2 ≤ x ≤ Domain1.

Note The Bounds array may contain equal elements, but a pair of equal bounds
describes an interval containing no points and is therefore ignored.

The Encode array contains 2 × k numbers. A value x from the ith subdomain is
encoded as follows:

for 0 ≤ i < k. In this equation, Bounds−1 means Domain0, and Boundsk−1
means Domain1. If the last bound, Boundsk−2, is equal to Domain1, then x’ is
defined to be Encode2i.

The value of k may be 1, in which case the Bounds array is empty and the single
item in the Functions array applies to all x values, Domain0 ≤ x ≤ Domain1.

In addition to the entries listed in Table 7.22, a type 3 function dictionary includes
the entries listed in Table 7.47.

Table 7.47 Entries specific to a type 3 function dictionary

Key Type Semantics

FunctionType integer (Required) Must be 3, for a stitching function.

Functions array (Required) An array of k 1-input functions making up the stitching function. The
output dimensionality of all functions must be the same, and compatible with the
value of Range if Range is present.

Bounds array (Required) An array of k − 1 numbers that, in combination with Domain, define
the intervals to which each function from the Functions array applies. Bounds
elements must be in order of increasing magnitude, and each value must be within
the value of Domain.

PDF 1.3

Domain0 Bounds0 Bounds1 … Boundsk 2– Domain1≤ ≤ ≤ ≤ ≤

x′ Interpolate x Boundsi 1– Boundsi
· Encode2i Encode2i 1+, , , ,)(=

7: Common Data Structures March 11, 1999

270 Adobe Systems Inc.

Encode array (Required) An array of 2 × k numbers that, taken in pairs, map each subset of the
domain defined by Domain and the Bounds array to the domain of the
corresponding function.

Domain must be of size 2 (that is, m = 1). Note that Domain0 must be strictly
less than Domain1 unless k = 1.

The stitching function is designed to make it easy to combine several functions to
be used within one shading pattern, over different parts of the shading’s domain.
The same effect could be achieved by creating separate shading dictionaries for
each of the functions, with adjacent domains. However, since each shading would
have similar parameters, and because the overall effect is one shading, it is more
convenient to have a single shading with multiple function definitions.

Also, FunctionType 3 provides a general mechanism for inverting the domains
of 1-input functions. For example, consider a function f with a Domain of
[0 1], and a stitching function g with a Domain of [0 1], a Functions array
containing f, and an Encode array of [1 0]. In effect, g(x) = f(1 – x).

7.14.4 PostScript Calculator Function (FunctionType 4)

A function of Type 4 is represented as a stream. The contents of the stream is a
procedure written with a very small subset of the PostScript language, defined
below. While the semantics are those of the corresponding PostScript operators, a
PostScript interpreter is not required.

The language contains expressions involving only integers, real numbers, and
booleans. There are also procedures, but these are treated as part of the syntax, not
as objects. There are no composite data structures such as strings or arrays. In
particular, procedures are not arrays, as they are in PostScript, and the operand
stack is merely the source of input values (the operands) and destination for output
values (the results). There are no variables and no names.

Table 7.48 Operators

arithmetic operators abs add and atan bitshift ceiling cos cvi cvr div exp floor idiv ln log
mod mul neg not or round sin sqrt sub truncate xor

boolean constants true false

boolean operators and eq ge gt if ifelse le lt ne not or

stack operators copy dup exch index pop roll

The syntax includes the use of curly braces to define procedures. The only
operators that apply to procedures are if and ifelse. Also, the entire definition is
written as a procedure.

The syntax of the if and ifelse operators is the same as in PostScript:

PDF 1.3

March 11, 1999 7.14.4

7: Common Data Structures 271

boolean { expression } if

boolean { expression } { expression } ifelse

Example 7.28 A halftone spot function

10 0 obj
<< /FunctionType 4
/Domain [-1 1 -1 1]
/Range [-1 1]
/Length 50
>>
stream
{ 360 mul sin 2 div exch 360 mul sin 2 div add }
endstream
endobj

Note In Type 4 functions, the copy operator is defined only to operate on a non-
negative integer, duplicating that number of items on the stack. The other use of
copy in the PostScript language, copying elements between composite objects, is
not defined for Type 4 functions.

The Domain and Range keys are required. The input variables constitute the
initial operand stack; the items remaining on the operand stack after execution of
the function are the output variables; it is an error for the number of remaining
operands to differ from the number of output variables specified by the Range, or
for any of them to be objects other than numbers.

Implementations of Type 4 functions must provide a stack of at least 100 in length.
No implementation is required to provide a larger stack, and it is an error to
overflow the stack.

Errors in Type 4 functions

The code that reads a Type 4 function (the “parser”) must detect and report
syntactic errors. It may also be able to detect some errors that will occur when the
function is used, although this is not always possible. Any errors detected by the
parser are considered to be errors in the PDF file itself and are handled like other
errors in the file.

The code that executes a Type 4 function (the “interpreter”) must detect and report
errors. PDF does not define a representation for the errors; those details are
provided by the application that processes the PDF file. The following types of
errors can occur:

• stack overflow

• stack underflow

• type error (e.g., applying not to a real number)

• range error (e.g., applying sqrt to a negative number)

7: Common Data Structures March 11, 1999

272 Adobe Systems Inc.

• undefined result (e.g., dividing by zero)

Other types of errors may also be detected.

Usage

Like all functions in PDF, Type 4 functions operate on numerical data. While any
function can be sampled (Type 0), and others may be described with exponential
functions (Type 2), Type 4 offers greater flexibility, and potentially greater
accuracy, through a small programming language. For example, a tint-
transformation function for a hexachrome (6-component) DeviceN color space,
with an alternate color space of DeviceCMYK, requires a 6-in, 4-out function. If
such a function were sampled with m values for each input variable, the number of
samples, 4 m6, could be prohibitively large. In practice, such functions are often
written as simple, short PostScript functions.

Type 4 functions also make it possible to include a wide variety of halftone spot
functions without the loss of accuracy that comes from sampling, and without
adding to the list of predefined spot functions (see Section 7.16.3, “Predefined spot
functions). All of the predefined spot functions can be written as Type 4 functions.
(Some spot functions are written using the repeat operator, which is not
supported in Type 4, but they can easily be rewritten without it. Example 7.28
shows how the DoubleDot spot function could be written as a Type 4 function.)

7.15 Extended graphics states

A Resources dictionary may include an ExtGState key (“extended graphics
state”), whose value is a dictionary that specifies a set of parameters in the graphics
state, as shown in Table 7.49. Other parameters may be added in the future. Note
that many of these parameters have device-dependent effects. They should not be
used in a page description that is intended to be device-independent.

To set these parameters in the graphics state, use the gs operator; see Section
8.4.7, “Generic Graphics State operator.” These parameters are also implicitly set
in Type 2 patterns (see page 293).

Table 7.49 ExtGState attributes

Key Type Semantics

Type name Object type. Always ExtGState.

SA boolean (Optional) Stroke adjustment.

OP boolean (Optional) Overprint for stroke. For devices that support Separation and
DeviceN color spaces, this controls whether marks made on the “color planes”
specified by the colorants remove (“knock out”) marks in the corresponding
positions in the unselected color planes. If overprint is false, they do; if it is true,
they do not. The default is false.

PDF 1.2

March 11, 1999 7.14.4

7: Common Data Structures 273

op boolean (Optional) Overprint for fill. If this key is omitted, and the OP key is supplied,
then the OP key specifies overprinting for fill as well as stroke.

OPM integer (Optional) The overprint mode. If OPM is 1, and overprinting is on (see op and
OP, above), and the current color space is DeviceCMYK, then a color component
value of 0 indicates that that component overprints the other colorants; otherwise it
knocks out the other planes. For example, .2 0 0 .9 k has the same effect as
.2 .9 scn in a DeviceN color space whose colorants are [/Cyan /Black],
since the magenta and yellow components are zero. The default value of OPM is 0.

BG function (Optional) Black-generation function, which maps the interval [0 1] to the interval
[0 1].

BG2 function or name (Optional) This is the same as BG, but the value maybe also be the name Default,
which specifies the black-generation function that was in effect at the start of the
page. If both BG amd BG2 are specified, BG2 takes precedence.

UCR function (Optional) Undercolor removal function, which maps the interval [0 1] to [-1 1].

UCR2 function or name (Optional) This is the same as UCR, but the value maybe also be the name
Default, which specifies the undercolor removal function that was in effect at the
start of the page. If both UCR and UCR2 are specified, UCR2 takes precedence.

TR
function, array, or name (Optional) Transfer function, which maps the interval [0 1] to [0 1]. The value is

either a single function7 or an array of four functions8. The name Identity may be
used to represent the identity function. (See Example 7.30 on page 282.)

TR2
function, array, or name (Optional) This is the same as TR, but the value maybe also be the name Default,

which specifies the transfer function that was in effect at the start of the page. If
both TR and TR2 are specified, TR2 takes precedence.

HT halftone or name (Optional) The halftone dictionary or stream; see Section 7.16, “Halftones.”
Specifying the name Default has the effect of resetting the halftone parameter to
its default value.

HTP array (Optional) Halftone phase, specified as an array of two integers. (Used by viewers
that are based on Display PostScript)

SM number (Optional) Smoothness, specified as a number in the range 0 to 1. This parameter
controls the quality of smoothly shaded output, and thus indirectly controls the
rendering performance. See Section 8.4.15 on page 329.

Font array (Optional) An array [font size]. font is an indirect reference to a font See Section
7.7 on page 198. size is a number expressed in text-space units.

LW (Line Width) number (Optional) The line width. See the description of the w operator on page 326.

LC (Line Cap) integer (Optional) The line cap. See the description of the J operator on page 324.

7. This corresponds to the PostScript settransfer operator.
8. This correspond to the PostScript setcolortransfer operator.

PDF 1.3

PDF 1.3

PDF 1.3PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

7: Common Data Structures March 11, 1999

274 Adobe Systems Inc.

LJ (Line Join) integer (Optional) The line join. See the description of the j operator on page 326.

ML (Miter Limit) number (Optional) The miter limit. See the description of the M operator on page 327.

D (Dash Pattern) array (Optional) An array [dashesAndGaps phase]. dashesAndGaps is itself an
array. See the description of the d operator on page 325.

FL (Flatness) number (Optional) The flatness. See the description of the i operator on page 323.

RI (Rendering Intent)name (Optional) The name of the rendering intent. See the description of the ri operator
on page 333.

Example 7.29 shows two ExtGStates. In the first one, stroke adjustment is on, and
it includes a transfer function that inverts its value, . In the second one,
overprint is turned off, and it includes a parabolic transfer function,

, with a sample of 21 values. The domain of the transfer function,
[0 1], is mapped to [0 20], and the range of the sample values, [0 255], is mapped
to the range of the transfer function, [0 1].

Example 7.29 ExtGStates

2 0 obj

<<

/Type /Page

/Parent 6 0 R

/Resources 33 0 R

/Contents 3 0 R

>>

endobj

33 0 obj

<<

/ProcSet [/PDF /Text]

/Font << /F1 5 0 R >>

/ExtGState << /GS1 10 0 R /GS2 12 0 R>>

>>

endobj

10 0 obj

<< /Type /ExtGState /SA true /TR 11 0 R >>

endobj

11 0 obj

<< /Size 2 /Length 7 /Filter /ASCIIHexDecode >>

stream

01 00>

endstream

endobj

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

PDF 1.3

f x() 1 x–=

f x() 2x 1–()2
=

March 11, 1999 7.16.1

7: Common Data Structures 275

12 0 obj

<< /Type /ExtGState /OP false /TR 14 0 R >>

endobj

14 0 obj

<< /Size 21 /Length 63 /Filter /ASCIIHexDecode >>

stream

FF CE A3 7C 5B 3F 28 16 0A 02 00 02 0A 16 28 3F 5B

7C A3 CE FF>

endstream

endobj

7.16 Halftones

PDF supports halftones of type 1, 5, 6, 10, and 16, corresponding to those same
types in the PostScript language. A halftone is represented by a dictionary or a
stream, depending on the type. The halftone dictionary (or the stream’s dictionary)
contains the same key-value pairs as a PostScript language halftone dictionary (see
Section 7.4 of the PostScript Language Reference Manual, Third Edition [1]), with
the following exceptions:

• The dictionary contains a Type key.

• Spot functions and transfer functions are represented by function objects.

• Threshold arrays are specified as streams.

• In Type 5 halftone dictionaries, the keys for colorants must be names; they may
not be strings.

7.16.1 HalftoneName

A halftone dictionary has an optional key, HalftoneName, that is the name of the
halftone. In PDF 1.3, if the HalftoneName key is specified, then all the other
keys, including HalftoneType, are optional. At rendering time, if the device has a
halftone with that name, that halftone is used. Otherwise, if the other keys are
specified, such as HalftoneType, that halftone is used. Otherwise, the default
halftone is used.

Some printer manufacturers supply halftones with proprietary threshold arrays, so
it is unlikely that such halftones would be defined, with their threshold arrays, in a
PDF file. However, by using the name of the halftone, a PDF file can refer to that
halftone.

PDF 1.2

PDF 1.3

7: Common Data Structures March 11, 1999

276 Adobe Systems Inc.

7.16.2 Type 1 halftones

Table 7.50 Entries in a Type 1 halftone dictionary

Key Type Semantics

Type name Object type. Always Halftone.

HalftoneType number (Required) Must be 1.

HalftoneName string (Optional) If present, this supplies the name of the halftone dictionary.

Frequency number (Required)

Angle number (Required)

AccurateScreens
boolean (Optional; the default is false)

SpotFunction
function or name (Required) The spot function, which maps points in “spot space” (the square

whose corners are at ±1 in x and y) to values in the interval [-1 1]. SpotFunction
is represented as a function with a 2-dimensional array of sample values; or it may
be the name of a predefined spot function (see 7.16.3).

TransferFunction
function (Optional) The transfer function, which maps the interval [0 1] to the interval [0 1].

If present, this overrides any transfer function specified by the TR key in the
ExtGState dictionary. This is required in a Type 1 halftone dictionary that is used
as an element of a Type 5 halftone dictionary for a non-primary color component.
The name Identity may be used to indicate the identity function.

7.16.3 Predefined spot functions

Table 7.51 shows the predefined spot-function names. The description shows the
function corresponding to the name, as well as the PostScript code. The image on
the left shows the relative values of the function in spot space, indicating
approximately the order in which pixels are whitened in the halftone cell, darker
points corresponding to pixels that are whitened later than lighter points.

�

March 11, 1999 7.16.3

7: Common Data Structures 277

Table 7.51 Predefined spot functions

Name Definition

Round {abs exch abs 2 copy add 1 le
{ dup mul exch dup mul add 1 exch sub }
{ 1 sub dup mul exch 1 sub dup mul add 1 sub }

ifelse }

if |x| + |y| ≤ 1 then 1 – (x2 + y2) else (|x| – 1)2 + (|y| – 1)2 – 1

Diamond { abs exch abs 2 copy add .75 le
{ dup mul exch dup mul add 1 exch sub }
{ 2 copy add 1.23 le

{ .85 mul add 1 exch sub }
{ 1 sub dup mul exch 1 sub dup mul add 1
sub }

ifelse }
ifelse }

if |x| + |y| ≤ 0.75 then 1 – (x2 + y2)
else if |x| + |y| ≤ 1.23 then 1 – (0.85 |x| + |y|)

else (|x| – 1)2 + (|y| – 1)2 – 1

Ellipse { abs exch abs 2 copy 3 mul exch 4 mul add 3 sub
dup 0 lt

{ pop dup mul exch .75 div dup mul add 4 div 1
exch sub }

{ dup 1 gt
{ pop 1 exch sub dup mul exch 1 exch sub

.75 div dup mul add 4 div 1 sub }
{ .5 exch sub exch pop exch pop }
ifelse }

ifelse }

let

if w < 0 then

else if w > 1 then

else 0.5 – w

w 4 x 3 y 3–+=

1
x

2 y
0.75
---------- 

  2
+

4
------------------------------–

1 x–()2
1 y

0.75
----------– 

  2
+

4
-- 1–

7: Common Data Structures March 11, 1999

278 Adobe Systems Inc.

EllipseA { dup mul .9 mul exch dup mul add 1 exch sub }

InvertedEllipseA { dup mul .9 mul exch dup mul add 1 sub }

EllipseB { dup 5 mul 8 div mul exch dup mul exch add sqrt
1 exch sub }

EllipseC { dup mul exch dup mul .9 mul add 1 exch sub }

InvertedEllipseC { dup mul exch dup mul .9 mul add 1 sub }

Table 7.51 Predefined spot functions

Name Definition

1 x2 0.9y2+()–

x2 0.9y2 1–+

1 x2 5
8
--- y2+–

1 0.9x2 y2+()–

0.9x2 y2 1–+

March 11, 1999 7.16.3

7: Common Data Structures 279

Line { exch pop abs neg }

LineX { pop }

x

LineY { exch pop }

y

Square { abs exch abs 2 copy lt { exch } if pop neg }

Cross { abs exch abs 2 copy gt { exch } if pop neg }

Table 7.51 Predefined spot functions

Name Definition

y–

max x y,()–

min x y,()–

7: Common Data Structures March 11, 1999

280 Adobe Systems Inc.

Rhomboid { abs exch abs 0.9 mul add 2 div }

DoubleDot { 2 {360 mul sin 2 div exch } repeat add }

InvertedDoubleDot { 2 {360 mul sin 2 div exch } repeat add neg }

SimpleDot { dup mul exch dup mul add 1 exch sub }

InvertedSimpleDot { dup mul exch dup mul add 1 sub }

Table 7.51 Predefined spot functions

Name Definition

0.9 x y+
2

360x()sin
2

------------------------ 360y()sin
2

------------------------+

360x()sin
2

------------------------ 360y()sin
2

------------------------+ 
 –

1 x2 y2+()–

x2 y2 1–+

March 11, 1999 7.16.3

7: Common Data Structures 281

CosineDot { 180 mul cos exch 180 mul cos add 2 div }

Double { exch 2 div exch 2 { 360 mul sin 2 div exch }
repeat add }

InvertedDouble { exch 2 div exch 2 { 360 mul sin 2 div exch }
repeat add neg }

Table 7.51 Predefined spot functions

Name Definition

180x()cos 180y()cos+
2

--

360
x
2
--- 

 sin

2
-------------------------- 360y()sin

2
------------------------+

360
x
2
--- 

 sin

2
-------------------------- 360y()sin

2
------------------------+

 
 
 
 
 

–

7: Common Data Structures March 11, 1999

282 Adobe Systems Inc.

Example 7.30 shows an ExtGState that includes a Type 1 halftone.

Example 7.30 Halftone with spot-function dictionary

28 0 obj

<<

/Type /Halftone

/HalftoneType 1

/Frequency 120

/Angle 30

/SpotFunction /CosineDot

/TransferFunction /Identity

>>

endobj

7.16.4 Type 5 halftones

Type 5 halftones allows specification of individual halftones for an arbitrary
number of color components.

Table 7.52 Entries in a Type 5 halftone dictionary

Key Type Semantics

Type name Object type. Must be Halftone.

HalftoneType number (Required) Must be 5.

HalftoneName string (Optional) If present, this supplies the name of the halftone dictionary.

separation halftone (Required, one per separation) The separation key is the name of a separation or
colorant, and the value is a halftone for that separation. The halftone must be of
type 1, 6, 10, or 16. Note that the key must be a name object; strings are not
permitted here, although they are in PostScript type 5 halftone dictionaries. (In
Example 7.31, the separation names are /Cyan, /Magenta, /Yellow,
/Black, and /Default.)

Default halftone (Required) The halftone that is to be used for any separation that does not have its
own entry. This may not be a Type 5 halftone. If there are any non-primary
separations, then the Default halftone must have a TransferFunction.

Example 7.31 shows an ExtGState dictionary that includes a Type 5 halftone
dictionary with the primary colorants for a CMYK device. In this example, the
halftone dictionaries for the colorants and for the default all use the same spot
function.

Example 7.31 Halftone dictionary for type 5

27 0 obj

<<

/Type /Halftone

March 11, 1999 7.16.4

7: Common Data Structures 283

/HalftoneType 5

/Cyan 31 0 R

/Magenta 32 0 R

/Yellow 33 0 R

/Black 34 0 R

/Default 35 0 R

>>

endobj

31 0 obj

<<

/Type /Halftone

/HalftoneType 1

/Frequency 89.827

/Angle 15

/SpotFunction /Round

/AccurateScreens true

>>

endobj

32 0 obj

<<

/Type /Halftone

/HalftoneType 1

/Frequency 89.827

/Angle 75

/SpotFunction /Round

/AccurateScreens true

>>

endobj

33 0 obj

<<

/Type /Halftone

/HalftoneType 1

/Frequency 90.714

/Angle 0

/SpotFunction /Round

/AccurateScreens true

>>

endobj

34 0 obj

<<

/Type /Halftone

/HalftoneType 1

/Frequency 89.803

/Angle 45

7: Common Data Structures March 11, 1999

284 Adobe Systems Inc.

/SpotFunction /Round

/AccurateScreens true

>>

endobj

35 0 obj

<<

/Type /Halftone

/HalftoneType 1

/Frequency 90

/Angle 45

/SpotFunction /Round

/AccurateScreens true

>>

endobj

7.16.5 Type 6 halftones

A Type 6 halftone defines a halftone screen directly by specifying a threshold array
at device resolution. The halftone is represented as a stream; the threshold values
are stored in the stream, which must contain width × height bytes. For more
details, see the PostScript Language Reference Manual, Third Edition [1]. The
attributes are stored in the stream’s dictionary.

Table 7.53 Type 6 halftone attributes

Key Type Semantics

Type name Object type. Must be Halftone.

HalftoneType number (Required) Must be 6.

HalftoneName string (Optional) If present, this specifies the name of the halftone dictionary.

Width integer (Required) Width of the threshold array, in pixels.

Height integer (Required) Height of the threshold array, in pixels.

TransferFunction
function (Optional) Transfer function, which maps the interval [0 1] to the interval [0 1]. If

present, this overrides the transfer function specified by the TR key in the
ExtGState dictionary specified by the gs operator. This is required in a Type 6
halftone dictionary that is used as an element of a Type 5 halftone dictionary for a
non-primary color component. The name Identity may be used to indicate the
identity function.

March 11, 1999 7.16.6

7: Common Data Structures 285

7.16.6 Type 10 halftones

A Type 10 halftone can be used to specify a threshold array that represents a
halftone cell with a non-zero screen angle. A Type 6 halftone can be used to
specify a threshold array representing a zero-angle halftone cell, but there is no
provision for other angles. Zero-angle halftone cells are easy to specify because
they line up nicely with scan lines and because it is not difficult to determine where
a sampled point goes. The Type 10 halftone applies a simple transformation to the
halftone cell that converts it into two squares, thus making it easier to specify non-
zero angle cells.

The halftone is represented as a stream; the threshold values are stored in the
stream. There must be Xsquare 2 + Ysquare 2 bytes in the threshold array. For
more details, see the PostScript Language Reference Manual, Third Edition [1].
The attributes are stored in the stream’s dictionary.

Table 7.54 Type 10 halftone attributes

Key Type Semantics

Type name Object type. Must be Halftone.

HalftoneType number (Required) Must be 10.

HalftoneName string (Optional) If present, this specifies the name of the halftone dictionary.

Xsquare integer (Required) Length of one side of the upper square, in pixels.

Ysquare integer (Required) Length of one side of the lower square, in pixels.

TransferFunction
function (Optional) Transfer function, which maps the interval [0 1] to the interval [0 1]. If

present, this overrides the transfer function specified by the TR key in the
ExtGState dictionary specified by the gs operator. This is required in a Type 10
halftone dictionary that is used as an element of a Type 5 halftone dictionary for a
non-primary color component. The name Identity may be used to indicate the
identity function.

7.16.7 Type 16 halftones

A Type 16 halftone dictionary defines a halftone screen directly, by specifying a
threshold array at device resolution. This is similar to a Type 6 or Type 10 halftone
dictionary, but each element of the threshold array is 16 bits wide instead of 8. This
allows the threshold array to specify 65,536 levels of color instead of 256.

The threshold array is composed of one or two rectangles. The first rectangle is
defined by Width and Height. The second rectangle, which is optional, is defined
by Width2 and Height2. If two rectangles are specified, they tile device space as
illustrated in Figure 7.7. For more details, see the PostScript Language Reference
Manual, Third Edition [1].

PDF 1.3

7: Common Data Structures March 11, 1999

286 Adobe Systems Inc.

As in Type 6 and Type 10 halftones, a Type 16 halftone is represented as a stream;
the threshold values are stored in the stream. Each value is represented as two
bytes, high-order byte first. If there is only one rectangle, then the array must
contain 2 × Width × Height bytes. If there are two rectangles, then the array must
contain (2 × Width × Height) + (2 × Width2 × Height2) bytes; the first 2 ×
Width × Height bytes define the first rectangle.

Table 7.55 Type 16 halftone attributes

Key Type Semantics

Type name Object type. Must be Halftone.

HalftoneType number (Required) Must be 16.

Width integer (Required) Width of the threshold array for the first rectangle, in pixels.

Height integer (Required) Height of the threshold array for the first rectangle, in pixels.

Width2 integer (Optional) Width of the threshold array for the second rectangle, in pixels.

Height2 integer (Optional) Height of the threshold array for the second rectangle, in pixels.

HalftoneName string (Optional) If present, this specifies the name of the halftone dictionary.

TransferFunction
function (Optional) Transfer function, which maps the interval [0 1] to the interval [0 1]. If

present, this overrides the transfer function specified by the TR key in the
ExtGState dictionary. The name Identity may be used to indicate the identity
function.

Width2

Width

H
ei

g
h

t

H
ei

g
h

t2

Figure 7.7 Type 16 halftone tiling

March 11, 1999 7.17.1

7: Common Data Structures 287

Width2 and Height2 must both be defined, or both omitted. If they are omit-
ted, then the threshold array has only one rectangle.

7.17 Patterns

There are two major types of patterns in PDF. The first type is called a tiling
pattern; the second is called a smooth shading pattern. Tiling patterns are
procedural; they include a sequence of explicit marking instructions, which are
repeated once per tile. Smooth shading patterns are declarative; they include a
description of the desired effect in terms of transitions between colors across a
certain area.

All patterns are treated as colors; a Pattern color space is installed with the cs and
CS operators just as for other color spaces, and a particular pattern is installed as
the current color with the scn and SCN operators. See Section 8.5.2, “Color
operators.”

7.17.1 The pattern matrix

Every pattern has a Matrix key whose value is a transformation matrix that maps
the pattern’s coordinate space to the default user space of the contents stream in
which the pattern appears as a resource. For example, if a pattern is used on a page,
the pattern will be listed in the Resources dictionary of that page, and the matrix
maps pattern space to the default (initial) coordinate space of the page. Subsequent
changes to the page’s transformation matrix, such as rotation and scaling, have no
effect on the pattern; it maintains its original relationship to the page. Similarly, if a
pattern is used within a Form XObject, the matrix maps pattern space to the form’s
default user space, that is, the form coordinate space at the time the form is drawn
with the Do operator. Finally, a pattern may used within another pattern. (This is
possible only if that “outer” pattern is a Type 1 pattern. A Type 2 patterns is not a
contents stream and therefore has no Resources dictionary.) The inner pattern’s
matrix indicates its relationship to the initial user space of the outer pattern.

Note PostScript allows a pattern to be used in one context but defined in another. For
example, a pattern might be defined on a page (that is, its matrix maps the pattern
space to the user space of the page) but used in a form on that page, so that its
relationship to the page is independent of each placement of the form. PDF does
not support this feature. In PDF, all patterns are local to the context in which they
are defined.

7.17.2 Tiling patterns (PatternType 1)

Like a form, a tiling pattern is a contents stream: a self-contained description of
text, graphics, or sampled images. Unlike forms, which are drawn one at a time,
patterns are replicated (“tiled”) at fixed intervals in x and y to cover the areas to be
painted.

A Type 1 Pattern is specified by a PDF stream. The additional attributes of the
stream’s dictionary are shown in the following table.

�

PDF 1.2

7: Common Data Structures March 11, 1999

288 Adobe Systems Inc.

Table 7.56 Type 1 Pattern attributes

Key Type Semantics

Type name Object type. Must be Pattern.

Resources dictionary (Required) A list of all the named resources required by the pattern. See page 195.

PatternType integer (Required) Must be 1.

PaintType integer (Required) Determines how the color of the pattern cell is to be specified. The
choices are:

1 Colored pattern. The stream itself specifies the colors used to paint the pattern cell.

2 Uncolored pattern. The stream does not specify any color information. Instead, the
entire pattern cell is painted with a separately specified color each time the pattern
is used.

TilingType integer (Required) Controls adjustments to the tiling to quantize it to the device pixel grid.
The choices are:

1 Constant spacing. Pattern cells are spaced consistently—that is, by a multiple of a
device pixel.

2 No distortion. The pattern cell is not distorted, but the spacing between pattern
cells may vary by as much as one device pixel in both x and y dimensions when the
pattern is painted. This achieves the spacing requested by XStep and YStep on
average, but not for individual pattern cells.

3 Constant spacing and faster tiling. Like TilingType 1, but with additional
distortion of the pattern cell permitted to enable a more efficient implementation.

BBox Rectangle (Required) The pattern cell bounding box, which is used to clip the pattern cell and
to determine its size for caching.

XStep number (Required) The desired horizontal spacing between pattern cells, measured in the
pattern cell coordinate system.

YStep number (Required) The desired vertical spacing between pattern cells, measured in the
pattern cell coordinate system.

Matrix array (Optional; the default is the identity matrix) A transformation matrix that maps the
pattern’s coordinate space into default user space of the contents stream in which
the pattern is defined. (See Section 7.17.1, “The pattern matrix,” for details.)

XUID array (Optional) An extended unique ID that uniquely identifies the pattern; see section
5.6.2, “Extended Unique ID Numbers,” of the PostScript Language Reference
Manual, Third Edition [1] for more details.

March 11, 1999 7.17.2

7: Common Data Structures 289

Note XStep and YStep may differ from the dimensions of the pattern cell implied by
the BBox entry. This enables tiling with irregularly shaped figures. XStep and
YStep may be either positive or negative, but not zero.

Figure 7.8 and Example 7.32 show a “bitmap pattern,” represented by a 4-by-4 cell
that contains an imagemask. The pattern is used twice, once to fill a circle and once
to fill a square. This example uses an uncolored tiling pattern with a DeviceGray
base color space, so the shade of gray is set outside the definition of the pattern,
each time the pattern is used.

The Pattern color space, /CS9, and the pattern, /P1, are defined in the Page’s
Resources dictionary (object 3). The pattern’s contents stream paints an image; its
Resources dictionary (object 10) therefore includes the ImageB ProcSet; the
Page’s Resources dictionary does not.

Example 7.32 Bitmap pattern

1 0 obj <<

/Type /Page

/Parent 7 0 R

/Resources 3 0 R

/Contents 2 0 R

>> endobj

2 0 obj <<

/Length 189

>> stream

/Cs9 cs Set the color space.
0 /P1 scn Set the gray color (0) and the pattern (P1)
44 72 m

Draw a circular path.

Figure 7.8 Bitmapped pattern

7: Common Data Structures March 11, 1999

290 Adobe Systems Inc.

144 111.744 111.744 144 72 144 c

32.256 144 0 111.744 0 72 c

0 32.256 32.256 0 72 0 c

111.744 0 144 32.256 144 72 c

f Fill the path with the pattern.
0.8 /P1 scn Set a lighter shade (.8) and the same pattern
60 60 100 100 re Fill the square with the pattern.
f

endstream

endobj

3 0 obj << The Resources dictionary for the page.
/ProcSet [/PDF]

/Pattern << /P1 4 0 R >>

/ColorSpace << /CS1 [/Pattern /DeviceGray] >>

>>

endobj

4 0 obj << The definition of the pattern.
/Type /Pattern

/PatternType 1 A tiling pattern.
/PaintType 2 An uncolored pattern.
/Matrix [18 0 0 18 0 0] The pattern is scaled.
/Resources 10 0 R

/TilingType 1

/BBox [0 0 1 1] The pattern space is the unit square.
/XStep 1

/YStep 1

/Length 28

>>

stream

q

1 0 0 -1 0 1 cm The image data is stored top to bottom.
/Im1 Do Paint the image.
Q

endstream

endobj

10 0 obj << The Resources dictionary for the pattern.
/ProcSet [/PDF /ImageB]

/XObject

<< /Im1 11 0 R >> >> IM1 is the bitmap image.
endobj

11 0 obj << The bitmap image
/Type /XObject

/Subtype /Image

/Width 4

March 11, 1999 7.17.2

7: Common Data Structures 291

/Height 4

/BitsPerComponent 1

/ImageMask true

/Length 10

/Filter /ASCIIHexDecode

>>

stream

6fcf6fcf

endstream

endobj

Figure 7.9 and Example 7.33 show an example of a colored tiling pattern9. The
pattern is used to fill a rectangle and also to show text.

Example 7.33 Star pattern

1 0 obj <<

/Type /Page

/Parent 8 0 R

/Resources 3 0 R

/Contents 2 0 R

>> endobj

9. This is the same as Example 4.21 on page 255 of the PostScript Language Reference Manual,
Third Edition [1]. The painting procedure is more detailed in PDF because it does not have the program-
ming constructs such as repeat that PostScript does. Consequently, the positions, which involve con-
stants like sin pi/5, are expressed as literal numbers, as opposed to expressions that evaluate to those
numbers.

AA
Figure 7.9 Star pattern

7: Common Data Structures March 11, 1999

292 Adobe Systems Inc.

2 0 obj

<< /Length 18 0 R>>

stream The Page contents
/Pattern cs /P1 scn Set the pattern.
120 120 184 120 re

f Fill the rectangle with it.
0 G

120 120 184 120 re

S

BT

/F1 1 Tf

270 0 0 270 160 100 Tm

0.9 g

(A)Tj

/CS1 cs /P1 scn Set the pattern
0 0 TD

(A)Tj Show text with it
ET

endstream

endobj

3 0 obj The Page’s resources
<<

/ProcSet [/PDF /Text]

/Font << /F1 4 0 R >>

/Pattern << /P1 5 0 R >>

/ColorSpace << /CS1 [/Pattern /DeviceGray] >>

>>

endobj

4 0 obj

<<

/Type /Font

/Subtype /Type1

/BaseFont /Times-Roman

>>

endobj

5 0 obj The pattern
<<

/Type /Pattern

/PatternType 1

/Resources 9 0 R

/PaintType 1 /TilingType 1

/BBox [0 0 60 60]

/XStep 60 /YStep 60

/Length 33 0 R

>>

March 11, 1999 7.17.3

7: Common Data Structures 293

stream

0.3 g

15 27 m

7.947 5.292 l

26.413 18.708 l

3.587 18.708 l

22.053 5.292 l

f

45 57 m

37.947 35.292 l

56.413 48.708 l

33.587 48.708 l

52.053 35.292 l

f

0.7 g

15 57 m

7.947 35.292 l

26.413 48.708 l

3.587 48.708 l

22.053 35.292 l

f

45 27 m

37.947 5.292 l

56.413 18.708 l

33.587 18.708 l

52.053 5.292 l

f

endstream

endobj

9 0 obj The pattern’s Resources dictionary.
<< /ProcSet [/PDF] >>

endobj

7.17.3 Smooth shading patterns (PatternType 2)

Table 7.57 gives the entries in the pattern dictionary used to define the complex
paints used for painting gradients. See Section 7.18, “Smooth Shading.”

Table 7.57 Entries in a type 2 pattern dictionary

Key Type Semantics

Type name Object type. Must be Pattern.

PatternType integer (Required) Must be 2.

PDF 1.3

7: Common Data Structures March 11, 1999

294 Adobe Systems Inc.

Shading dictionary (Required) Defines the color transition. A Shading dictionary consists of the
entries in Table 7.58 plus those in one of Table 7.59 through Table 7.64.

XUID array (Optional) An extended unique ID that identifies the pattern; see Section 5.6.2 in
the PostScript Language Reference Manual, Third Edition [1].

ExtGState dictionary (Optional) An Extended Graphics State dictionary representing the graphics state
that is put in effect when the shading pattern is drawn. If this key is omitted, or if
any key within this dictionary is omitted, the unspecified graphics state parameters
will have their default values, as specified in each of the operator descriptions in
Chapter 8.

Matrix array (Optional; the default is the identity matrix) A transformation matrix that maps the
pattern’s coordinate space into default user space of the contents stream in which
the pattern is defined. (See Section 7.17.1, “The pattern matrix.”)

Note Type 2 patterns do not tile. To create a tiling pattern containing a gradient, use the
sh operator in the stream of a Type 1 pattern.

7.18 Smooth Shading

Just as the stroke adjustment parameter (see Section 7.15, “Extended graphics
states”) provides a resolution-independent method for requesting uniform line
thickness, shading provides a way to request smooth transitions between paths and
between colors, without specifying the number of steps in the transition.

Smooth shadings of objects and regions are defined in terms of gradients, where a
gradient is a complex paint that may be used with the fill, stroke, show, or
imagemask operators to paint a path or mask, using a smooth transition between
colors across the areas painted. A Type 2 Pattern dictionary (see Section 7.17.3,
“Smooth shading patterns (PatternType 2)”) is used to define such paints. Such
Pattern dictionaries include a Shading subdictionary to define the color
transition used.

In many cases, the geometry of an object to be painted with a gradient will be the
same as the geometry of the gradient itself. In this case, the sh operator is used.
(See page 338.) In some implementations, using sh with a shading dictionary may
be more efficient than using fill with a Type 2 pattern.

All Shading dictionaries contain the entries listed in Table 7.58, plus the entries
associated with the specified ShadingType value (Table 7.59 through Table
7.64).

Shading dictionaries also include a Function attribute. It is required in some
cases, optional in others. In cases where it is present, the Shading dictionary
usually defines the geometry of the shading, while the function defines the color
transitions across that geometry. Functions with high spatial frequency (or
discontinuous) color transitions may display aliasing effects when imaged at low
effective resolutions.

PDF 1.3

March 11, 1999 7.17.3

7: Common Data Structures 295

Table 7.58 Entries common in all shading dictionaries

Key Type Semantics

ShadingType integer (Required) Must be a defined ShadingType value. The attributes associated with
each value of ShadingType are defined in Table 7.59 to Table 7.64. The shading
types are defined as follows:

1 Function-based shadings define the color of every point in the domain using a
mathematical function. See Table 7.59.

2 Axial shadings define a color blend along a line between two points, optionally
extended beyond the points by continuing the boundary colors. See Table 7.60.

3 Radial shadings define a blend between two circles, optionally extended beyond
the points by continuing the boundary colors. Radial shadings are commonly used
to represent three-dimensional spheres and cones. See Table 7.61.

4 Free-form Gouraud-shaded triangle meshes define a common construct used by
many three-dimensional applications to represent complex colored and shaded
shapes. The vertices are specified in free-form geometry. See Table 7.62.

5 Lattice-form Gouraud-shaded triangle meshes are based on the same geometrical
construct as Type 4, but with vertices specified in terms of a pseudo-rectangular
lattice. See Table 7.63.

6 Coons patch meshes construct shadings from one or more color patches, each
bounded by four Bézier curves. See Table 7.64.

7 Tensor product patch meshes are similar to Type 6 meshes, but with 16 control
points in each patch instead of 12. See Section 7.18.2.7 on page 311.

ColorSpace
name or array (Required) May be a color space of any type except Pattern. (Indexed color

spaces require some special considerations, as defined below in Section 7.18.1,
“ColorSpace: Special Considerations.”

Background array (Optional) An array of color components appropriate to the ColorSpace key,
specifying a single color value. If this key is present, this color is used before any
painting operation involving the shading, to fill the entire area to be painted. The effect
is as if the painting operation were performed twice: first with the background color
and then again with the shading. (This key is used by the f operator but ignored by
the sh operator.)

BBox Rectangle (Optional) A rectangle in the coordinate space that is current at the time the
shading is imaged. If present, this bounding box is applied as a temporary clipping
boundary when the shading is painted, in addition to the current clipping path and any
other clipping boundaries in effect at that time.

AntiAlias boolean (Optional) A flag indicating whether to filter the shading function to prevent aliasing
artifacts. The shading operators sample shading functions at a rate determined by the
resolution of the output device. Aliasing can occur if the function is not smooth—that
is, if it has a high spatial frequency relative to the sampling rate. Anti-aliasing can be
computationally expensive and is usually unnecessary, since most shading functions

7: Common Data Structures March 11, 1999

296 Adobe Systems Inc.

are smooth enough, or are sampled at a high enough frequency, to avoid aliasing
effects. This feature may not be implemented on some devices, in which case this flag
is ignored. Default value: false.

7.18.1 ColorSpace: Special Considerations

Conceptually, a shading determines a color value for each individual point within
the area to be painted. In practice, however, the shading may actually be used to
compute color values for only a subset of the points in the target area, with the
colors of the intervening points determined by interpolation between the ones
computed. Implementations are free to use this strategy as long as the interpolated
color values approximate those defined by the shading to within the tolerance
specified by the smoothness parameter in the graphics state (see the description
of the SM key in Table 7.49). The ColorSpace key common in all shading
dictionaries defines not only the color space in which color values are specified in
the shading, but also the color space in which color interpolation is performed.

Some shading types (4, 5, 6, and 7) perform interpolation on a parametric value
supplied as input to the shading’s color mapping function, as described in the
relevant sections below. This form of interpolation is conceptually distinct from
the interpolation described here, which operates on the output color values
produced by the color mapping function and takes place within the shading’s target
color space.

Gradient fills between colors defined by most shadings are implemented using a
variety of interpolation algorithms, and these algorithms are sensitive to the
characteristics of the color space. Linear interpolation, for example, may have
observably different results when applied in a DeviceCMYK color space than in a
Lab color space, even if the starting and ending colors are perceptually identical.
The difference arises because the two color spaces are not linear relative to each
other. Shadings are rendered according to the following rules:

• If the value of the ColorSpace key is device-dependent and different from the
native color space of the device, then color values will be converted to device
colors using standard conversion formulas. To optimize performance, these
conversions may take place at any time (either before or after any interpolation
on the color values in the shading). Thus, any shadings defined with device-
dependent color spaces may have color gradients that are somewhat device-
dependent. (This does not apply to any of the vignette shadings (ShadingType
2 and 3), since these perform gradient calculations on a single variable and then
convert to parametric colors.)

• If the value of the ColorSpace key is device-independent, then all gradient fill
calculations will occur in the device-independent color space. Conversion to
device colors will occur only after all interpolation calculations are performed.
Thus, the color gradients will be device-independent for the colors generated at
each point.

• If ColorSpace is a Separation or DeviceN color space and the specified
colorants are supported, then no color conversion calculations are needed.
Otherwise, the gradient calculations will be performed in the designated

March 11, 1999 7.18.2

7: Common Data Structures 297

Separation or DeviceN color space prior to conversion to the alternate color
space. Thus, nonlinear tintTransform functions will be accommodated for the
best possible representation of the shading.

• If the ColorSpace is an Indexed color space, then all color values specified
in the shading will be converted to the base color space. Depending on whether
the base color space is device-dependent or device-independent, gradient
calculations will be performed as stated above. Interpolation never occurs in the
Indexed color space, which is quantized and inappropriate for calculations that
assume a continuous range of colors. For similar reasons, an Indexed color
space is not allowed in any shading whose color values are generated by a
function; this applies to any shading dictionary that contains a Function entry.

7.18.2 Shading Dictionary Entries Associated with Each Defined
ShadingType

In addition to the entries listed in Table 7.58, a Shading dictionary must have
entries specific to the value of the ShadingType key. This section defines the
available shading types.

7.18.2.1 ShadingType 1: Function-Based Shading

A Type 1 shading contains a function that maps every point in the domain to a
color. This is the most general of the available shading types, and is useful for
shadings that cannot be adequately described with any of the other types.

(A Type 1 shading is similar in some ways to an image, which maps the points on a
fixed-resolution grid to colors.)

In addition to the common entries listed in Table 7.58, a Shading dictionary for
ShadingType 1 includes the following entries:

Table 7.59 Entries in a Type 1 Shading dictionary

Key Type Semantics

ShadingType integer (Required) Always 1. Specifies function-defined shading.

Domain array (Optional) An array of four numbers, [xmin xmax ymin ymax], specifying the
rectangular domain of arguments with which the Function is called. Default
value: [0 1 0 1].

Matrix array (Optional) A transformation matrix. If the shading is being used as a pattern, then
the matrix maps the shading’s Domain value into pattern space, and it is
concatenated with the pattern’s Matrix key (see Table 7.57) to map the Domain
into default user space of the current contents stream (see Section 7.17.1, “The
pattern matrix”). If the shading is being used with the sh operator, then the matrix
maps the shading’s Domain value to the current user space. For example, if the
shading’s Domain value is [0 1 0 1] and it must be mapped to a one-inch
square with lower-left corner at (100, 100) in user space, the Matrix value would
be [72 0 0 72 100 100]. The default is the identity matrix.

7: Common Data Structures March 11, 1999

298 Adobe Systems Inc.

Function dictionary
or array (Required) The function maps an (x,y) location to a color. It may be either a single

2-in, n-out function, or an array of n 2-in, 1-out functions, where n is the number of
color components in the shading’s ColorSpace. The function’s Domain must be
a superset of the shading’s Domain. If the values returned by the functions are out
of range for a given color component, the values will be adjusted to the nearest
value in range.

Any points within the shading’s BBox value but outside the shading’s Domain
value, as mapped into user space by Matrix, will be painted with the
Background color, if that is specified, or left unpainted otherwise.

7.18.2.2 ShadingType 2: Axial Shading

ShadingType 2 shadings define a color blend that varies along a linear axis
between two endpoints and extends infinitely perpendicular to that axis. The
shading may optionally extend beyond the endpoints by continuing the boundary
colors. In addition to the common attributes listed in Table 7.58, a Shading
dictionary for ShadingType 2 includes the following entries:

Table 7.60 Entries in a Type 2 Shading dictionary

Key Type Semantics

ShadingType integer (Required) Always 2.

Coords array (Required) Array of four numbers [x0 y0 x1 y1] specifying the starting and ending
coordinate pairs. These coordinates are expressed in pattern space (if this is being
used as a pattern) or current user space (if this is being used with the sh operator).

Domain array (Optional) Array of two numbers [t0 t1]. A parametric variable t is considered to
vary linearly between these two values, as the blend varies between the start and
end points, respectively. t becomes the argument with which the Function is
called. Default value: [0 1].

Function dictionary
or array (Required) The function maps the parametric variable t to a color. It may be a

single 1-in, n-out function, or an array of n 1-in, 1-out functions, where n is the
number of components in the shading’s ColorSpace. The function is called with
values of t in the shading’s value of Domain. The function’s Domain must be a
superset of the shading’s Domain. If the values returned by the function is out of
range for a given color component, the values will be adjusted to the nearest value
in range.

Extend array (Optional) An array of two boolean values specifying whether to extend the start
and end colors past the start and end points, respectively. Default value: [false
false].

March 11, 1999 7.18.2

7: Common Data Structures 299

The color blend is accomplished by linearly mapping each point (x, y) along the
axis between the endpoints (x0, y0) and (x1, y1) to a corresponding point in the
domain specified by the shading dictionary’s Domain. The point (0, 0) in the
domain corresponds to (x0, y0) on the axis, and (1, 0) corresponds to (x1, y1). Since
all points along a line in domain space perpendicular to the line from (0, 0) to
(1, 0) will have the same color, only the new value of x needs to be computed:

The value of the parametric variable t is then determined from x ′ as follows:

• For 0 ≤ x ′ ≤ 1, t = t0 + (t1 − t0)x ′.

• For x ′ < 0, if the first value in the Extend array is true, then t = t0; otherwise, t
is undefined and the point is left unpainted.

• For x ′ > 1, if the second value in the Extend array is true, then t = t1;
otherwise, t is undefined and the point is left unpainted.

The value of t is then passed as the input argument to the Function, yielding the
component values of the color with which to paint the point (x, y).

The ColorSpace of this type of shading may not be an Indexed color space.

Note This shading is called “axial” rather than “linear” because, while the mapping
from (x, y) to t is linear, the color transition defined by the Function key need not
be.

x′
x1 x0–() x x0–() y1 y0–() y y0–()+

x1 x0–()2
y1 y0–()2

+
--=

t0 t1

sa
m

e
co

lo
r

al
on

g
th

is
 li

ne

t
t0 t1

/Extend [true true]

7: Common Data Structures March 11, 1999

300 Adobe Systems Inc.

7.18.2.3 ShadingType 3: Radial Shading

ShadingType 3 shadings define a color blend that varies between two circles.
They are commonly used to depict three-dimensional spheres and cones. In
addition to the attributes in Table 7.58, a Shading dictionary for ShadingType 3
includes the following entries:

Table 7.61 Entries in a Type 3 Shading dictionary

Key Type Semantics

ShadingType integer (Required) Always 3. Specifies radial shading.

Coords array (Required) An array of six numbers [x0 y0 r0 x1 y1 r1] specifying the centers and
radii of the starting and ending circles. These coordinates are expressed in pattern
space (if this is being used as a pattern) or current user space (if this is being used
with the sh operator). r0 and r1 must be greater than or equal to 0. If one radius is

0, the corresponding circle is treated as a point; if both are 0, nothing is painted.

Domain array (Optional) An array of two numbers [t0 t1] specifying the limiting values of a
parametric variable t. The variable is considered to vary linearly between these two
values as the color gradient varies between the starting and ending circles. The
variable t becomes the argument with which Function is called. Default value: [0
1].

Function
dictionary or array (Required) The function maps a parametric variable t to a color. It may be a single

1-in, n-out function, or an array of n 1-in, 1-out functions, where n is the number of
components in the shading’s ColorSpace. The function is called with values of t
in the shading’s Domain. The function’s Domain must be a superset of the
shading’s Domain. If the values returned by the function are out of range for a
given color component, the values will be adjusted to the nearest values in range.

Extend array (Optional) An array of two boolean values specifying whether to extend the
shading beyond the starting and ending circles, respectively. Default value: [false
false].

This type of shading may not be used with the Indexed color space.

The color blend is based on a family of blend circles interpolated between the
starting and ending circles that are defined by the shading dictionary’s Coords
entry. The blend circles are defined in terms of a subsidiary parametric variable

which varies linearly between 0.0 and 1.0 as t varies across the domain from t0 to
t1, as specified by the dictionary’s Domain entry. The center and radius of each
blend circle are given by the parametric equations

s
t t0–

t1 t0–
--------------=

March 11, 1999 7.18.2

7: Common Data Structures 301

Each value of s between 0.0 and 1.0 determines a corresponding value of t, which
is then passed as the input argument to the shading’s Function. This yields the
component values of the color with which to fill the corresponding blend circle.
For values of s not lying between 0.0 and 1.0, the boolean values in the shading
dictionary’s Extend entry determine whether and how the shading will be
extended. If the first of the two boolean values is true, the shading is extended
beyond the defined starting circle to values of s less than 0.0; if the second boolean
value is true, the shading is extended beyond the defined ending circle to s values
greater than 1.0.

Note that either of the starting or ending circles may be larger than the other. If the
shading is extended at the smaller end, the family of blend circles continues as far
as that value of s for which the radius of the blend circle r(s) = 0; if the shading is
extended at the larger end, the blend circles continue as far as that s value for
which r(s) is large enough to encompass the shading’s entire bounding box
(BBox). Extending the shading can thus cause painting to extend beyond the areas
defined by the two circles themselves.

Conceptually, all of the blend circles are painted in order of increasing values of s,
from smallest to largest. Blend circles extending beyond the starting circle are
painted in the same color defined by the shading’s Function for the starting circle
(s = 0.0, t = t0); those extending beyond the ending circle are painted in the color
defined for the ending circle (s = 1.0, t = t1). The painting is opaque, with the color
of each circle completely overlaying those preceding it; thus if a point lies within
more than one blend circle, its final color will be that of the last of the enclosing
circles to be painted, corresponding to the greatest value of s. Note the following
points:

• If one of the starting and ending circles entirely contains the other, the shading
will depict a sphere.

• If neither circle contains the other, the shading will depict a cone. If the starting
circle is larger, the cone will appear to point out of the page; if the ending circle
is larger, the cone will appear to point into the page.

xc s() x0 s x1 x0–()×+=

yc s() y0 s y1 y0–()×+=

r s() r0 s r1 r0–()×+=

7: Common Data Structures March 11, 1999

302 Adobe Systems Inc.

Example 7.34 Radial shading

In this example, every leaf is filled with the same radial shading:

7 0 obj <<

/ShadingType 3

/ColorSpace /DeviceCMYK

/Function 9 0 R

/Coords [0 0 0.096 0 0 1] Concentric circles
/Extend [true true] >>

endobj

The function is a stitching function (see page 269):

9 0 obj <<

/FunctionType 3

/Domain [0 1]

/Functions [10 0 R 11 0 R]

/Encode [1 0 0 1]

/Bounds [0.708] >>

endobj

Its two sub-functions are both exponential interpolation functions (see page 267):

10 0 obj <<

/FunctionType 2

/Domain [0 1]

/C0 [0.929 0.357 1 0.298]

/C1 [0.631 0.278 1 0.027]

/N 1.048 >>

endobj

11 0 obj <<

/FunctionType 2

/Domain [0 1]

/C0 [0.929 0.357 1 0.298]

/C1 [0.941 0.4 1 0.102]

/N 1.374 >>

endobj

Each leaf is drawn as a path and then filled with the shade:

316.789 140.311 m

303.222 146.388 282.966 136.518 279.122 121.983 c

277.322 120.182 l

285.125 122.688 291.441 121.716 298.156 119.386 c

336.448 119.386 l

331.072 128.643 323.346 137.376 316.789 140.311 c

W n

q 27.7843 0 0 -27.7843 310.2461 121.1521 cm

/Sh1 sh Q Sh1 is object 7, the Shading dictionary.

March 11, 1999 7.18.2

7: Common Data Structures 303

7.18.2.4 ShadingType 4: Free-Form Gouraud-Shaded Triangle Meshes

ShadingType 4 shadings are commonly used to represent complex colored
and shaded three-dimensional shapes. The area to be shaded is defined by a
path composed entirely of triangles. The color at each vertex of the triangles is
specified, and a technique known as Gouraud interpolation is used to color the
interiors. The interpolation functions defining the shading may be linear or
nonlinear.

Unlike shading types 1, 2, and 3, shading types 4 through 7 are represented as
streams. Each stream contains a sequence of vertex coordinates and color data that
specify the triangle mesh. Each vertex is represented by the following sequence:

f x y c1 … cn

where f is the edge flag (described below), x and y are the vertex coordinates, and c
is a color value with n components. If the dictionary specifies a Function key,
then only one color component is permitted in each sequence (see below). The
vertex coordinates are expressed in pattern space (if this is being used as a
pattern) or current user space (if this is being used with the sh operator).

The stream’s dictionary contains the standard keys for a stream (e.g., Length), the
standard keys for a shading dictionary (see Table 7.58), and the following keys:

Table 7.62 Entries in a Type 4 Shading dictionary

Key Type Semantics

ShadingType integer (Required) Always 4. Specifies free-form Gouraud-shaded triangle mesh.

BitsPerCoordinate
integer (Required) Specifies the number of bits used to represent each vertex coordinate.

The data is decoded based on the first four elements of the Decode key, in much
the same way as color component data is decoded in image dictionaries. Allowed
values are 1, 2, 4, 8, 12, 16, 24, and 32.

BitsPerComponent
integer (Required) Specifies the number of bits used to represent each color component.

The data is decoded based on all but the first four elements of the Decode key, as
in image dictionaries. Allowed values are 1, 2, 4, 8, 12, and 16.

BitsPerFlag integer (Required) The number of bits used to represent the edge flag for each vertex. The
allowed values of BitsPerFlag are 2, 4, and 8. Allowed values for the edge flag
itself are 0, 1, and 2.

Decode array (Required) Specifies how to decode coordinate and color component values
into the ranges of numbers appropriate for these values. The ranges are
specified as: [xmin xmax ymin ymax c1,min c1,max … cn,min cn,max] where n is either
the number of color components, or 1 if Function is specified.

7: Common Data Structures March 11, 1999

304 Adobe Systems Inc.

Function
dictionary or array (Optional) A single 1-in, n-out function, or an array of n 1-in, 1-out functions,

where n is the number of components in the shading’s ColorSpace. If this key is
present, the color data for each vertex must be specified by a single parametric
variable rather than by n separate color components; the designated functions will
be called with each interpolated value of the parametric variable to determine the
actual color at each point. The function’s Domain value must be a superset of the
range specified in the shading’s Decode array for the color value. The Function
key may not be used with an Indexed color space. If the values returned by the
functions are out of range for a given color component, the values will be adjusted
to the nearest values in range.

Triangles are built up as described below.

The first vertex must have an edge flag value 0, which means “start a new
triangle.” The edge flags of the next two vertices are ignored. Subsequent triangles
are defined by a single new vertex and an edge of the preceding triangle (see
Figure 7.10). Given triangle (va, vb, vc), where the vertices va, vb, and vc appear in
that order in the stream, the next vertex, vd, forms either the new triangle (vb, vc,
vd) if f = 1 or the triangle (va, vc, vd) if f = 2.

Figure 7.10 How the value of edge flag, f, affects which edge is used

The stream must provide a whole number of triangles with appropriate vertex edge
flags. The encoding is specified by the BitsPerFlag, BitsPerCoordinate,
BitsPerComponent, and Decode attributes. Each vertex edge flag is expressed
in BitsPerFlag bits, each vertex coordinate pair is expressed in 2 ×
BitsPerCoordinate bits, and each vertex color tuple is expressed in n ×
BitsPerComponent bits. Each set of vertex data takes an integer number of
bytes; if the total number of bits in the vertex data is not divisible by eight, the
vertex data is padded with ignored bits inserted between the coordinate and color
data. The coordinate and color data is decoded based on the Decode array.

If a value of the Function key is present, the mesh’s vertex color data must be
specified by single values (t), rather than color tuples. All linear interpolation
within the triangle mesh will be done using the values of t, and after interpolation,
the function will be called with each value to determine the color of each point.

va

vb vc

vd when f=2

vd when f=1

If f = 0, start a new triangle.

Previous
triangle

March 11, 1999 7.18.2

7: Common Data Structures 305

Note Using free-form Gouraud-shaded triangle meshes differs from using an Indexed
color space for the shading. If an Indexed color space is used, the vertex color
value is converted to the base color space first, and linear interpolation occurs in
that color space. Thus, there is no opportunity to effect a nonlinear interpolation
using an Indexed color space.

7.18.2.5 ShadingType 5: Lattice-Form Gouraud-Shaded Triangle Meshes

ShadingType 5 shadings are similar to ShadingType 4 shadings, but instead of
using free-form geometry, their vertices are arranged in a pseudorectangular
lattice, which is topologically equivalent to a rectangular grid. The vertices are
organized into “rows.” (The rows do not need to be geometrically linear.) Given m
rows of n vertices, triangles are constructed using the following triplets of vertices:

(Vi, j, Vi, j+1, Vi+1, j) for 0 ≤ i ≤ m-2, 0 ≤ j ≤ n-2

(Vi, j +1, Vi+1, j, Vi+1, j+1) for 0 ≤ i ≤ m-2, 0 ≤ j ≤ n-2

In addition to the common attributes listed in Table 7.58, a Shading dictionary for
ShadingType 5 includes the following entries:

Table 7.63 Entries in a Type 5 Shading dictionary

Key Type Semantics

ShadingType integer (Required) Always 5. Specifies lattice-form Gouraud-shaded triangle mesh.

BitsPerCoordinate
integer (Required) Specifies the number of bits used to represent each vertex coordinate.

The data is decoded according to the value of Decode, in much the same way as
color component data is decoded in image dictionaries. Allowed values are 1, 2, 4,
8, 12, 16, 24, and 32.

BitsPerComponent
integer (Required) Specifies the number of bits used to represent each color component.

The data is decoded according to the value of Decode. Allowed values are 1, 2, 4,
8, 12, and 16.

Decode array (Required) Specifies how to decode coordinate and color component values into
the ranges of numbers appropriate for these values. The ranges are specified as:
[xmin xmax ymin ymax c1,min c1,max … cn,min cn,max] where n is the number of color

components.

VerticesPerRow
integer (Required) The number of vertices in each “row” of the lattice; it must be greater

than or equal to 2.The number of rows does not need to be specified.

Function
dictionary or array (Optional) A single 1-in, n-out function, or an array of n 1-in, 1-out functions,

where n is the number of components in the ColorSpace entry. If present, then
the mesh’s vertex color data must be specified by single values rather than color
tuples, and the function will be called with each interpolated color value to

7: Common Data Structures March 11, 1999

306 Adobe Systems Inc.

determine the actual color of each point. The function’s Domain must be a
superset of the range specified in the shading’s Decode array for the color value.
Function may not be used with unencoded vertex data, nor with ColorSpace set
to Indexed color space. If the values returned by the functions are out of range for
a given color component, the values will be adjusted to the nearest allowed value.

7.18.2.6 ShadingType 6: Coons patch meshes

ShadingType 6 shadings are constructed from one or more color patches, each
bounded by four Bézier curves. Degenerate Bézier curves are allowed and are
useful for certain graphical effects. At least one complete patch must be
specified.A primary use of this feature is to allow the specification of “conical”
vignettes and other complex blends as patch meshes with nonlinear interpolation
functions. The geometry of these patches is defined below, followed by the
specification of the entries in the dictionary associated with ShadingType 6.

A Coons patch generally has two independent aspects, a color specification and a
coordinate mapping. These are defined as follows:

• Colors are specified for each of the corners of the unit square, and bilinear
interpolation is used to fill in colors over the entire unit square.

• Coordinates are mapped from the unit square into a four-sided patch whose
sides are not necessarily linear. The mapping is continuous; the corners of the
unit square map to corners of the patch, and the sides of the unit square map to
sides of the patch. (See Figure 7.11.)

Thus, ShadingType 6 shading results from coloring the unit square and then
mapping it.

Figure 7.11 Coons patch meshes: coordinate mapping from a unit square to a
four-sided patch

D1

C1

D2

C2

v

u

March 11, 1999 7.18.2

7: Common Data Structures 307

The sides of the patch are given by four cubic Bézier curves, C1, C2, D1, and D2,
defined over a pair of parametric variables u and v that vary horizontally and
vertically across the unit square. The four corners of the Coons patch satisfy the
equations

Two surfaces can be described that are linear interpolations between the boundary
curves. Along the u axis, the surface SC is defined by

Along the v axis, the surface SD is given by

A third surface is the bilinear interpolation of the four corners:

The coordinate mapping for the shading is given by the surface S, defined as

This defines the geometry of each patch. A patch mesh is constructed from a
sequence of one or more such colored patches.

Patches can sometimes appear to fold over on themselves—for example, if a
boundary curve intersects itself. As the value of parameter u or v increases in
parameter space, the location of the corresponding pixels in device space may
change direction, so that new pixels are mapped onto previous pixels already
mapped. If more than one point (u, v) in parameter space is mapped to the same
point in device space, the point selected will be the one with the largest value of v;
if multiple points have the same v, the one with the largest value of u will be
selected. If one patch overlaps another, the patch that appears later in the data
source paints over the earlier one.

C1 0() D1 0()=

C1 1() D2 0()=

C2 0() D1 1()=

C2 1() D2 1()=

SC u v,() 1 v–() C1 u()× v C2 u()×+=

SD u v,() 1 u–() D1 v() u D2 v()×+×=

SB u v,() 1 v–() 1 u–() C1 0()×[u C1 1()×+]×
v 1 u–() C2 0()×[u C2 1()×]+×+

=

S SC SD SB–+=

7: Common Data Structures March 11, 1999

308 Adobe Systems Inc.

Note also that the patch is a control surface, rather than a painting geometry. The
outline of a projected square (that is, the painted area) may not be the same as the
patch boundary if, for example, the patch folds over on itself, as shown in the
following figure.

In addition to the common attributes listed in Table 7.58, a Shading dictionary
associated with ShadingType 6 includes the following entries:

Table 7.64 Entries in a Type 6 Shading dictionary

Key Type Semantics

ShadingType integer (Required) Always 6. Specifies a Coons patch mesh.

BitsPerCoordinate
integer (Required) Specifies the number of bits used to represent each geometric

coordinate. The data is decoded based on the Decode entry, in the same way color
component data is decoded in image dictionaries. Allowed values are 1, 2, 4, 8, 12,
16, 24, and 32.

BitsPerComponent
integer (Required) Specifies the number of bits used to represent each color component.

The data is decoded based on the value of the Decode entry, as in image
dictionaries. Allowed values are 1, 2, 4, 8, 12, and 16.

BitsPerFlag integer (Required) The number of bits used to represent the edge flag for each patch. The
allowed values of BitsPerFlag are 2, 4, and 8. Allowed values for the edge flag
itself are 0, 1, 2, and 3.

Decode array (Required) Specifies how to decode coordinate and color component values into
the ranges of numbers appropriate for these values. The ranges are specified as:
[xmin xmax ymin ymax c1,min c1,max … cn,min cn,max] where n is the number of color

components.

Function
dictionary or array (Optional) A single 1-in, n-out function, or an array of n 1-in, 1-out functions,

where n is the number of components in the ColorSpace entry. If present, then
the mesh’s vertex color data must be specified by single values rather than color

March 11, 1999 7.18.2

7: Common Data Structures 309

tuples, and the function(s) will be called with each interpolated color value to
determine the actual color of each point. The value of function’s Domain must be
a superset of the range specified in the value of shading’s Decode array for the
color value. The Function key may not be used with unencoded vertex data, nor
with the value of ColorSpace set to Indexed color space. If values returned by
the functions are out of range for a given color component, the values will be
adjusted to the nearest allowed value.

The stream provides a sequence of Bézier control points and color values that
define the shape and colors of each patch. All of a patch’s control points are given
first, followed by the color values for its corners. Note that this differs from a
triangle mesh (shading types 4 and 5), in which the coordinates and color of each
vertex are given together. All control point coordinates are expressed in the current
coordinate space at the time the shading is painted.If the total number of data bits
required to define the patch is not divisible by 8, the last byte is padded at the end
with extra bits, which are ignored.

As in free-form triangle meshes (type 4), each patch has an edge flag that tells
which edge, if any, it shares with the previous patch. An edge flag of 0 begins a
new patch, unconnected to any other. This must be followed by 12 pairs of
coordinates, x1 y1 x2 y2 … x12 y12, which specify the Bézier control points that
define the four boundary curves. Figure 7.13 shows how these control points
correspond to the Bézier curves C1, C2, D1, and D2 identified earlier in Figure
7.12. Color values are then given for the four corners of the patch, in the same
order as the control points corresponding to the corners. Thus, c1 is the color at
coordinates (x1, y1), c2 at (x4, y4), c3 at (x7, y7), and c4 at (x10, y10), as shown in the
figure.

5

3 8

6

7

9

11

12
2

1

4

10

Use this side when next f = 3.

Use this side when next f = 1.

Use this side when next f = 2.
This side already attached
to previous patch. Start a
new patch when next f = 0.

c1

c2

c3

c4

C1

C2

D2D1

Figure 7.12 Edge flags

7: Common Data Structures March 11, 1999

310 Adobe Systems Inc.

Figure 7.13 also shows how nonzero values of the edge flag (f = 1, 2, or 3) connect
a new patch to one of the edges of the previous patch. In this case, some of the
previous patch’s control points serve implicitly as control points for the new patch
as well, and so are not explicitly repeated in the data source. Table 7.65
summarizes the required data values for various values of the edge flag.

Table 7.65 Data values in a Coons patch mesh

Edge flag Next set of data values

f = 0 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12

c1 c2 c3 c4

New patch; no implicit values

f = 1 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12

c3 c4

Implicit values:

When fB = 0, start a new patch

Patch B
fB = 1

Patch A

Patch B
fB = 3

Patch B
fB = 2

2

1

4

5

3

c1

c2

12 9 3

41

1

2

24

3
11

c1

c1

c2

c4

1

4

7
6

8 2

3
c3

c1

c2

c2

10

Figure 7.13 Coons patch

March 11, 1999 7.18.2

7: Common Data Structures 311

(x1, y1) = (x4, y4) previous c1 = c2 previous
(x2, y2) = (x5, y5) previous c2 = c3 previous
(x3, y3) = (x6, y6) previous
(x4, y4) = (x7, y7) previous

f = 2 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12
c3 c4

Implicit values:

(x1, y1) = (x7, y7) previous c1 = c3 previous
(x2, y2) = (x8, y8) previous c2 = c4 previous
(x3, y3) = (x9, y9) previous
(x4, y4) = (x10, y10) previous

f = 3 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12
c3 c4

Implicit values:

(x1, y1) = (x10, y10) previous c1 = c4 previous
(x2, y2) = (x11, y11) previous c2 = c1 previous
(x3, y3) = (x12, y12) previous
(x4, y4) = (x1, y1) previous

7.18.2.7 ShadingType 7: Tensor Product Patch Meshes

ShadingType 7 shadings are identical to ShadingType 6 shadings, except that
instead of a bicubic Coons patch defined by twelve control points, a bicubic tensor
product patch defined by sixteen control points is used. Each set of twelve
coordinate pairs in the stream is replaced by a set of sixteen coordinate pairs. The
two cases are distinguished only by the ShadingType key and the data in the
stream; there are no other differences, except in the way the color varies across the
geometry.

As with the Coons patch surface, the tensor product surface is defined by a
mathematical mapping from a square patch (u, v) to the patch coordinate system
(x, y).

Pij is the control point for the i,j row and column of the tensor. Since each Pij =
(Xij, Yij), one can also express this as

S u v,() Pij Bi u() Bj v()××

j 0=

3

∑
i 0=

3

∑=

7: Common Data Structures March 11, 1999

312 Adobe Systems Inc.

Bi(u) and Bj(v) are Bernstein polynomials, where

An illustration may help the mathematical description. Pij are defined as follows:

Graphically, this is as represented as follows:

This is a convenient numbering for the mathematical description, but a better
numbering for the language is:

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

0 11 10 9

1 12 15 8

2 13 14 7

3 4 5 6

x u v,() Xi j, Bi u() Bj v()××

j 0=

3

∑
i 0=

3

∑=

y u v,() Yi j, Bi u() Bj v()××

j 0=

3

∑
i 0=

3

∑=

B0 t() 1 t–()3
=

B1 t() 3t 1 t–()2
=

B2 t() 3t 1 t–()=

B3 t() t
3

=

P10

P30

P20

P11 P12

P22P21

P31

P32

P33

P23

P13

P03

P02

P01

P00

March 11, 1999 7.18.3

7: Common Data Structures 313

This allows the Coons patch numbering to be a subset of the tensor product patch
numbering.

The tensor product patch mapping, like the Coons patch mapping, is controlled by
the location and shape of the four boundary curves. Unlike the Coons patch,
however, the tensor product patch has four more “internal” control points to adjust
the mapping. For example, imagine a cubic Bézier curve moving from the top
boundary of the patch to the bottom. In effect, the control points of this curve start
out as the top curve’s control points and end up as the bottom curve’s control
points. The curve changes shape as it moves down the patch because the control
points change position. Each control point follows a trajectory defined by the four
column control points. In particular, each column defines its own cubic Bézier
curve, and this is the trajectory each of the control points of the moving curve take.
The same can be said for a curve moving from left to right, except the trajectory
taken by the control points is defined by the curves specified by four rows of
control points.

The tensor product patch gives more control over mapping than does the Coons
patch. However, the Coons patch is easier to use and more concise because the
internal control points are implicitly specified by the boundary control points.

7.18.3 Painting With a Pattern Dictionary

When a painting operation is performed with a gradient pattern dictionary as the
current color in the graphics state, the pattern coordinate space is obtained in the
same way as with PatternType 1 patterns. However, instead of executing the
marking operations in a PatternType 1 contents stream, the shape and color
transitions described by the Shading dictionary are interpreted relative to this
coordinate space to create a logical “paint” with which graphical objects can be
rendered. The Shading dictionary’s BBox attribute, if present, will clip the
logical painting region, which may also be affected by the geometry of the
shading. All color values are interpreted relative to the Shading dictionary’s
ColorSpace attribute.

If a Background color is defined in the Shading dictionary, then that color is
used first to fill the background of the object being painted. Logically, this is
equivalent to executing a fill operation or other painting operation first with the
background color and then with the gradient pattern. The convenience of the
Background color specification is provided because performing this sequence of
operations explicitly would be verbose, especially for text or imagemasks. This is
only of interest for gradient patterns that do not cover the entire area of the object
being painted.

7.19 Property lists

A Property List is a dictionary that provides information about a sequence of
graphics objects or a particular place with the stream of marking operators. It may
be written in-line, or it may appear in the Properties sub-dictionary of the current
Resources dictionary. Property lists are used by the Marked Content operators (see
Section 8.10.3 on page 351).

PDF 1.2

7: Common Data Structures March 11, 1999

314 Adobe Systems Inc.

Property Lists provide an open-ended extension mechanism that allows a set of
key-value pairs to be associated with particular marks in a content stream. With the
exception of the Subtype key, no particular keys are defined by PDF. It is
suggested, however, that any particular extension use keys in a consistent way. For
example, the values associated with a given key should always be of the same type
(or small set of types). The meanings of the extended keys are determined by the
extensions that create and use those keys.

Table 7.66 Property List attributes

Key Type Semantics

Subtype name (Optional) Object subtype. Intended to indicate the application or extension that
defines the property list.

7.20 Name tree

A name tree contains three kinds of nodes, a root node (one per tree), intermediate
nodes, and leaf nodes. The root node contains only a Kids array or a Names
array. An intermediate node contains a Kids array and a Limits array. A leaf node
contains a Limits array and a Names array. The names in the tree are stored in
the leaf nodes, sorted by binary value, where each string is interpreted as a
sequence of unsigned octets (8-bit bytes). The names are sorted in ascending order,
like other strings. Shorter names appear before longer names that begin with the
same byte sequence. The encoding of the names is not important as long as it is
consistent because comparisons for name equality are done byte by byte without
any transformation of the bytes.

Note The keys in name trees are strings. The strings in name trees are sometimes
displayed, however, as Text.

Table 7.67 The root node in a name tree

Key Type Semantics

Kids array (Required if Names is not present) An array of indirect references to the
immediate children of the root node. They may be intermediate nodes or leaf
nodes.

Names array (Required if Kids is not present) An array of the form [name value name value
…], where each name is a string, and the value is an indirect reference to the
object associated with that name. The names are sorted in binary order as
described above.

PDF 1.3

March 11, 1999 7.18.3

7: Common Data Structures 315

Table 7.68 An intermediate node in a name tree

Key Type Semantics

Kids array An array of indirect references to the immediate children of this node. They may
be intermediate nodes or leaf nodes.

Limits array An array of two strings, representing the (alphabetically) least and greatest names
included in any leaf nodes that are descendants of this node.

Table 7.69 A leaf node in a name tree

Key Type Semantics

Limits array An array of two strings, representing the (alphabetically) least and greatest names
in the Names array.

Names array An array of the form [name value name value …], where each name is a string,
and the value is an indirect reference to the object associated with that name. The
names are sorted in binary order as described above.

As an example of a name tree, consider a document that has named destinations for
all the chemical elements, where the name of the destination is the name of the
element itself, from actinium to zirconium. An outline of the tree, showing object
numbers and nodes, might look like this:

#3: root
#4: intermediate: actinium to phosphorus

#6: leaf: actinium = …
#7: leaf: …
#8: intermediate: … to gadolinium
#9: leaf: gallium = #14, germanium = #15, gold = #16

#14: destination: …
#15: destination: [/FitR 0 0 100 100]
#16: destination: …

#10: intermediate: hafnium to phosphorus
#5: intermediate: platinum to zirconium

#11: leaf: platinum = #17, plutonium = #18, polonium = #19
#17: destination: …
#18: destination: …
#19: destination: [/XYZ 50 50 800]

#12: intermediate: potassium to …
#13: intermediate: … to zirconium

The representation of this tree in the PDF file would look like this:

1 0 obj <<

/Type /Catalog

/Names 2 0 R

7: Common Data Structures March 11, 1999

316 Adobe Systems Inc.

>> endobj

2 0 obj << Dictionary of Name Trees
/Dests 3 0 R

>> endobj

3 0 obj << Root node
/Kids [4 0 R 5 0 R]

>> endobj

4 0 obj << Intermediate node
/Limits [(actinium) (phosphorus)]

/Kids [6 0 R 7 0 R 8 0 R 9 0 R 10 0 R]

>> endobj

5 0 obj << Intermediate node
/Limits [(platinum) (zirconium)]

/Kids [11 0 R 12 0 R 13 0 R]

>> endobj

9 0 obj << Leaf node
/Limits [(gallium) (gold)]

/Names [(gallium) 14 0 R (germanium) 15 0 R (gold)

16 0 R]

>> endobj

11 0 obj << Leaf node
/Limits [(platinum) (polonium)]

/Names [(platinum) 17 0 R (plutonium) 18 0 R

(polonium) 19 0 R]

>> endobj

15 0 obj << Destination
/D [/FitR 0 0 100 100]

>> endobj

19 0 obj << Destination
/D [/XYZ 50 50 800]

>> endobj

7.21 Number tree

A number tree has the same purpose as a dictionary, mapping keys to values, but it
does so in a different manner, and the keys in a number tree are integers, not PDF
name objects.

PDF 1.3

March 11, 1999 7.18.3

7: Common Data Structures 317

A number tree contains three kinds of nodes, a root node (one per tree),
intermediate nodes, and leaf nodes. The root node contains only a Kids or Nums
array. An intermediate node contains a Kids array and a Limits array. A leaf node
contains a Limits array and a Nums array. The numbers in the tree are stored in
the leaf nodes, sorted in ascending order.

Table 7.70 The root node in a number tree

Key Type Semantics

Kids array (Required if Nums is not present) An array of indirect references to the immediate
children of the root node. They may be intermediate nodes or leaf nodes.

Nums array (Required if Kids not present) An array of the form [integer value integer value
…], where each value is an indirect reference to the object associated with the
preceding integer key. The integers are sorted in ascending order.

Either Kids or Nums must be specified in the root node, but not both.

Table 7.71 An intermediate node in a number tree

Key Type Semantics

Kids array An array of indirect references to the immediate children of this node. They may
be intermediate nodes or leaf nodes.

Limits array An array of two integers, representing the least and greatest numbers included in
any leaf nodes that are descendants of this node.

Note Intermediate nodes can have children that are also intermediate nodes. This
allows an essentially unlimited number of integer/value pairs. By contrast, an
array has a maximum length (see Appendix D).

Table 7.72 A leaf node in a number tree

Key Type Semantics

Limits array An array of two integers, representing the least and greatest numbers in the Nums
array.

Nums array An array of the form [integer value integer value …], where each value is an
indirect reference to the object associated with the preceding integer key. The
integers are sorted in ascending order.

7: Common Data Structures March 11, 1999

318 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 8: Page Descriptions

319

CHAPTER 8

Page Descriptions

This chapter describes the PDF operators that draw text, graphics, and images on
the page and in other “marking contexts” such as forms and patterns. It completes
the specification of PDF. The following chapters describe how to produce efficient
PDF files.

Text, graphics, and images are drawn using the coordinate systems described in
Chapter 3. It may be useful to refer to that chapter when reading the description of
various operators, to obtain a better understanding of the coordinate systems used
in PDF documents and the relationships among them.

Appendix B contains a complete list of operators, arranged alphabetically.

Note Throughout this chapter, PDF operators are shown with a list of the operands they
require. For operators that correspond to one or more PostScript language
operators, the corresponding PostScript language operator appears in bold on the
first line of the operator’s definition. An operand specified as “number” may be
either an integer or a real number. Otherwise, numeric operands must be integers.

8.1 Overview

A PDF page description can be considered a sequence of graphics objects. These
objects generate marks that are applied to the current page, obscuring any existing
marks they may overlay.

PDF provides five types of graphics objects:

• A path object is an arbitrary shape made of straight lines, rectangles, and cubic
curves. A path may intersect itself and may have disconnected sections and
holes. A path object usually includes a painting operator that specifies whether
the path is filled, stroked, and/or serves as a clipping path. A painting operator
is not required, however; unpainted (“invisible”) path objects are sometimes
used as placeholders or to denote text bounds.

• A text object consists of one or more character strings that can be placed
anywhere on the page and in any orientation. Like a path, text can be stroked,
filled, and/or serve as a clipping path.

• An image object consists of a set of samples using a specified color model.
Images can be placed anywhere on a page and in any orientation.

�

8: Page Descriptions March 11, 1999

320 Adobe Systems Inc.

Figure 8.1 Graphics Objects

Path Object

Legal operators:
• Path Segment
• Path Clipping

Text Object

Legal operators:
• General Graphics State
• Color
• Text State
• Text String (Painting)
• Text Positioning
• Marked Content

External Object

Legal operators:
• None

General Graphics State operators: d, gs, i, j, J, M, ri, w
Special Graphics State operators: q, Q, cm
Color operators: g, G, k, K, rg, RG, sc, SC, scn, SCN, cs, CS
Text State operators: TC, Tf, TL, Tr, Ts, Tw, Tz
Text String (Painting) operators: Tj, TJ, ', "
Text Positioning operators: Td, TD, Tm, T*
Path Segment operators: c, h, l, m, re, v, y
Path Painting operators: f, F, f*, n, s, S, b, b*, B, B*
Path Clipping operators: W, W*
Marked Content operators: BMC, BDC, EMC, MP, DP
Shading operator: sh

In-line Image Object

Legal operators:
• ID

Path Segment operators

BT ET

Do, PS

(immediate)

BIEI

Page-Description Level

Legal operators:
• General Graphics State
• Special Graphics State
• Color
• Marked Content

Path Painting operators

Shading Object

Legal operators:
• None

sh

(immediate)

March 11, 1999

8: Page Descriptions 321

• An External Object (XObject) is an object defined outside the stream. The
interpretation of an XObject depends on its type. PDF currently supports three
types of XObjects: images, forms, and PostScript language fragments.

• Ashading object describes a smoth transition of colors across an area on the
page.

As described in Chapter 7, a PDF page description is not necessarily self-
contained. It often contains references to resources such as fonts, patterns, forms,
or images not found within the page description itself but located elsewhere in the
PDF file.

Figure 8.1 shows the ordering rules for the operations that define graphics objects.
Some operations are permitted only in certain graphics objects or in the intervals
between graphics objects, which is called the Page Description Level in the Figure.
Every contents stream begins at the Page Description Level, where changes can be
made to the graphics state, including colors and text-specific parameters, as
explained in the following sections. The arrows indicate the operators that mark
the beginning or end of each of the graphics objects. For example, any Path
Segment operator such as m (moveto) marks the beginning of a Path object. Inside
a Path object, additional Path Segment operators are permitted, as are Path
Clipping operators, but not a General Graphics State operator such as d (setdash),
for example. A Path Painting operator such as f (fill) marks the end of the Path
Object and the return to the Page Description Level.

8.2 Graphics state

The exact effect of drawing a graphics object is determined by parameters such as
the current line thickness, font, and leading. These parameters are part of the
graphics state.

Although the contents of the PDF graphics state are similar to those of the graphics
state in the PostScript language, there are several differences:

1. In PDF, the graphics state is divided into four distinct groups of parameters
and operators. There are specific groups for text, for color, for “generic”
marking operations, and for the graphics state itself. In this chapter, starting
in Figure 8.1, these are referred to as Text State, Color, General Graphics
State, and Special Graphics State operators, respectively. The Text State,
for example, enables the implementation of a more compact set of text
operators.

2. The graphics state is extended to distinguish the parameters for fill
operations from those for stroke operations. The use of separate fill and
stroke colors in PDF is necessary to implement painting operators that both
fill and stroke a path or text.

3. Finally, the graphics state in PDF 1.2 permits user extensions by means of
the Marked Content operators. These have no effect on viewing or printing,
but they preserve information that may be of use to plug-ins.

PDF 1.2

8: Page Descriptions March 11, 1999

322 Adobe Systems Inc.

The graphics state is initialized at the beginning of each page, using the default
values specified in each of the operator descriptions.

8.3 Special Graphics State

The Special Graphics State refers to parameters that apply to all four types of
graphics objects: path, text, image, and external.

PDF provides a graphics state stack for saving and restoring the entire graphics
state: the General Graphics State, the Color, and the Text State. PDF provides an
operator, q, that saves a copy of the graphics state onto the graphics state stack.
Another operator, Q, removes the most recently saved graphics state from the stack
and makes it the current graphics state.

8.3.1 Special Graphics state parameters

8.3.1.1 Clipping path

The clipping path restricts the region to which paint can be applied on a page.
Marks outside the region bounded by the clipping path are not painted. Clipping
paths may be specified either by a path, or by using one of the clipping modes for
text rendering. These are described in Section 8.6.3, “Path clipping operators,” and
Section 8.7.1.7, “Text rendering mode.”

8.3.1.2 Current transformation matrix

The CTM is the matrix specifying the transformation from user space to device
space. It is described in Section 3.2, “User space.”

8.3.1.3 Current point

All drawing on a page makes use of the current point. In an analogy to drawing on
paper, the current point can be thought of as the location of the pen used for
drawing.

The current point must be set before graphics can be drawn on a page. Several of
the operators discussed in Section 8.6.1, “Path segment operators,” set the current
point. As a path object is constructed, the current point is updated in the same way
as a pen moves when drawing graphics on a piece of paper. After the path is
painted using the operators described in Section 8.6.2, “Path painting operators,”
the current point is undefined.

The current point also determines where text is drawn. Each time a text object
begins, the current point is set to the origin of the page’s coordinate system.
Several of the operators described in Section 8.7.3, “Text positioning operators,”
change the current point. The current point is also updated as text is drawn using
the operators described in Section 8.7.5, “Text string operators”.

March 11, 1999 8.3.2

8: Page Descriptions 323

8.3.2 Special Graphics State operators

The operators in this section may be used only at the Page-Description Level; see
Figure 8.1. Adjacent to each PDF operator name is the PostScript language
equivalent operator, if any.

Arguments Operator Semantics

q Saves the current graphics state on the graphics state stack. (gsave)

Q Restores the graphics state to the most recently saved state. Removes the most
recently saved state from the stack and makes it the current state. (grestore)

a b c d e f cm Modifies the CTM by concatenating the specified matrix. Although the operands
specify a matrix, they are passed as six numbers, not as an array. (concat)

8.4 General Graphics state

8.4.1 Flatness

Flatness sets the maximum permitted distance in device pixels between the
mathematically correct path and an approximation constructed from straight line
segments, as shown in Figure 8.2.

Note Flatness is inherently device-dependent, because it is measured in device pixels.

Figure 8.2 Flatness

Arguments Operator Semantics

flatness i Sets the flatness parameter in the graphics state. flatness is a number in the range
0 to 100, inclusive. The default value for flatness is 0, which means that the
device’s default flatness is used. (setflat)

Flatness error
tolerance

8: Page Descriptions March 11, 1999

324 Adobe Systems Inc.

8.4.2 Line cap style

The line cap style specifies the shape to be used at the ends of open subpaths when
they are stroked. Allowed values are shown in Figure 8.3.

Figure 8.3 Line cap styles

Arguments Operator Semantics

linecap J Sets the line cap parameter in the graphics state. linecap has a default value of 0.

8.4.3 Line dash pattern

The line dash pattern controls the pattern of dashes and gaps used to stroke paths.
It is specified by an array and a phase. The array specifies the length of alternating
dashes and gaps. The phase specifies the distance into the dash pattern to start the
dash. Both the elements of the array and the phase are measured in user space
units. Before beginning to stroke a path, the array is cycled through, adding up the
lengths of dashes and gaps. When the sum of dashes and gaps equals the value
specified by the phase, stroking of the path begins, using the array from the point
that has been reached. Figure 8.4 shows examples of line dash patterns. As can be
seen from the figure, the command [] 0 d can be used to restore the dash
pattern to a solid line. (setlinecap)

Line cap
style Description

Butt end caps—the stroke is squared off at the
endpoint of the path.

Round end caps—a semicircular arc with a diameter
equal to the line width is drawn around the endpoint
and filled in.

Projecting square end caps—the stroke extends
beyond the end of the line by a distance which is half
the line width and is squared off.

0

1

2

March 11, 1999 8.4.4

8: Page Descriptions 325

Figure 8.4 Line dash pattern

Dashed lines wrap around curves and corners just as solid stroked lines do. The
ends of each dash are treated with the current line cap style, and corners within
dashes are treated with the current line join style.

Arguments Operator Semantics

[array] phase d Sets the dash pattern parameter in the graphics state. If array is empty, the dash
pattern is a solid, unbroken line; otherwise array is an array of numbers, all non-
negative and at least one non-zero, that specify alternating distances in user space
for the length of dashes and gaps. phase is a number that specifies a distance in
user space into the dash pattern at which to begin marking the path. The default
dash pattern is a solid line. (setdash)

The S (stroke) operator uses the contents of the array of dashes and gaps in a
cyclical fashion; when it reaches the end of the array, it starts again at the
beginning.

When a path consisting of several subpaths is stroked, each subpath is treated
independently—in other words, the dash pattern is restarted and phase is applied
to it at the beginning of each subpath.

8.4.4 Line join style

The line join style specifies the shape to be used at the corners of paths that are
stroked. Figure 8.5 shows the allowed values.

[] 0

[3] 0

[2] 1

[3 5] 6

[2 3] 11

[2 1] 0

Turn dash off–solid line

3 units on, 3 units off, …

1 on, 2 off, 2 on, 2 off, …

2 on, 1 off, 2 on, 1 off, …

2 off, 3 on, 5 off, 3 on, 5 off, …

1 on, 3 off, 2 on, 3 off, 2 on, …

Dash pattern
Array and

phase Description

8: Page Descriptions March 11, 1999

326 Adobe Systems Inc.

Figure 8.5 Line join styles

Arguments Operator Semantics

linejoin j Sets the line join parameter in the graphics state. linejoin has a default value of 0.
(setlinejoin)

8.4.5 Line width

The line width specifies the thickness of the line used to stroke a path and is
measured in user space units. A line width of 0 specifies the thinnest line that can
be rendered on the output device.

Note A line width of 0 is an inherently device-dependent value. Its use is discouraged
because the line may be nearly invisible when printing on high-resolution devices.

Arguments Operator Semantics

linewidth w Sets the line width parameter in the graphics state. linewidth is a number and has a
default value of 1. (setlinewidth)

0

1

2

Line join
style Description

Miter joins —the outer edges of
the strokes for the two segments
are continued until they meet. If
the extension projects too far, as
determined by the miter limit, a
bevel join is used instead.

Round joins—a circular arc with
a diameter equal to the line width
is drawn around the point where
the segments meet and filled in,
producing a rounded corner.

Bevel joins—the two path
segments are drawn with butt
end caps (see the discussion of
line cap style), and the resulting
notch beyond the ends of the
segments is filled in with a
triangle.

March 11, 1999 8.4.6

8: Page Descriptions 327

8.4.6 Miter limit

When two line segments meet at a sharp angle and mitered joins have been
specified as the line join style, it is possible for the miter to extend far beyond the
thickness of the line stroking the path. The miter limit imposes a maximum on the
ratio of the miter length to the line width, as shown in Figure 8.6. When the limit is
exceeded, the join is converted from a miter to a bevel.

The ratio of miter length to line width is directly related to the angle ϕ between the
segments in user space by the formula:

For example, a miter limit of 1.415 converts miters to bevels for ϕ less than 90
degrees, a limit of 2.0 converts miters to bevels for ϕ less than 60 degrees, and a
limit of 10.0 converts miters to bevels for ϕ less than 11 degrees.

Figure 8.6 Miter length

Arguments Operator Semantics

miterlimit M Sets the miter limit parameter in the graphics state. miterlimit is a number that
must be greater than or equal to 1, and has a default value of 10. (setmiterlimit)

8.4.7 Generic Graphics State operator

All the remaining parameters in the General Graphics State are set with the gs
operator, whose operand is an “extended graphics state” dictionary. (See page
272.) Each parameter uses a different keyword in this dictionary.

Note It is expected that any future extensions to the graphics state will also use the gs
operator, with new keywords, rather than new operators.

miter length
line length

----------------------------- 1

ϕ
2
--- 

 sin

-----------------=

Miter
length

Line width

ϕ

8: Page Descriptions March 11, 1999

328 Adobe Systems Inc.

Arguments Operator Semantics

name gs Sets the specified device-dependent parameters in the graphics state: stroke
adjustment, overprint, black generation, undercolor removal, transfer function,
halftone, and halftone phase. Parameters that are not specified are not changed.
name is the name of an ExtGState dictionary in the current Resources dictionary.

In PDF 1.3, all the parameters of the General Graphics State, which can be set by
operators described in Sections 8.4.1 through 8.4.6, have equivalent keys in the
ExtGState dictionary. This is intended for use by Type 2 patterns (smooth
shading), which do not have a contents stream.

8.4.8 Stroke adjustment

The stroke adjustment parameter controls whether the line width and the
coordinates of a stroke are automatically adjusted as necessary to produce lines of
uniform thickness. For details, see section 7.5.2, “Automatic Stroke Adjustment,”
of the PostScript Language Reference Manual, Third Edition [1]. The keyword for
stroke adjustment is SA. The default value is true.

8.4.9 Overprint

The overprint parameter is used only when producing separations. It specifies
whether painting on one separation causes the corresponding areas of other
separations to be erased (false) or left unchanged (true). See section 4.8.4, “Special
Color Spaces,” of the PostScript Language Reference Manual, Second Edition [1].

Separate keywords are used for controlling overprint for fill and for stroke. The
keyword OP specifies overprint for stroke; the keyword op specifies overprint for
fill. In an ExtGState dictionary, if OP is specified but op is omitted, then the OP
key applies to both fill and stroke. The default value is false for both OP and op.

The dictionary may also specify an overprint mode with the OPM key. The
overprint mode affects the interpretation of the k and K operators, which set the
color in a 4-component CMYK color space (k for fill, K for stroke). If the
overprint mode is 0 (the default), then a color component of 0 erases (“paints
white”) the current path on the corresponding separation. If the overprint mode is
1, then a color component of 0 leaves the corresponding separation unchanged. For
example, if overprint mode is 1, then the operation .2 .3 0 1 k leaves the
third (yellow) separation unchanged. It has a similar effect to .2 .3 1 sc in a
[/DeviceN [/Cyan /Magenta /Black] …] color space.

8.4.10 Black generation

The black-generation function computes the value of the black component during
conversion from DeviceRGB color space to DeviceCMYK. For additional
information, see section 6.2.3, “Conversion from DeviceRGB to
DeviceCMYK,” of the PostScript Language Reference Manual, Second Edition
[1]. The keyword for black generation is BG.

PDF 1.2PDF 1.2

PDF 1.3

PDF 1.2

PDF 1.2

PDF 1.3

PDF 1.3

PDF 1.2

March 11, 1999 8.4.11

8: Page Descriptions 329

8.4.11 Undercolor removal

The undercolor removal function computes the amount to subtract from the cyan,
magenta, and yellow components during conversion of color values from
DeviceRGB color space to DeviceCMYK. See section 7.2.3, “Conversion from
DeviceRGB to DeviceCMYK,” of the PostScript Language Reference Manual,
Third Edition [1]. The keyword for undercolor removal is UCR.

8.4.12 Transfer function

The transfer function adjusts the values of the gray color component. It is also a
part of some halftone screens. For complete details, see section 6.3, “Transfer
Functions,” of the PostScript Language Reference Manual, Second Edition [1].
The keyword for transfer function is TR.

8.4.13 Halftone

The halftone parameter of the graphics state specifies how halftones should be
produced. See 7.15, “Extended graphics states,” for details about halftones. For
general information on halftones, see section 6.4.3, “Halftone Dictionaries,” of the
PostScript Language Reference Manual, Second Edition [1]. The keyword for
halftone is HT.

8.4.14 Halftone phase

The halftone phase parameters of the graphics state specifies the phase relationship
of halftone cells to the coordinate axes. See section 7.3.3, “Halftone Phase,” of the
PostScript Language Reference Manual, Second Edition [1]. The keyword for
halftone phase is HTP.

8.4.15 Smoothness

This parameter controls the quality of smooth shading (Type 2 patterns and the sh
operator), and thus indirectly controls the rendering performance. Smoothness is
the allowable color error between shading approximated with piecewise linear
interpolation and the true shading of a possibly nonlinear shading function. The
error is measured for each color component, and the maximum error is used. The
allowable error (or tolerance) is specified as a percentage of the range of the color
component. This percentage is expressed as a value from 0 to 1. Thus, a
smoothness parameter of 0.1 represents a tolerance of 10% in each color
component.

Each device may have internal limits on the maximum and minimum tolerances
attainable. For example, setting smoothness to 1 may result in an internal
smoothness of 0.5 on a high-quality color device, and setting smoothness to 0 on
the same device may result in an internal smoothness of 0.01 if an error of that
magnitude is imperceptible on that device.

The smoothness parameter may also interact with the accuracy of color
conversion. In the case of a color conversion defined by a sampled function, the
conversion function is unknown. Thus, the error may be sampled at too low a

PDF 1.2

PDF 1.2

PDF 1.2

PDF 1.2

PDF 1.3

8: Page Descriptions March 11, 1999

330 Adobe Systems Inc.

frequency, in which case, the accuracy defined by the smoothness parameter
cannot be guaranteed. In most cases, however, where the conversion function is
smooth and continuous, the accuracy should be within the specified tolerance.

The effect of the smoothness parameter is similar to that of the flatness parameter.
Note, however, that flatness is measured in device-dependent units of pixel width,
whereas smoothness is measured as a percentage of color component range.

The keyword for smoothness is SM.

8.5 Color

8.5.1 Color parameters

8.5.1.1 Fill color

The fill color is used to paint the interior of paths and text characters that are filled.
Filling is described in Section 8.6.2, “Path painting operators.”

8.5.1.2 Stroke color

The stroke color is used to paint the border of paths and text that are stroked.
Stroking is described in Section 8.6.2, “Path painting operators.”

8.5.1.3 Fill color space

The fill color space is the color space in which the fill color is specified.

8.5.1.4 Stroke color space

The stroke color space is the color space in which the stroke color is specified.

8.5.1.5 Rendering intent

The rendering intent is a name that indicates the style of color rendering that
should occur. See Section 7.13, “XObjects,” and especially Table 7.36, “Color
rendering intents,” for further detail.

8.5.2 Color operators

The operators that set colors and color spaces fall into two classes. Operators in the
first class, which were defined in PDF 1.0, set the color and color space at the same
time, and they include only device-dependent color spaces. Operators in the
second class, which are defined in PDF 1.1, set colors and color spaces separately,
and they apply to all color spaces.

The default color space is DeviceGray, and the default fill and stroke colors are
both black.

PDF 1.1

PDF 1.1

PDF 1.1

�

PDF 1.1

March 11, 1999 8.5.2

8: Page Descriptions 331

Color operators may appear inside Text Objects or at the Page-Description Level.
See Figure 8.1.

8.5.2.1 Device-dependent color space operators

Arguments Operator Semantics

gray g Sets the color space to DeviceGray (or the DefaultGray color space, see Section
7.12.12 on page 245), and sets the gray tint to use for filling paths. gray is a
number between 0 (black) and 1 (white). (setgray (fill))

gray G Sets the color space to DeviceGray (or the DefaultGray color space, see Section
7.12.12 on page 245), and sets the gray tint to use for stroking paths. gray is a
number between 0 (black) and 1 (white). (setgray (stroke))

r g b rg Sets the color space to DeviceRGB (or the DefaultRGB color space, see Section
7.12.12 on page 245), and sets the color to use for filling paths. Each operand must
be a number between 0 (minimum intensity) and 1 (maximum intensity).
(setrgbcolor (fill))

r g b RG Sets the color space to DeviceRGB (or the DefaultCMYK color space, see
Section 7.12.12 on page 245), and sets the color to use for stroking paths. Each
operand must be a number between 0 (minimum intensity) and 1 (maximum
intensity). (setrgbcolor (stroke))

c m y k k Sets the color space to DeviceCMYK (or the DefaultCMYK color space, see
Section 7.12.12 on page 245), and sets the color to use for filling paths. Each
operand must be a number between 0 (no ink) and 1 (maximum ink). The behavior
of the k operator is affected by the overprint mode; see Section 8.4.9 on page 328.
(setcmykcolor (fill))

c m y k K Sets the color space to DeviceCMYK (or the DefaultRGB color space, see
Section 7.12.12 on page 245), and sets the color to use for stroking paths. Each
operand must be a number between 0 (no ink) and 1 (maximum ink). The behavior
of the K operator is affected by the overprint mode; see Section 8.4.9 on page 328.
(setcmykcolor (stroke))

8.5.2.2 Generic color space operators

Arguments Operator Semantics

colorspace cs Sets the color space to use for filling paths. colorspace must be a name. If the
color space is specified by a name (the device-dependent color spaces
DeviceGray, DeviceRGB, and DeviceCMYK; or the Pattern color space for
colored tiling patterns or shading patterns), then that name may be used. If it is
specified by an array (all other color spaces), then colorspace must be a name
defined in the current Resources dictionary. (setcolorspace (fill))

PDF 1.1

8: Page Descriptions March 11, 1999

332 Adobe Systems Inc.

For example, the following expression is illegal:

[/CalGray dict] cs

Instead, one would write

/CS42 cs

and the Resources dictionary would contain

/CS42 [/CalGray dict]

The cs operator also sets the current fill-color to its initial value, which depends on
the color space. For the device-dependent, calibrated, and ICCBased color
spaces, the initial color is black. For a Lab color space, the initial value is specified
by the minimum Range values. For an Indexed color space, the initial value is 0.
The initial value in a Separation color space is 1, and the initial color value in a
Pattern color space is a pattern that has an empty stream of marking operators,
thus producing no marks on the page.

Arguments Operator Semantics

colorspace CS Same as cs, but for strokes. (setcolorspace (stroke))

c1 c2 c3 c4 sc Sets the color to use for filling paths. The number of operands required and their
interpretation is based on the current fill color space. For DeviceGray, CalGray,
and Indexed color spaces, one operand is required. For DeviceRGB, CalRGB,
and Lab color spaces, three operands are required. For DeviceCMYK and
CalCMYK, four operands are required. (setcolor (fill))

c1 c2 c3 c4 SC Same as sc, but for stroking paths. (setcolor (stroke))

c1 … cn scn
c1 … cn name scn scn accepts the same parameters, and has the same effect, as sc. In addition, it

supports Pattern, Separation, ICCBased, and DeviceN colors. (setcolor (fill
for patterns))

If the current fill color space is a Pattern color space, then scn sets the pattern to
use for filling paths. name is the name of a Pattern resource in the current
Resources dictionary. If the pattern is uncolored (if PatternType is 1 and
PaintType is 2), then the color is determined by the component values c1 … cn in

the underlying color space. If the pattern is colored (if PatternType is 1 and
PaintType is 1), or if it a shading pattern (if PatternType is 2), then the
component values must not be specified.

If the current fill color space is a Separation color space, then scn sets the tint
for filling paths to c1, which is a number in the range 0 to 1 that represents the

amount of colorant to be applied.

If the current fill color space is an ICCBased color space, then scn sets the color
values for filling paths to c1 … cn, which are numbers in the range 0 to 1.

PDF 1.2

�

PDF 1.3

March 11, 1999 8.5.2

8: Page Descriptions 333

If the current fill color space is a DeviceN color space, then scn sets the tints for
filling paths to c1 … cn, which are numbers in the range 0 to 1 that represents the

amount of each colorant to be applied. (setcolor (fill))

c1 … cn SCN
c1 … cn name SCN Same as scn, but for strokes. (setcolor (stroke))

8.5.2.3 Color rendering intent

Arguments Operator Semantics

intent ri Sets the color rendering intent in the graphics state.

intent is a name of a color rendering intent, which indicates the style of color
rendering that should occur, as described in Table 7.36 on page 252.

8.6 Paths

Paths are used to represent lines, curves, and regions. A path consists of a series of
path segment operators describing where marks are to appear on the page,
followed by a path painting operator, which actually marks the path in one of
several ways. A path may be composed of one or more disconnected sections,
referred to as subpaths. An example of a path with two subpaths is a path
containing two parallel line segments.

Path segments may be straight lines or curves. Curves in PDF files are represented
as cubic Bézier curves. A cubic Bézier curve is specified by the x- and y-
coordinates of four points: the two endpoints of the curve (the current point, P0,
and the final point, P3) and two control points (points P1 and P2), as shown in
Figure 8.7.

PDF 1.3

PDF 1.2

PDF 1.1

8: Page Descriptions March 11, 1999

334 Adobe Systems Inc.

Once these four points are specified, the cubic Bézier curve R(t) is generated by
varying the parameter t from 0 to 1 in the following equation:

In this equation, P0 is the current point before the curve is drawn. When the
parameter t has the value 0, R(t) = P0 (the current point). When t = 1, R(t) = P3. The
curve does not, in general, pass through the two control points P1 and P2.

Bézier curves have two desirable properties. First, the curve is contained within the
convex hull of the control points. The convex hull is most easily visualized as the
polygon obtained by stretching a rubber band around the outside of the four points
defining the curve. This property allows rapid testing of whether the curve is
completely outside the visible region, and so does not have to be rendered. Second,
Bézier curves can be very quickly split into smaller pieces for rapid rendering.

Note In the remainder of this book, the term Bézier curve means cubic Bézier curve.

Paths are subject to and may also be used for clipping. Path clipping operators
replace the current clipping path with the intersection of the current clipping path
and the current path.

<path> ::= <subpath>+
[path clipping operator]
<path painting operator>

<subpath> ::= m <path segment operator except m and re>* |
re

8.6.1 Path segment operators

All operands are numbers that are coordinates in user space.

P1 (x1, y1)
P2 (x2, y2)

P3 (x3, y3)

P0 (current point)

Figure 8.7 Bézier curve

x1 y1 x2 y2 x3 y3 c

R t() 1 t–()3
P0 3t 1 t–()2

P1 3t
2

1 t–()P2 t
3
P3+ + +=

March 11, 1999 8.6.1

8: Page Descriptions 335

Arguments Operator Semantics

x y m Moves the current point to (x, y), omitting any connecting line segment. (moveto)

x y l (operator is lowercase L) Appends a straight line segment from the current point to
(x, y). The new current point is (x, y). (lineto)

x1 y1 x2 y2 x3 y3 c Appends a Bézier curve to the path. The curve extends from the current point to
(x3, y3) using (x1, y1) and (x2, y2) as the Bézier control points, as shown in Figure
8.7. The new current point is (x3, y3). (curveto)

x2 y2 x3 y3 v Appends a Bézier curve to the current path between the current point and the point
(x3, y3) using the current point and (x2, y2) as the Bézier control points, as shown
in Figure 8.8. The new current point is (x3, y3). (curveto (first control point
coincides with initial point on curve))

Figure 8.8 v operator

x1 y1 x3 y3 y Appends a Bézier curve to the current path between the current point and the point
(x3, y3) using (x1, y1) and (x3, y3) as the Bézier control points, as shown in Figure
8.9. The new current point is (x3, y3). (curveto (second control point coincides
with final point on curve))

Current point

(x2, y2)

(x3, y3)

x2 y2 x3 y3 v

8: Page Descriptions March 11, 1999

336 Adobe Systems Inc.

Figure 8.9 y operator

x y width height re Adds a rectangle to the current path.

width and height are distances in user space. The operation

x y width height re

is defined to have the same effect as the sequence

x y m

x+width y l

x+width y+height l

x y+height l

h

h Closes the current subpath by appending a straight line segment from the current
point to the starting point of the subpath. (closepath)

8.6.2 Path painting operators

Paths may be stroked and/or filled. As in the PostScript language, painting
completely obscures any marks already on the page under the region that is
painted.

Stroking draws a line along the path, using the line width, dash pattern, miter limit,
line cap style, line join style, stroke color, stroke color space, and stroke
adjustment from the graphics state. The line drawn when a path is stroked is
centered on the path. If a path consists of multiple subpaths, each is treated
separately.

The process of filling a path paints the entire region enclosed by the path, using the
fill color and fill color space. If a path consists of several disconnected subpaths,
each is filled separately. Any open subpaths are implicitly closed before being
filled. Closing is accomplished by adding a segment between the first and last

Current point

(x1, y1)

(x3, y3)

x1 y1 x3 y3 y

March 11, 1999 8.6.2

8: Page Descriptions 337

points on the path. For a simple path, it is clear what lies inside the path and should
be painted by a fill. For more complicated paths, it is not so obvious. One of two
rules is used to determine which points lie inside a path.

The non-zero winding number rule uses the following test to determine whether a
given point is inside a path and should be painted. Conceptually, a ray is drawn in
any direction from the point in question to infinity, and the points where the ray
crosses path segments are examined. Starting from a count of zero, add one to the
count each time a path segment crosses the ray from left to right, and subtract one
from the count each time a path segment crosses the ray from right to left. If the
ray encounters a path segment that coincides with it, the result is undefined. In this
case, a ray in another direction can be picked, since all rays are equivalent. After
counting all the crossings, if the result is zero then the point is outside the path.
The effect of using this rule on various paths is illustrated in Figure 8.10. The non-
zero winding number rule is used by the PostScript language fill operator.

Figure 8.10 Non-zero winding number rule

The even–odd rule uses a slightly different strategy. The same calculation is made
as for the non-zero winding number rule, but instead of testing for a result of zero,
a test is made as to whether the result is even or odd. If the result is odd, the point
is inside the path; if the result is even, the point is outside. The result of applying
this rule to various paths is illustrated in Figure 8.11. The even–odd rule is used by
the PostScript language eofill operator.

Figure 8.11 Even–odd rule

8: Page Descriptions March 11, 1999

338 Adobe Systems Inc.

Arguments Operator Semantics

n Ends the path without filling or stroking it. This is a “path painting no-op,”
primarily used with a path clipping operator (see Section 8.6.3, “Path clipping
operators), but like the other path painting operators, it terminates a Path Object.
(newpath)

S Strokes the path. (stroke)

s Similar to the S operator, but closes the path before stroking it. (closepath and
stroke) s has the same effect as h S.

f Fills the path, using the non-zero winding number rule to determine the region to
fill. (fill)

F Same as the f operator. Included only for compatibility. Although applications that
read PDF files must be able to accept this operator, applications that generate PDF
files should use the f operator instead. (fill)

f* Fills the path, using the even–odd rule to determine the region to fill. (eofill)

B fill and stroke. B has the same effect as q f Q S.

b closepath, fill, and stroke. b has the same effect as h B.

B* eofill and stroke. B* has the same effect as q f* Q S.

b* closepath, eofill, and stroke. b* has the same effect as h B*.

name sh When a path that is to be filled with a gradient (see Section 7.17 on page 287) has
the same geometry as the gradient itself, it is not necessary to define the gradient as
a Type 2 pattern, define the path separately, and then use the f (fill) operator.
Instead, one may use the sh operator to paint the same area. (shfill)

name is the name of a Shading dictionary in the current Resources dictionary. (If
its ShadingType is greater than 3, this dictionary is part of a stream.) All
coordinates in the Shading dictionary are interpreted relative to the current user
space. (When a Shading dictionary is used in a pattern, the coordinates are
expressed in pattern space.)

8.6.3 Path clipping operators

Path clipping operators cause the current clipping path to be replaced with the
intersection of the current clipping path and the path. A path is made into a
clipping path by inserting a path clipping operator (W or W*) between the last path
segment operator and the path painting operator.

Although the path clipping operator appears before the path painting operator, the
path clipping operator does not alter the clipping path at the point it appears.
Rather, it modifies the effect of the path painting operator. After the path is filled,

PDF 1.3

March 11, 1999 8.7.1

8: Page Descriptions 339

stroked, or ended by the path painting operator, it is set to be the current clipping
path. If the path is both filled and stroked, the painting is done in that order before
making the path the current clipping path.

The definition of the clipping path and all subsequent operations it is to affect
should be contained between a pair of q and Q operators. Execution of the Q
operator causes the clipping path to revert to that saved by the q operator, before
the clipping path was modified.

Arguments Operator Semantics

W Uses the non-zero winding number rule to determine which regions are inside the
clipping path. (clip)

W* Uses the even–odd rule to determine which regions are inside the clipping path.
(eoclip)

8.7 Text state

The text state is composed of those graphics state parameters that affect only text.

8.7.1 Text State parameters and operators

There are nine parameters in the text state, each of which can be set individually:

1. Tc is the character spacing parameter.

2. Tw is the word spacing parameter.

3. Th is the horizontal spacing parameter.

4. Tl is the “leading” parameter.

5. Tf is the text font.

6. Tfs is the text font size.

7. Tm is the text matrix.

8. Tmode is the rendering mode.

9. Trise is the “text rise”.

There are two additional parameters of the text state:

1. TLM is the matrix for the current text line.

2. TRM is the rendering matrix.

8: Page Descriptions March 11, 1999

340 Adobe Systems Inc.

Each of the items in the text state is described in the following sections.

Note Section 8.7.4, “Text rendering,” describes how these parameters are used, and
their exact effects on the text state.

Note These operators can appear outside of text objects, and the values they set are
retained across text objects on a single page. Like other graphics state parameters,
the values are initialized to the default values at the beginning of each page.

8.7.1.1 Character spacing

The character spacing parameter, Tc, is a number specified in text space units. It is
added to the displacement between the origin of one character and the origin of the
next. See Figure 7.3 on page 209 for examples of character origins and
displacements. In the default coordinate system, the positive direction of the x-axis
points to the right, and the positive direction of the y-axis points upward. So for
horizontal writing, a positive value of Tc has the effect of expanding the space
between characters; see Figure 8.12. For vertical writing, however, a negative
value of Tc has the effect of expanding the space between characters.

Figure 8.12 Character spacing for horizontal writing

Character spacing is applied to each glyph in the string, regardless of the number
of bytes used for that glyph’s character code. Therefore character spacing is used
even with fonts that have multi-byte encodings.

Arguments Operator Semantics

charSpace Tc Set character spacing

Sets Tc to charSpace. Character spacing is used, together with word spacing, by

the Tj, TJ, and ' operators. charSpace is a number expressed in text space units
and has an initial value of 0.

8.7.1.2 Word spacing

The word spacing parameter, Tw, is a number specified in text space units. It works
in the same way as character spacing, but applies only to the space character, <20>.
Tw is added to the displacement between the origin of the space character and the
origin of the following character. For horizontal writing, a positive value for Tw has
the effect of increasing the spacing between words. For vertical writing, a positive

Character 0 (default)

C h a r a c t e r 0.25

March 11, 1999 8.7.1

8: Page Descriptions 341

value for Tw decreases the space between words, since the positive direction of the
y-axis points upward; therefore a negative value will increase the space between
words. Figure 8.13 illustrates the effect of word spacing in horizontal writing.

Figure 8.13 Effect of word spacing in horizontal writing

Word spacing is applied to every instance of the single byte <20> in a string.
Therefore word spacing is not used with fonts that have only multi-byte encodings
or with fonts whose encodings do not use the single byte <20> as the space
character.

Arguments Operator Semantics

wordSpace Tw Set word spacing

Sets Tw to wordSpace. Word spacing is used by the Tj, TJ, and ' operators.
wordSpace is a number expressed in text space units and has an initial value of 0.

8.7.1.3 Horizontal scaling

The horizontal scaling parameter, Th, adjusts the width of characters by stretching
or shrinking them in the horizontal direction. The scaling is specified as a percent
of the normal width of the characters, with 100 being the normal width. Figure
8.14 shows the effect of horizontal scaling. The scaling always applies to the x
coordinate, independent of the writing mode.

Figure 8.14 Horizontal scaling

Arguments Operator Semantics

scale Tz Set horizontal scaling

Word Space 0 (default)

Word Space 2.5

Word
WordWord

100 (default)

50

8: Page Descriptions March 11, 1999

342 Adobe Systems Inc.

Sets Th to (scale ÷ 100). scale is a number expressed in percent of the normal
scaling and has an initial value of 100.

8.7.1.4 Leading

The leading parameter, Tl, is measured in text space units. It specifies the vertical
distance between the baselines of adjacent lines of text, as shown in Figure 8.15.
The leading parameter is used by the TD, T*, ', and " operators; it is independent of
the writing mode.

Figure 8.15 Leading

Arguments Operator Semantics

leading TL Set text leading

Sets Tl to leading. The TL operator need not be used in a PDF file unless the T*, ',
or " operators are used. leading has an initial value of 0.

8.7.1.5 Text font and size

Arguments Operator Semantics

fontname size Tf Set font and size

Sets Tf to fontname and Tfs to size. There is no initial value for either fontname
or size; they must be specified using Tf before drawing any text. fontname is the
name of a Font in the current Resources dictionary. size is a number expressed in
text space units.

8.7.1.6 Text matrix

The text matrix specifies the transformation from text space (see Section 3.3, “Text
space”) to user space. The text matrix is set with the Tm operator (see page 345).

This is 12 point text with
14.5 point leading

Leading

March 11, 1999 8.7.1

8: Page Descriptions 343

8.7.1.7 Text rendering mode

Determines whether text is stroked, filled, or used as a clipping path.

Note The text rendering mode has no effect on text displayed using a Type 3 font.

The rendering modes are shown in Figure 8.16. In the figure, a stroke color of
black and a fill color of light gray are used. After one of the clipping modes is used
for text rendering, the text object must be ended using the ET operator before
changing the text rendering mode.

Note For the clipping modes (4–7), a series of lines has been drawn through the
characters in Figure 8.16 to show where the clipping occurs.

Figure 8.16 Text rendering modes

Arguments Operator Semantics

render Tr Set the text rendering mode.

R
R
R

1

2

3

0

4

5

6

7

Rendering
mode Description

Fill text

Stroke text

Fill then stroke text

Text with no fill and no stroke (invisible)

Fill text and add it to the clipping path

Stroke text and add it to the clipping path

Fill then stroke text and add it to the clipping path

Add text to the clipping path

8: Page Descriptions March 11, 1999

344 Adobe Systems Inc.

Sets Tmode to render, which is an integer and has an initial value of 0.

8.7.1.8 Text rise

Text rise specifies the amount, in text space units, to move the baseline up or down
from its default location. Positive values of text rise move the baseline up.
Adjustments to the baseline are useful for drawing superscripts or subscripts. The
default location of the baseline can be restored by setting the text rise to 0. Figure
8.17 illustrates the effect of the text rise, which is set using the Ts operator. Text
rise always applies to the y coordinate, regardless of the writing mode.

Figure 8.17 Text rise

Arguments Operator Semantics

rise Ts Set text rise.

Sets Trise to rise, which is a number expressed in text space units and has an initial

value of 0.

8.7.2 Text Object operators

A PDF text object consists of operators that specify character strings, movement of
the current point, and text state. A text object begins with the BT operator and ends
with the ET operator. See Figure 8.1 on page 320.

<text object> ::= BT
<text operator or graphics state operator>*
ET

When BT is encountered, the text matrix is initialized to the identity matrix. When
ET is encountered, the text matrix is discarded. Text objects cannot be nested—a
second BT cannot appear before an ET.

This text is superscripted (This text is) Tj 5 Ts (superscripted) Tj

(This) Tj –5 Ts (text) Tj 5 Ts
(moves) Tj 0 Ts (around) Tj

(This text is) Tj –5 Ts (subscripted) Tj

This text
moves around

This text is subscripted

March 11, 1999 8.7.3

8: Page Descriptions 345

Note If a page does not contain any text, no text operators (including operators that
merely set the text state) may be present in the page description.

Arguments Operator Semantics

BT Begins a Text Object. Initializes the text matrix, Tm, and the line matrix, TLM, to
the identity matrix.

ET Ends a Text Object. Discards the text matrix.

8.7.3 Text positioning operators

A text object keeps track of the current point and the start of the current line. The
text string operators move the current point as the various forms of the PostScript
language show operator do. Operators that move the start of the current line move
the current point as well.

Note These operators may appear only within text objects. See Figure 8.1 on page 320.

Arguments Operator Semantics

tx ty Td Moves to the start of the next line, offset from the start of the current line by (tx, ty).
tx and ty are numbers expressed in text space units. More precisely, Td performs
the following assignments:

tx ty TD Moves to the start of the next line, offset from the start of the current line by (tx, ty).
As a side effect, this sets the leading parameter in the text state.

tx ty TD is defined to have the same effect as -ty TL tx ty Td

a b c d x y Tm Sets the text matrix, Tm, and the text line matrix, TLM. It also sets the current point

and line start position to the origin. Tm performs the following assignments:

The operands are all numbers, and the initial value for Tm and TLM is the identity

matrix, [1 0 0 1 0 0]. Although the operands specify a matrix, they are
passed to Tm as six numbers, not as an array.

Tm TLM

1 0 0

0 1 0

tx ty 1

TLM×= =

Tm TLM

a b 0

c d 0

x y 1

= =

8: Page Descriptions March 11, 1999

346 Adobe Systems Inc.

The matrix specified by the operands passed to the Tm operator is not
concatenated onto the current text matrix, but replaces it.

T* Moves to the start of the next line.

T* is defined to have the same effect as 0 Tl Td

where Tl is the leading parameter of the text state.

8.7.4 Text rendering

Before text is rendered by the Tj or TJ operator, it is placed and transformed
according to the parameters in the text state. The rendering matrix for the text is
computed as follows:

The current text matrix, Tm, is translated by the text rise, Trise. Next, that is scaled
by the font size, Tfs, and the horizontal text scale, Th. Finally, that is concatenated
to the current transformation matrix in the graphics state (CTM) to produce the
rendering matrix, TRM:

This calculation occurs, in effect, whenever any of the text parameters change,
before Tj or TJ occur. When text is rendered, the text line matrix, TLM, is
unaffected, but the text matrix, Tm, is translated by the origin-displacement of the
text, which affects subsequent rendering operations, as shown above. For
horizontal-mode writing, the origin-displacement is along the x axis; for vertical
writing (see Section 7.7.8 on page 208), the displacement is along the y axis.

8.7.5 Text string operators

These operators draw text on the page. Although it is possible to pass individual
characters to the text string operators, text searching performs significantly better
if the text is grouped by word and paragraph.

PDF supports the same conventions as the PostScript language for specifying non-
printable ASCII characters. That is, a character can be represented by an escape
sequence, as described in Table 4.1 on page 38.

Note The default current point is at the page origin. Therefore, unless some prior
operation in the same text object changes the current point, the text will appear at
the origin. It is suggested that a Tm operation be used to establish the initial
current point in a text object at the position in text space where initial text is to
appear. Subsequent text operations may change the current point.

TRM

Tfs Th× 0 0

0 Tfs 0

0 Trise 1

Tm CTM××=

March 11, 1999 8.7.5

8: Page Descriptions 347

Arguments Operator Semantics

string Tj Shows text string, using the character and word spacing parameters from the text
state. (show)

string ' Moves to next line and shows text string, using the character and word spacing
parameters from the text state. (show)

string ' is defined to have the same effect as T* string Tj

aw ac string " Moves to next line and shows text string. aw and ac are numbers expressed in text
space units. aw specifies the additional space width, and ac specifies the additional
space between characters. (show)

aw ac string " is defined to have the same effect as aw Tw ac Tc string '

Note The values specified by aw and ac remain the word and character spacings after
the " operator is executed.

[number or string …] TJ Shows text string, allowing individual character positioning, and using the
character and word spacing parameters from the text state. (show with
displacements)

For each element of the array, if the element is a string, TJ shows the string. If it is
a number, it is expressed in thousandths of an em. (An em is a typographic unit of
measurement equal to the size of a font. For example, in a 12-point font, an em is
12 points.) TJ subtracts this amount from the current x coordinate in horizontal
writing mode, or from the current y coordinate in vertical writing mode. In the
normal case of horizontal writing in the default coordinate system, this has the
effect of moving the current point to the left by the given amount.

Each character is first justified according to any character and word spacing
settings made with the Tc, Tw, or " operators, and then any numeric offset present
in the array passed to the TJ operator is applied. An example of the use of TJ is
shown in Figure 8.18.

Figure 8.18 Operation of TJ operator in horizontal writing

�

[(AWAY again)] TJAWAY again
[(A) 120 (W) 120 (A) 95 (Y again)] TJAWAY again

8: Page Descriptions March 11, 1999

348 Adobe Systems Inc.

8.7.6 Text strings in multi-byte fonts

The text string operators can be used with any string. For strings that use multi-
byte encodings, the high-order byte of a character code must appear first. The
strings must conform to the syntax for string objects. Therefore care must be taken
when including multi-byte character codes. These codes may contain single-byte
values that are the same as the ASCII characters for left parenthesis (<28>), right
parenthesis (<29>), and backslash (<5C>). When a string is written by enclosing
the data in parentheses, these bytes must be preceded by the backslash character.
All other byte values between <00> and <FF> may be used in a string object.

8.8 External objects (XObjects)

PDF defines three types of XObjects: Image XObjects, Form XObjects, and
PostScript XObjects.

8.8.1 XObject operators

The Do operator permits the execution of an arbitrary object whose data is
encapsulated within a PDF object. The currently defined XObjects are images and
PostScript language forms, discussed in Section 7.13, “XObjects.”

Arguments Operator Semantics

xobject Do Executes the specified XObject. xobject must be the name of an Image, Form, or
PostScript XObject in the current Resources dictionary. See Section 7.13,
“XObjects.

string PS The PS operator provides an in-line equivalent to a PostScript XObject. The PS
operator has one argument, a string. When a PS operator is encountered while a
document is being printed to a PostScript printer, the contents of the string are
placed into the PostScript output as the argument of an instance of the PostScript
operator exec. This string is copied without interpretation and may include
PostScript comments. In any other case, the PS operator has no other effect. See
Section 7.13.8 on page 257 for additional information.

8.9 In-line image objects

In addition to the Image XObject described in Section 7.13, “XObjects,” PDF
supports in-line images. An in-line Image Object consists of the operator BI,
followed by Image XObject key–value pairs, followed by the operator ID, followed
by the image data, followed by EI:

<in-line image> ::=
BI
<Image XObject key–value pairs>

PDF 1.2

PDF 1.1

�

March 11, 1999 8.8.1

8: Page Descriptions 349

ID
<lines of data>*
EI

Note If an in-line image does not use ASCIIHexDecode or ASCII85Decode as one
of its filters, ID should be followed by a single space. The character following the
space is interpreted as the first byte of image data.

Image data may be encoded using any of the standard PDF filters. The key–value
pairs provided in an in-line image should not include keys specific to resources:
Type, Subtype, and Name. Within in-line images, the standard key names may
be replaced by the shorter names listed in Table 8.1. These abbreviations may not
be used in Image XObjects, however.

Table 8.1 Abbreviations for in-line image names

Name Abbreviated name

ASCIIHexDecode AHx

ASCII85Decode A85

BitsPerComponent BPC

CCITTFaxDecode CCF

ColorSpace CS

DCTDecode DCT

Decode D

DecodeParms DP

DeviceCMYK CMYK

DeviceGray G

DeviceRGB RGB

Filter F

FlateDecode Fl

Height H

ImageMask IM

Indexed I

Intent no abbreviation

Interpolate I

LZWDecode LZW

RunLengthDecode RL

Width W

PDF 1.2

PDF 1.1

8: Page Descriptions March 11, 1999

350 Adobe Systems Inc.

Note The in-line format should be used only for small images (4K or less) because
viewer applications have less flexibility when managing in-line image data.

In-line images, like Image XObjects, are one unit wide and one unit high in user
space and drawn at the origin. Images are sized and positioned by transforming
user space using the cm operator.

Arguments Operator Semantics

BI Begins image

ID Begins image data

EI Ends image

The value of the CS or ColorSpace key may be a device-dependent color space
(DeviceGray, DeviceRGB, or DeviceCMYK, or its abbreviation from the
preceding table). The value may not be a device-independent color space or a
special color space, with the exception of a limited form of the Indexed color
space, which may be written as

[/Indexed base hival lookup]

where base is a device-dependent color space and lookup is a string; see Section
7.12.10, “Indexed color spaces.” The name /Indexed may be abbreviated as /I.

In PDF 1.2, the value may also be the name of a color space in the current
Resources dictionary. In this case, any color space that may be used with an Image
XObject may be used for the in-line image (see Section 7.13.1, “Images”).

Example 8.1 shows a 17×17 sample in-line image. The image has 8 bits per
component; it is an RGB image that has been LZW and ASCII85 encoded. The
cm operator has been used to scale the image to render at a size of 17×17 user
space units and to be located at an x-coordinate of 298 and a y-coordinate of 388.
The q and Q operators limit the scope of the cm operator’s effect to resizing the
image.

Example 8.1 In-line image

q

17 0 0 17 298 388 cm

BI

/W 17

/H 17

/BPC 8

/CS /RGB

/F [/A85 /LZW]

ID

J1/gKA>.]AN&J?]-<HW]aRVcg*bb.\eKAdVV%/PcZ

… omitted data …

March 11, 1999 8.10.1

8: Page Descriptions 351

R.s(4KE3&d&7hb*7[%Ct2HCqC~>

EI

Q

8.10 Other operators

8.10.1 Type 3 font operators

Type 3 font operators can be used only within the character definitions inside a
Type 3 font. Each Type 3 font definition must begin with either a d0 or d1
operator. See Section 5.7 of the PostScript Language Reference Manual, Third
Edition [1] for details.

Arguments Operator Semantics

wx wy d0 (d zero) setcharwidth

The operands are both numbers.

wx wy llx lly urx ury d1 (d one) setcachedevice

The operands are all numbers.

8.10.2 Compatibility operators

PDF does not specify a viewer’s behavior when it encounters an undefined page
description operator. However, Appendix G does describe the behavior of the
Adobe Acrobat viewers. An Acrobat viewer usually alerts the user when it
encounters an undefined page description operator. The operators below modify
this behavior.

Arguments Operator Semantics

BX This operator directs a viewer to not report any undefined operators until a
matching EX is encountered. (BX–EX pairs may nest.)

EX This operator ends a section of page description in which undefined operators
should not be reported.

8.10.3 Marked Content operators

The Marked Content operators are used in page descriptions such as the Contents
stream of a page to indicate a part of the stream that may be significant to an
application other than a strict PDF consumer, such as a PDF Viewer. The content

PDF 1.1

�

PDF 1.2

8: Page Descriptions March 11, 1999

352 Adobe Systems Inc.

that is marked is not a sequence of bytes in the stream, but a sequence of graphics
objects. Each graphics object is fully qualified by the graphics state in which it is
rendered.

For example, a graphics application might use these operators to indicate that a
certain set of objects constitute a “group.” A text-processing application might use
them to maintain a connection between a footnote number in the running text and
the footnote itself at the bottom of the page.

There are two kinds of marks, those that bracket a sequence of objects, and those
that mark a place in the stream. Bracketed sequences begin with either BMC or
BDC, and they end with EMC. BDC has the same effect as BMC but includes a
property list as additional information. Places are marked with either MP or DP.
DP has the same effect as MP but, like BDC, includes a property list.

These operators may appear only between graphics objects; they may not occur
within a graphics object nor between a graphics state operator and its operands.
See Figure 8.1 on page 320.

Bracketed sequences may be nested within each other. A bracketed sequence must
be entirely contained within a single stream; it may not cross page boundaries, for
example. (The Contents key of a Page object is permitted to be either a stream or
an array of streams; such an array is considered to be a single stream.)

When Marked Content is used with text, the begin-end Marked Content operators
(BMC/BDC and EMC) and the begin-end text operators (BT and ET) must be
properly (separately) nested. That is, the sequence BMC BT … EMC ET is illegal,
as is BT BMC … ET EMC. The sequence BMC BT … ET EMC is legal, as is the
sequence BT BMC … EMC ET.

The BMC and MP operators have only one operand, a tag which indicates the role
of the operator. The BDC and DP operators have an additional operand, a list of
properties that are associated with the mark and whose interpretation is relative to
the tag. The properties are represented by a dictionary. This dictionary may be
written inline in the content stream if all its values are direct objects. If any value is
an indirect object (referring to an object outside the stream), then the list is
specified by the name of a Property List in the current Resources dictionary. (See
page 313.)

With the exception of the Subtype key, PDF makes no assumptions about the
properties; interpretation of this dictionary is up to the application or PDF
extension that placed the content markers in the stream. It is suggested, however,
that any particular extension use keys in a consistent way and always use the same
type (or small set of types) for the values of a particular key.

The tags that are associated with marks must be registered (see Appendix F) to
prevent conflicting usage when more than one application may be marking a
particular content stream. The components of the name, including the registered
prefix, must be separated by a single period, and the tag may not begin with a
period.

March 11, 1999 8.10.3

8: Page Descriptions 353

Arguments Operator Semantics

tag BMC Begin marked content. BMC indicates the beginning of a sequence of graphics
objects that is “marked” in some way. tag must be a name; it should indicate the
role of the content that is marked.

tag properties BDC Begin marked content with a property list. BDC indicates the beginning of a
sequence of graphics objects that is “marked” in some way. tag must be a name; it
should indicate the role of the content that is marked. properties is either an inline
dictionary, that is, a direct object dictionary in the content stream, or it is the name
of a property list in the current Resources dictionary.

EMC End marked content. EMC indicates the end of a marked sequence of graphics
objects. Sequences may be nested.

tag MP Mark a point in the content. MP indicates a place within the sequence of graphics
objects that is “marked.” MP is not intended for use when some subsequence of
the content is being marked: BMC and EMC should be used when the beginning
and end of a subsequence is to be indicated. tag must be a name; it should indicate
the role of the place that is marked.

tag properties DP Mark a point in the content and include a property list. DP is similar to MP, but
includes a property list, as BDC does.

Marked content and clipping

When Marked Content is used to bracket a path or text clip object, then additional
restrictions apply. Apath object may or may not include a clip, and it may or may
not be painted; the same is true of text objects. A “clip object” is either an
unpainted, clipped path object (defined by a sequence including a path segment
operator, a clip operator, followed by the n operator) or an unpainted, clipped text
object (defined by a sequence in which text is painted in text-rendering mode 7). If
a Marked Content includes only clip objects, then the Marked Content applies to
those objects. Otherwise, Marked Content does not apply to clip objects.

Nesting of clip objects within Marked Content is allowed. For example, if multiple
lines of text are used to mask an image, each line of text may be bracketed by
Marked Content, and, the lines of bracketed text may be bracketed by an outer
Marked Content. An empty Marked Content within a clip Marked Content is
considered to be a nested within the clip Marked Content. An additional restriction
is that the save and restore operators (q and Q) may not occur within Marked
Content that is used to bracket clip objects.

The precise rules for determining whether a Marked Content applies to a clip
object are as follows:

1. If the only objects within a Marked Content are clip objects, then the
Marked Content applies to those clip objects.

2. A Marked Content that contains only clip objects is a clip object.

8: Page Descriptions March 11, 1999

354 Adobe Systems Inc.

3. An empty Marked Content that is contained by a clip Marked Content is
part of the clip Marked Content. A Marked Place (denoted by MP and DP)
is treated the same as an empty Marked Content.

4. If both clip and marking objects occur between Marked Content delimiters,
then the clip objects are not marked by the enclosing Marked Content. That
is, any Marked Content attributes do not apply to the clip objects.

5. The largest tree of nested Marked Content operators that contains only
empty Marked Content and clip Marked Content is a clip Marked Content.

6. The save and restore operators (q and Q) may not occur within a Marked
Content that is used to bracket clip objects.

7. Marked Content must nest within BT/ET, and BT/ET must nest within
Marked Content.

8. Invisible graphic objects inside Marked Content are treated as rendered
objects. They are not clip objects.

Examples

Example 1:

/Clip BMC

100 100 10 10 re W n clip path
(Clip me) Tj object that is clipped

EMC

Example 2:

/Clip BMC

/PointText <<...>> BDC

BT

7 Tr begin text clip mode
/Pgf BMC

(Line 1) Tj

EMC

/Pgf BMC

(Line) Tj (2) Tj

EMC

ET set current text clip
EMC

100 100 10 10 re f filled path
EMC

Example 3:

/G1 BMC

/G2 BMC

March 11, 1999 8.10.3

8: Page Descriptions 355

/G3 BMC

0 0 m

100 100 l

0 100 l W n clip path 1
0 0 m

200 200 l

0 100 l f filled path
EMC

/G4 BMC

0 0 m

300 300 l

0 100 l W n clip path 2
EMC

EMC

100 100 10 10 re f filled path
EMC

Example 3 shows how nested clip Marked Content is handled. G3 does not apply
to clip path 1 because G3 also includes a filled path. G4 does apply to clip path 2,
but G2 does not apply to clip path 2.

Example 4:

/1 BMC

<clip path>

/2 BMC

/3 BMC

EMC

DP

EMC

EMC

BMC 2 contains only an empty Marked Content, and a DP. However, they are all
considered clip objects because they are all nested in BMC 1 which is clip-only
and has a real clip object in it. BMC 2 is not empty, but it only contains empty
Marked Content, so it is a clip object. The same rule applies to BMC 3.

Example 5:

/1 BMC

/2 BMC

/3 BMC

EMC

EMC

/4 BMC

<clip path>

EMC

EMC

8: Page Descriptions March 11, 1999

356 Adobe Systems Inc.

Here, BMC 1 becomes clip-only due to the nested clip path, and BMC 2 and MC 3
become clip objects due to their containment in BMC 1.

PDF 1.3 Reference Manual March 11, 1999 9: Linearized PDF

357

CHAPTER 9

Linearized PDF

9.1 Introduction

A linearized PDF file is one that has been organized in a special way to enable
efficient incremental access in a network environment. The file is valid PDF in all
respects, and it is compatible with all existing viewers and other PDF applications.
Enhanced viewers can recognize that a PDF file has been linearized and can take
advantage of that organization to enhance viewing performance.

The primary goal of the linearized PDF organization is to achieve the following
behavior:

1. When a document is opened, display the first page as quickly as possible. The first
page to be viewed can be an arbitrary page of the document, not necessarily page 0
(though opening at page 0 is most common).

2. When the user requests another page of an open document (either by going to the
next page or by following a link to an arbitrary page), display that page as quickly
as possible.

3. When data for a page is delivered over a slow channel, display the page
incrementally as it arrives. Insofar as is possible, the most useful data should be
displayed first.

4. Permit user interaction, such as following a link, to be performed even before the
entire page has been received and displayed.

The above behavior should be achieved for documents of arbitrary size. The total
number of pages in the document should have little or no effect on the user-
perceived performance of viewing any particular page.

The primary focus of linearized PDF is optimized viewing of read-only PDF
documents. It is intended that the linearized PDF will be generated once and read
many times. Incremental update is still permitted, but the resulting PDF is no
longer linearized and subsequently will be treated as ordinary PDF. Re-linearizing
it requires reprocessing the entire file.

Linearized PDF requires two additions to the PDF specification:

1. Rules for ordering of objects in the PDF file.

PDF 1.2

9: Linearized PDF March 11, 1999

358 Adobe Systems Inc.

2. Additional data structures called hint tables that enable efficient navigation within
the document.

Both of these additions are relatively simple to describe. However, using them
effectively requires a deeper understanding of their purpose. Consequently, the
following presentation goes considerably beyond a simple specification of PDF
extensions; it includes background, motivation, and strategies.

Section 9.2, “Background and Assumptions,” provides background about the
properties of the World Wide Web that are relevant to the design of linearized PDF.
Section 9.3, “Linearized PDF document structure specification,” specifies the file
format and object-ordering requirements of linearized PDF. Section 9.4, “Hint
Tables,” specifies the detailed representation of the hint tables. Section 9.5,
“Access Strategies,” outlines strategies for accessing linearized PDF over a
network, which in turn determine the optimal way in which to organize the PDF
file itself.

The reader is assumed to be familiar with PDF document structure and with the
basic architecture of the World Wide Web, and is assumed not to be intimidated by
terms such as URL, HTTP, and MIME.

9.2 Background and Assumptions

The principal problem addressed by the linearized PDF design is accessing PDF
documents through the World Wide Web. This environment has the following
important properties:

1. The access protocol (HTTP) is a transaction consisting of a request and a response.
The client presents a request in the form of a URL, and the server sends a response
consisting of one or more MIME-tagged data blocks.

2. After a transaction has completed, obtaining more data requires a new request-
response transaction. The connection between client and server does not ordinarily
persist beyond the end of a transaction, although some implementations may
attempt to cache the open connection in order to expedite subsequent transactions
with the same server.

3. Round-trip delay can be significant. A request-response transaction can take up to
several seconds, independent of the amount of data requested.

4. The data rate may be limited. A typical bottleneck is a 14.4K or 28.8K bit/sec
modem link between the client and the Internet service provider.

The above properties are generally shared by other wide-area network
architectures aside from the World Wide Web. Additionally, CD-ROMs share some
of these properties, since they have relatively slow seek times and limited data
rates compared to magnetic media. In the remainder of this chapter, we concentrate
on the World Wide Web exclusively.

March 11, 1999

9: Linearized PDF 359

There are some additional properties of the HTTP protocol that are relevant to the
problem of accessing PDF files efficiently. These properties may not all be shared
by other protocols or network environments.

5. When a PDF file is initially accessed (say, by following a URL hyperlink from
some other document), the file type is not known to the client. Therefore, the client
initiates a transaction to retrieve the entire document, then inspects the MIME tag
of the response as it arrives. Only at that point is the document known to be PDF.
Additionally, the length of the document becomes known at that time.

6. The client can abort a response while it is still in progress, if it decides that the
remainder of the data is not of any immediate interest. How quickly the abort takes
effect depends on round-trip time and server responsiveness. In HTTP, aborting the
transaction requires closing the connection, which will interfere with the strategy
of caching the open connection between transactions.

7. The client can request retrieval of portions of a document by specifying one or
more byte ranges (offset, count) as part of the URL. Each range can be relative to
either the beginning or the end of the file. The client can specify as many ranges as
it wants in the request, and the response will consist of multiple blocks, each
properly tagged.

8. The client can initiate multiple concurrent transactions in an attempt to obtain
multiple responses in parallel. This is commonly done, for instance, to retrieve in-
line images referenced from a HTML document. This strategy isn’t always reliable
and may backfire if the transactions interfere with each other by competing for
scarce resources in the server or the communication channel.

Note Extensive experimentation has determined that multiple concurrent transactions
don’t work very well for PDF in some important environments. Therefore,
linearized PDF is designed to enable good performance to be achieved using only
one transaction at a time. In particular, this means that the client must have
sufficient information to determine the byte ranges for all the objects required to
display a given page of the PDF file so that it can specify all those byte ranges in a
single request.

Finally, we make some additional assumptions about the PDF viewer and its local
environment.

9. The viewer has plenty of local temporary storage available. It should rarely need to
retrieve a given portion of a PDF document more than once from the server.

10. The viewer is able to display PDF data quickly once it has been received. The
performance bottleneck is assumed to be in the transport system (throughput or
round-trip delay), not in the processing of data after it arrives.

The consequence of these assumptions is that it may be advantageous for the client
to do considerable extra work in order to minimize delays due to communications.
Such work includes maintaining local caches and reordering actions according to
when the needed data becomes available.

9: Linearized PDF March 11, 1999

360 Adobe Systems Inc.

9.3 Linearized PDF document structure specification

Except as noted below, all elements of a linearized PDF file are as specified in
Chapter 5.

9.3.1 File structure

Except as noted, all indirect objects in the PDF file are numbered sequentially in
two groups, based on their order of appearance in the file.

• The first group consists of the Catalog, certain other document-level objects,
and all objects belonging to the first page of the document. These are numbered
sequentially, starting at the first object number after the second group. (The
stream containing the hint tables may be numbered out of sequence; see Section
9.3.5, “Hint Streams.”)

• The second group consists of all remaining objects in the document, including
all pages after the first, all shared objects, etc. These are numbered sequentially,
starting at 1.

These groups of objects are indexed by precisely two cross-reference table
sections, located as shown below. The composition of these groups is discussed in
more detail in the sections that follow. All objects have a generation number of 0.

Example 9.1 Outline of a linearized PDF file

Part 1: Header
%PDF-1.1

% binary stuff

Part 2: Linearization parameters
43 0 obj

<<

/Linearized 1 version
/L 54567 file length
/H [475 598]Primary Hint Stream offset and length (Part 5)
/O 45 object number of first page’s Page object (Part 6)
/E 5437 offset of end of first page
/N 11 number of pages in document
/T 52786 offset of first entry in main xref table (Part 11)
>>

endobj

Part 3: First Page xref table and trailer
xref

43 14

0000000052 00000 n

0000000392 00000 n

0000001073 00000 n

…cross-reference entries for remaining objects in the first page…
0000000475 00000 n

March 11, 1999 9.3.1

9: Linearized PDF 361

trailer

<<

/Size 57 total number of xref table entries in document
/Prev 52776 offset of main xref table (Part 12)
/Root 44 0 R indirect reference to Catalog (Part 4)
…any other attributes, e.g., Info, Encrypt… (Part 9)
>>

startxref

0 dummy xref table offset
%%EOF

Part 4: Catalog and other required document-level objects
44 0 obj

<<

/Type /Catalog

/Pages 42 0 R

>>

endobj

…other objects…

Part 5: Primary Hint Stream (Note: Parts 5 and 6 may be placed in the opposite order)
56 0 obj

<<

/Length 457

…possibly other stream attributes, e.g., Filter…
/P 0 position of Page Offset hint table
/S 221 position of Shared Objects hint table
…possibly entries for other hint tables…
>>

stream

Page Offset hint table
Shared Object hint table
…possibly other hint tables…
endstream

endobj

Part 6: First Page’s objects
45 0 obj

<<

/Type Page

...
>>

Outlines tree (if the PageMode in the Catalog is UseOutlines)
…objects for first page, including both shared and non-shared resources…

Part 7: All remaining pages (each Page object is followed by the non-shared objects for that page)
1 0 obj

<<

/Type /Page

9: Linearized PDF March 11, 1999

362 Adobe Systems Inc.

…other Page attributes, such as MediaBox, Parent, and Contents…
>>

…objects for that page, including only non-shared resources…
…other pages and their non-shared objects…
last page
…objects for last page, including only non-shared resources…

Part 8: Shared objects for all pages except the first
…shared objects…

Part 9: Other objects not associated with pages, if any
…other objects…

Part 10: Overflow Hint Stream (optional)
Overflow Hint Stream

Part 11: Main xref table and trailer
xref

0 43

0000000000 65535 f

…cross-reference entries for all except First Page’s objects…
trailer

<<

/Size 43

This trailer does not need to contain any other attributes;
in particular, it should not have a Prev attribute.

>>

startxref

257 offset of First Page xref table (Part 3)
%%EOF

9.3.2 Header and linearization information

The file begins with the standard header line (see Section 5.13 on page 56).
Linearization is independent of PDF version number and can be applied to any
PDF file version 1.1 or greater.

The binary stuff following the percent sign on the second line is some text that
includes characters with codes 128 or greater, as recommended in Section 5.12 on
page 55.

Following this, the first object in the body of the file (Part 2) must be an indirect
dictionary object containing the parameters listed in Table 9.1. All values in this
dictionary must be direct objects. Note that there are no references to this
dictionary anywhere in the document. (However, there is a normal entry for it in
the First Page Cross-Reference Table, Part 3.)

�

March 11, 1999 9.3.3

9: Linearized PDF 363

Table 9.1 Linearization parameters

Parameter Type Semantics

Linearized number (Required) Linearized format version identification. As usual, a change in the
integer part indicates an incompatible change in the linearized format. A change in
the fractional part indicates an upward-compatible change. The current version is
1.0.

L (file Length) integer (Required) Length of entire file in bytes. This must be exactly equal to the actual
length of the PDF file. A mismatch indicates that the PDF is not linearized and
must be treated as ordinary PDF, ignoring linearization information.

H (Hints) array (Required) Array of two or four integers, [offset1 length1] or [offset1 length1
offset2 length2]. Offset1 is the offset from beginning of the file of the Primary
Hint Stream. (This is the beginning of the stream object, not the beginning of the
stream data.) Length1 is the length of this stream (including stream object
overhead). If there is an Overflow Hint Stream, offset2 and length2 specify its
offset and length.

O (Object number) integer (Required) Object number of the first page’s Page object.

E (End of first page)integer (Required) Offset of the end of the first page (i.e., the end of Part 6), relative to the
beginning of the file.

N (Number of pages)integer (Required) Number of pages in the document.

T (main xref Table) integer (Required) Location of the first entry of the main cross-reference table (the entry
for object number 0). Note that this differs from the Prev attribute of the First
Page Trailer, which gives the location of the xref line that precedes the table.

P (First Page number)integer (Optional) Page number of the first page (see Section 9.3.6, “First Page’s
objects”). The default value is 0.

The Linearized dictionary must be entirely contained within the first 1024 bytes
of the PDF file. This limits the amount of data a viewer must read before deciding
that the file is not linearized.

9.3.3 First Page Cross-Reference and Trailer

(Part 3) This is the cross-reference table for all the first page’s objects (discussed in
Section 9.3.6, “First Page’s objects”), as well as for the Catalog and document-
level objects appearing before the first page (discussed in Section 9.3.4, “Catalog
and document-level objects”). Additionally, it contains entries for the Linearized
dictionary (at the beginning) and the Primary Hint Stream (at the end).

It is a valid cross-reference table section as defined in Section 5.15 on page 57,
although its position in the file is rather unconventional. The table consists of a
single cross-reference subsection, with no free entries.

9: Linearized PDF March 11, 1999

364 Adobe Systems Inc.

The startxref line at the end of the file gives the offset of the First Page Cross-
Reference Table. The First Page Trailer’s Prev entry gives the offset of the main
cross-reference table near the end of the file. Once again, this is valid PDF, though
the trailers are linked in an unusual order. A PDF viewer that is unaware of
linearization interprets the First Page Cross-Reference Table as an “update” to an
“original” document that is indexed by the main cross-reference table.

The First Page Trailer must contain valid Size and Root attributes, as well as any
other attributes needed to display the document. The Size must be the combined
number of entries in both the First Page Cross-Reference Table and the main cross-
reference table.

This trailer may optionally end with startxref, an integer, and %%EOF, just the
same as an ordinary trailer. This information is ignored.

9.3.4 Catalog and document-level objects

(Part 4) After the First Page Cross-Reference Table must appear the Catalog
dictionary and other objects that are required when opening the document. These
objects include:

• The Catalog object.

• If the Catalog contains PageMode or OpenAction entries, those objects
must be located here also, with the exception of the Outlines tree: if
PageMode is UseOutlines, the entire Outlines tree is located in Part 6;
otherwise it is located in Part 9. See Section 9.3.9 on page 368 for details.

• The Encryption dictionary referenced from the Encrypt attribute, if any, of the
First Page Trailer. All attribute values in this dictionary must be located here
also.

• The Threads array in the Catalog, if any, along with all the thread dictionaries
that it refers to. This does not include the threads’ Info dictionaries or the
individual beads of the threads.

• The AcroForm dictionary in the Catalog, if any. Only the top-level dictionary
is needed, not the objects that it refers to.

Objects that are not ordinarily needed when opening the document should not be
located here but instead should be at the end of the file; see Section 9.3.9, “Other
objects.” This includes Info, Pages, and Dests.

Note that the objects located here are indexed by the First Page Cross-Reference
Table, even though they are not logically part of the first page.

9.3.5 Hint Streams

(Part 5) The core of the linearization information is stored in data structures known
as hint tables, whose format is described in Section 9.4, “Hint Tables. They
provide indexing information that enables the client to construct a single request

March 11, 1999 9.3.5

9: Linearized PDF 365

for all the objects that are needed to display any page of the document or to retrieve
certain other information efficiently. The hint tables may contain additional
information to optimize access by plug-ins to application-specific information.

The hint tables are not logically part of the information content of the document;
they can be derived from the document. Any action that changes the document—
for instance, appending an incremental update—will invalidate the hint tables. The
document is still a valid PDF file that just isn’t linearized any more.

The hint tables are binary data structures that are enclosed in a stream object.
Syntactically, this stream is a normal PDF indirect object. However, there are no
references to this stream anywhere in the document, so it is not logically part of the
document; any operation that regenerates the document will remove the stream.

Usually, all the hint tables are contained in a single stream, known as the Primary
Hint Stream. Optionally, there may be an additional stream, containing more hints,
known as the Overflow Hint Stream. The contents of the two hint streams are to be
concatenated and treated as if they were a single unbroken stream.

The Primary Hint Stream, which is required, is shown as Part 5 in Example 9.1,
and the First Page section is shown as Part 6. The order of these two parts may be
reversed. See Section 9.5, “Access Strategies,” for considerations on the choice of
placement.

The Overflow Hint Stream, Part 10, is optional.

The location and length of the Primary Hint Stream, and of the Overflow Hint
Stream if present, are given in the Linearized dictionary at the beginning of the
file.

The hint streams are assigned the last object numbers in the file, i.e., after the
object number for the last object in the first page. Their cross-reference table
entries are at the end of the First Page Cross-Reference Table. This object number
assignment is independent of the physical locations of the hint streams in the file.
(This convention keeps their object numbers out of the way of the numbering of
the linearized objects.)

All attributes in the hint streams’ dictionaries must be direct objects. The streams
may have Filter and DecodeParms attributes.

In addition to the standard stream attributes, the dictionary of the Primary Hint
Stream contains attributes giving the position of the beginning of each hint table in
the stream. These positions are in bytes relative to the beginning of the stream data
(after applying decoding filters, if any), and with the Overflow Hint Stream
concatenated if present. The dictionary of the Overflow Hint Stream should not
contain these attributes. The standard hint tables are:

Table 9.2 Standard Hint Tables

Key Hint Table

P (Required) Page Offset hint table

S (Required) Shared Objects hint table

9: Linearized PDF March 11, 1999

366 Adobe Systems Inc.

T (Only if thumbnails exist) Thumbnails hint table

O (Only if outlines exist) Outline hint table

A (Only if threads exist) Thread info hint table

E (Only if named destinations exist) Dests hint table

V (Only if AcroForm dictionary exists) Forms hint table

I (Only if Info dictionary exists) Info dictionary hint table

C (Only if logical structure exists) Structure hint table

New keys may be registered for additional hint tables required for new PDF
features or for application-specific data accessed by plug-ins.

Section 9.4, “Hint Tables,” documents the format of the standard hint tables that
are enclosed in this stream.

9.3.6 First Page’s objects

(Part 6) As mentioned above, this section may either precede or follow the Primary
Hint Stream. The starting file offset and length of this section may be determined
from the hint tables. Additionally, the E attribute in the Linearized dictionary
specifies the end of the first page, and the O attribute gives the first page’s Page
object number.

This part of the file contains all the objects needed to display the first page of the
document. Ordinarily, the “first page” is page 0, i.e., the leftmost leaf Page object
in the Pages tree. However, if the Catalog contains an OpenAction that specifies
opening at some page other than page 0, then that page is the “first page” and
should be located here. The page number of the first page is given in the
Linearized dictionary at the beginning of the file.

Implementation note Acrobat always treats page 0 as the first page for linearization, regardless of
OpenAction.

The objects contained here should include:

1. Page object for the first page. This must be the first object in this part of the file.
Its object number is given in the Linearized dictionary. This Page object must
explicitly specify all required attributes, such as Resources and MediaBox; the
attributes cannot be inherited from ancestor Pages objects.

2. The entire Outlines tree, if the PageMode key in the Catalog is UseOutlines. (If
the PageMode key is omitted or has some other value and the document has an
Outlines tree, then it appears in Part 9. See Section 9.3.9 on page 368 for details.

3. All objects that the Page object refers to, to arbitrary depth. This includes
Contents, Resources, Annots, and B (Beads), but excludes Thumb.

The order of objects referenced from the Page object should facilitate early user
interaction and incremental display of the page data as it arrives. The following
order is recommended:

PDF 1.3

March 11, 1999 9.3.7

9: Linearized PDF 367

1. The Annots array and all annotation objects, to a depth sufficient to allow those
annotations to be activated. Information required to draw the annotation can be
deferred until later, since annotations are always drawn on top of (hence after) the
Contents.

2. The B (Beads) array and all bead dictionaries, if any, for this page. If any beads
exist for this page, the B array is required to be present in the Page dictionary.
Additionally, each bead in the thread (not just the first) must contain a T attribute
referring to the associated thread dictionary.

3. The Resources dictionary, but not the resource objects contained in the
dictionary.

4. Resource objects, other than the types listed below, in the order that they are first
referenced (directly or indirectly) from the Contents stream. If Contents is
represented as an array of streams, each resource object should precede the stream
in which it is first referenced. Note that Font, FontDescriptor, and Encoding
resources should be included here, but not substitutable FontFiles referenced from
FontDescriptors (see below).

5. Contents. If it is large, it should be represented as an array of indirect references
to streams, which in turn are interleaved with the resources that they require. If it is
small, the entire Contents should be a single stream preceding the resources.

6. Image XObjects, in the order that they are first referenced. Images are assumed to
be large and slow to transfer, so the viewer defers rendering images until all the
other Contents have been displayed.

FontFile streams, which contain the actual definitions of embedded fonts. These
are assumed to be large and slow to transfer, so the viewer draws substitute fonts
until the real ones have arrived. Only those fonts for which substitution is possible
can be deferred in this way (Currently, this includes any Type 1 or TrueType font
that has a FontDescriptor and whose Flags bit 6 is set (indicating Adobe
standard Roman character set). The base 14 Type 1 fonts cannot be deferred,
although it is unlikely that they would be embedded.

See Section 9.5, “Access Strategies,” for additional discussion about object order
and incremental drawing strategies.

9.3.7 Objects contained in remaining pages

(Part 7) This part of the file contains the non-shared objects for all remaining pages
of the file, with the objects for each page grouped together. The pages are
contiguous and are ordered by page number. (If the first page of the file is not page
0, this section starts with page 0 and skips over the first page when its position in
the sequence is reached.)

For each page, the objects required to display that page are grouped together,
except for resources and other objects that are shared with other pages. Shared
objects are located in the Shared Objects section, described below. The starting file
offset and length of any page can be determined from the hint tables.

9: Linearized PDF March 11, 1999

368 Adobe Systems Inc.

The recommended order of objects within a page is essentially the same as in the
first page. In particular, the Page object must be the first object in each section.

In most cases, there will be little benefit from interleaving contents with resources.
This is because most resources other than images—fonts in particular—are shared
among multiple pages and therefore reside in the Shared Objects section. Image
XObjects usually are not shared, but they should appear at the end of the page,
since rendering of images is deferred.

9.3.8 Shared objects

(Part 8) This portion of the file contains objects, primarily named resources, that
are referenced from more than one page and that are not referenced (directly or
indirectly) from the first page. The hint tables contain an index of these objects.

The order of these objects is essentially arbitrary. However, wherever a resource
consists of a multiple-level structure, all components of the structure should be
grouped together. If only the top-level object is referenced from outside the group,
the entire group can be described by a single entry in the Shared Object hint table.
This helps to minimize the size of the Shared Object hint table and the number of
individual references from entries in the Page Offset hint table.

Implementation note Acrobat does not generate Shared Object groups containing more than one object.

9.3.9 Other objects

(Part 9) Following the shared objects are any other objects that are part of the
document but aren’t required for displaying pages. These objects are divided into
functional categories. Objects within each of these categories should be grouped
together. The relative order of the categories is unimportant.

• Pages tree. This can be located here, since the linearized PDF viewer never
needs to consult it. Note that all Resources and other inheritable attributes of the
Pages objects must be pushed down and replicated in each of the leaf Page
objects (but they may contain indirect references to shared objects).

• Thumbnails. These should simply be ordered by page number. Note that the
thumbnail for page 0 should be first, even if the first page of the linearized PDF
is some page other than 0. Each thumbnail consists of one or more objects.
These objects may refer to objects in the Thumbnail Shared Objects section (see
the next item).

• Thumbnails Shared Objects. These are objects that are shared among some or
all thumbnail objects and are not referenced from any other objects.

• Outline tree, if not located in Part 6. The order of objects should be the same as
the order in which they are displayed by the viewer. This is a preorder traversal
of the tree, skipping over any subtree that is closed (i.e., whose parent’s Count
is negative). Following that should be the subtrees that were skipped over, in the
order that they would have appeared if they were all open.

March 11, 1999 9.3.10

9: Linearized PDF 369

• Thread info dictionaries, referenced from the I (Info) attributes of thread
dictionaries. Note that the thread dictionaries themselves are co-located with the
Catalog, and the beads with the individual pages.

• Named destinations. These objects include the Dests or Names attribute of
the Catalog and all the destination objects that it refers to. See Section 9.5.2,
“Opening at an arbitrary page.”

• Info dictionary and the objects contained within it.

• AcroForm tree. This does not include the top-level AcroForm dictionary, which
is co-located with the Catalog.

• Other entries in the Catalog that aren’t referenced from any page.

• Logical structure tree.

9.3.10 Main cross-reference and trailer

(Part 11) This is the cross-reference table for all objects in the PDF file except
those listed in the First Page Cross-Reference Table (Part 3). As indicated earlier,
this cross-reference table plays the role of the “original” cross-reference table for
the file (prior to appending any “updates”). It must conform to the PDF rules for
this table:

• It consists of a single cross-reference subsection, beginning at object number 0.

• The first entry (for object number 0) must be a free entry.

• The remaining entries are for in-use objects, which are numbered consecutively
starting at 1.

As indicated earlier, the startxref line gives the offset of the First Page Cross-
Reference Table. The Prev entry of the First Page Trailer gives the offset of the
main cross-reference table. The main trailer has no Prev entry, and in fact does not
need to contain any entries other than Size.

9.4 Hint Tables

There are two or more hint tables, as indicated by the attributes of the Primary Hint
Stream (see Section 9.3.5, “Hint Streams”). The format of the standard hint tables
is described below.

There can be additional hint tables for application-specific data accessed by plug-
ins. A generic format for such hint tables is defined; see Section 9.4.4, “Generic
hint tables.” Alternatively, the format of a hint table can be private to the
application.

Each hint table consists of a portion of the stream, beginning at the position in the
stream indicated by the corresponding stream attribute. (If there is an Overflow
Hint Stream, its contents are to be appended seamlessly to the primary Hint

PDF 1.3

9: Linearized PDF March 11, 1999

370 Adobe Systems Inc.

Stream. Hint table positions are relative to the beginning of this combined stream.)
In general, this byte stream is treated as a bit stream, high-order bit first, which is
then subdivided into fields of arbitrary width without regard to byte boundaries.
However, each hint table begins at a byte boundary.

The hint tables are designed to encode the required information as compactly as
possible. Interpreting the hint tables requires reading them sequentially; they are
not designed for random access. The client is expected to read and decode the
tables once and retain the information for as long as the document remains open.

A hint table encodes the positions of various objects in the file. The representation
is either explicit (an offset from the beginning of the file) or implicit (accumulated
lengths of preceding objects). Regardless of the representation, the resulting
positions must be interpreted as if the Primary Hint Stream itself were not present.
That is, a position greater than the hint stream offset must have the hint stream
length added to it in order to determine the actual offset relative to the beginning of
the file. (The hint stream offset and hint stream length are the values offset1 and
length1 in the H array in the Linearized dictionary at the beginning of the file.)

The reason for this rule is that the length of the Primary Hint Stream depends on
the information contained within the hint tables, and this is not known until after
they have been generated. Any information that gets put into the hint tables must
not depend on knowing the Primary Hint Stream’s length in advance.

Note that this rule applies only to offsets given in the hint tables, and not to offsets
given in the cross-reference tables or Linearized dictionary. Also, the offset and
length of the Overflow Hint Stream, if present, need not be taken into account,
since this object follows all other objects in the file.

9.4.1 Page Offset hint table

The Page Offset hint table gives information required to locate each page.
Additionally, for each page except the first, the page entry enumerates all shared
objects that the page references, directly or indirectly.

This table consists of a header section, described in Table 9.3, followed by one or
more per-page entries, described in Table 9.4.

Note All the “bits needed” items, such as item 3 in the following table, may have values
in the range 0 to 32. Although that range requires only 6 bits, 16-bit numbers are
used.

Table 9.3 Page Offset hint table, header section

Item Size (bits) Description

1 32 Least number of objects in a page (including the Page object itself).

2 32 Location of first page’s Page object.

3 16 Bits needed to represent the greatest number of objects in a page.

March 11, 1999 9.4.1

9: Linearized PDF 371

4 32 Least length of a page, in bytes. This is the least length from the beginning of a
Page object to the last byte of the last object used by that page.

5 16 Bits needed to represent the greatest page length.

6 32 Least start of Contents offset.

7 16 Bits needed to represent the greatest start of Contents offset.

Implementation note In Acrobat, item 7 is unused and always set to zero.

8 32 Least Contents length.

9 16 Bits needed to represent the greatest Contents length.

10 16 Bits needed to represent the greatest number of Shared Object references.

11 16 Bits needed to identify a Shared Object.

12 16 Bits needed to represent numerator of fraction (see Table 9.4).

13 16 Denominator used to divide page Contents into fractions. For each shared object
referenced from a page, there is an indication of where in the page’s Contents the
object is first referenced. That position is given as the numerator of a fraction,
whose denominator is specified once for the entire document. The fraction is
explained in more detail below.

Table 9.4 Page Offset hint table, per-page entry

Item Size (bits) Description

1 (see Table 9.3, item 3) This value, when added to the least number of objects in a page (Table 9.3, item 1),
gives the number of objects in the page. The first object of the first page has an
object number that is the value of the O attribute in the Linearized dictionary at
the beginning of the file. The first object of the second page has an object number
of 1. Objects numbers for subsequent pages can be determined by accumulating
the number of objects in all previous pages.

Note The entries for all the pages are listed in ascending order. That is, the table
contains item 1 for the first page, item 1 for the second page, item 1 for the third
page, and so on, and then continues with item 2 for the first page, item 2 for the
second page, and so on.

2 (Table 9.3, item 5) This value, when added to the least page length (Table 9.3, item 4), gives the total
length of the page in bytes. The location of the first object of the first page can be
determined from the cross-reference table entry for that object (see above). The
locations of subsequent pages can be determined by accumulating the lengths of
all previous pages. Note that one must skip over the Primary Hint Stream,
wherever it is located.

Note The entries for all the pages are listed in ascending order.

9: Linearized PDF March 11, 1999

372 Adobe Systems Inc.

3 (Table 9.3, item 10) Number of shared objects referenced from page. Note that this must be 0 in the
first page’s entry.

Note The entries for all the pages are listed in ascending order.

4 (multiple) variable Shared Object references, each consisting of a Shared Object identifier (see Table
9.3, item 11) followed by the numerator.

A Shared Object identifier is an index into the Shared Object hint table, described
in Section 9.4.2, “Shared Object hint table.” Note that a single entry in the Shared
Object hint table can designate a group of shared objects, only one of which is
referenced from outside the group. That is, Shared Object identifiers are not
directly related to object numbers.

Note The entries for all the pages are listed in ascending order, beginning with the
second page (since the number of shared objects for the first page is 0).

5 (multiple) variable The numerator of the fractional position (see Table 9.3, item 12) for each Shared
Object reference, in the same order as the preceding item.

The fraction indicates where in the page’s Contents the shared object is first
referenced. It is interpreted as the numerator of a fraction whose denominator is
specified once for the entire document.

If the denominator is d, a numerator of 0 indicates that the first reference lies in the
interval 0/d to 1/d of the Contents. Similarly, a numerator of d−1 indicates that the
first reference lies in the interval (d−1)/d to the end of the Contents.

The numerator can take on two (or more) additional values, which indicate that the
shared object is not referenced from the Contents but is needed by annotations or
other objects that are drawn after the Contents. The value d indicates that the
shared object is needed before Image XObjects and other non-shared objects that
are at the end of the page. The value d+1 or greater indicates that the shared object
is needed after those objects.

This method of dividing the page into fractions is only approximate. Determining
the first reference to a shared object entails inspecting the unencoded Contents
stream. The relationship between positions in the unencoded and encoded streams
is not necessarily linear.

6 (Table 9.3, item 7) This value, when added to the least start of Contents offset (Table 9.3, item 6),
gives the offset in bytes of the start of the Contents stream, relative to the
beginning of the page. This is the offset of the stream object, not the stream data.

Implementation note In Acrobat, item 7 of Table 9.3 is assumed to be zero.

7 (Table 9.3, item 9) This value, when added to the least Contents length (Table 9.3, item 8), gives the
length of the Contents stream in bytes. This includes object overhead preceding
and following the stream data.

March 11, 1999 9.4.2

9: Linearized PDF 373

9.4.2 Shared Object hint table

The Shared Object hint table gives information required to locate shared objects
(see Section 9.3.8, “Shared objects”). Shared objects can be physically located in
either of two places. Objects that are referenced from the first page are co-located
with the First Page objects (Part 6). All other shared objects are located in the
Shared Objects section (Part 8).

A single entry in the Shared Object hint table can actually describe a group of
adjacent objects, under the following condition: Only the first object in the group is
referenced from outside the group. The remaining objects in the group are
referenced only from other objects in the same group.

The Page Offset hint table refers to an entry in the Shared Object hint table by a
simple index that is its sequence in the table, counting from 0.

This table consists of a header section, described in Table 9.5, followed by one or
more Shared Object Group entries, described in Table 9.6. There are two
sequences of Shared Object Group entries: the ones for objects located in the first
page, followed by the ones for objects located in the Shared Objects section. The
entries have the same format in both cases.

For convenience of representation, the first page is treated as if it consisted entirely
of shared objects. That is, the first entry refers to the beginning of the first page and
has an object count and length that span all the initial non-shared objects. The next
entry refers to a group of shared objects. Subsequent entries span additional groups
of either shared or non-shared objects consecutively, until all shared objects in the
first page have been enumerated. (Obviously, the entries that refer to non-shared
objects will never be used.)

Note If there are no shared objects, all of the entries in this table should be zero.

Table 9.5 Shared Object hint table, header section

item Size (bits) Description

1 32 Object number of first object in Shared Objects section (part 8).

2 32 Location of first object in Shared Objects section.

3 32 Number of Shared Object entries for first page.

4 32 Number of Shared Object entries for Shared Objects section.

5 16 Bits needed to represent the greatest number of objects in a Shared Object Group.

Implementation note Acrobat always sets item 5 to zero.

6 32 Least length of a Shared Object Group in bytes.

7 16 Bits needed to represent the greatest length of a Shared Object Group.

9: Linearized PDF March 11, 1999

374 Adobe Systems Inc.

Table 9.6 Shared Object hint table, Shared Object Group entry

Item Size (bits) Description

1 (Table 9.5, item 7) This value, when added to the least Shared Object Group length (Table 9.5, item
6), gives the total length of the object group in bytes. The location of the first
object of the first page is given in the Page Offset hint table, header section (Table
9.3, item 4). The locations of subsequent object groups can be determined by
accumulating the lengths of all previous object groups until all shared objects in
the first page have been enumerated. Following that, the location of the first object
in the Shared Objects section can be obtained from the Shared Objects hint table,
header section (Table 9.5, item 2).

Note The entries for all the Shared Object Groups are listed, in order. That is, the table
contains item 1 for the first group, item 1 for the second group, item 1 for the third
group, and so on, and then continues with item 2 for the first group, item 2 for the
second group, and so on.

2 1 A flag indicating whether the MD5 Signature (see item 4) is present (1 if present, 0
if absent).

Note The entries for all the Shared Object Groups are listed, in order.

Implementation note MD5 Signatures are not implemented in Acrobat. This flag must be 0.

3 (see Table 9.5, item 5) This value plus 1 gives the number of objects in the group. The first object of the
first page is the one whose object number is given by the O attribute in the
Linearized dictionary at the beginning of the file. Object numbers for subsequent
entries can be determined by accumulating the number of objects in all previous
entries, until all shared objects in the first page have been enumerated. Following
that, the first object in the Shared Objects section has a number that can be
obtained from the Shared Object hint table header (Table 9.5, item 1).

Note The entries for all the Shared Object Groups are listed, in order.

Implementation note Acrobat does not support more than one shared object in a group, so the value of
this item should always be 0.

4 128 (Optional) MD5 Signature. The MD5 Signature is a 16-byte MD5 hash that
uniquely identifies the resource that the group of objects represents. This is
intended to enable the client to substitute a locally cached copy of the resource
instead of reading it from the PDF file. Note that this signature is unrelated to the
signature form field defined in Section 6.14.12, “Signature field.”

9.4.3 Thumbnails hint table

The Thumbnail hint table consists of a header section, described in Table 9.7,
followed by one or more per-page entries, described in Table 9.8.

March 11, 1999 9.4.3

9: Linearized PDF 375

Each entry describes the thumbnail for a single page. The pages are considered in
page number order, starting at page 0 (even if page 0 is not the first page of the
file). Thumbnails can exist for some but not all pages.

Table 9.7 Thumbnails hint table, header section

Item Size (bits) Description

1 32 Object number of first object in Thumbnail section.

2 32 Location of first object in Thumbnail section.

3 32 Number of entries in thumbnail table.

4 16 Bits needed to represent the greatest number of consecutive pages that have no
thumbnails. This can be zero, meaning that all pages have thumbnails.

5 32 Least length of thumbnail in bytes.

6 16 Bits needed to represent the greatest length of a thumbnail.

7 32 Least number of objects in a thumbnail.

8 16 Bits needed to represent the greatest number of objects in a thumbnail.

9 32 Object number of first object in Thumbnail Shared Objects section (a subsection of
Part 8). Those are objects that are referenced from some or all thumbnail objects
and are not referenced from any other objects. The Thumbnail Shared Objects are
undifferentiated; there is no indication of which shared objects are referenced from
any given page’s thumbnail.

10 32 Location of the first object in Thumbnail Shared Objects section.

11 32 Number of Thumbnail Shared Objects.

Table 9.8 Thumbnails hint table, per-page entry

Item Size (bits) Description

1 (see Table 9.7, item 4) (Optional) Count of preceding pages lacking thumbnails. This indicates how many
pages without thumbnails lie between the previous entry’s page and this one.

2 (Table 9.7, item 8) This value, when added to the least number of objects in a thumbnail (Table 9.7,
item 7), gives the number of objects in this thumbnail.

3 (Table 9.7, item 6) This value, when added to the least length of a thumbnail (Table 9.7, item 5), gives
the length of this thumbnail in bytes.

9: Linearized PDF March 11, 1999

376 Adobe Systems Inc.

9.4.4 Generic hint tables

Certain categories of objects are associated with the document as a whole rather
than with individual pages (see Section 9.3.9, “Other objects”). It is sometimes
useful to provide hints for accessing those objects efficiently. For each category of
hints, there is a separate entry in the Primary Hint Stream giving the starting
position of the table within the stream (see Section 9.3.5, “Hint Streams”).

There is a generic representation for such hints, specified below. This
representation is useful for some standard categories of objects, such as outlines,
threads, and named destinations. It may also be useful for application-specific
objects accessed by plug-ins. It is considerably more convenient for a plug-in to
use the generic hint representation than to specify custom hints.

A generic hint table describes a single group of objects that are located together in
the PDF file. See Table 9.9.

Table 9.9 Generic Hint Table

item Size (bits) Description

1 32 Object number of first object in group.

2 32 Location of first object in group.

3 32 Number of objects in group.

4 32 Length of object group in bytes.

9.4.5 Outline, Thread Info, Dests, and Info hint tables

These tables use the generic hint table representation; see Section 9.4.4, “Generic
hint tables.” The objects that they refer to are grouped together as described in
Section 9.3.9, “Other objects.”

9.4.6 Forms and Logical Structure hint tables

If an AcroForm or StructTrees dictionary is present, these tables refer to the
contents of those dictionaries; see Section 9.3.9, “Other objects.” Forms and
structure can refer to objects that are also shared with other parts of the document.
The table lists those shared objects.

A Form or Structure hint table begins with a generic hint table, described in
Section 9.4.4, “Generic hint tables.” It then continues as described in Table 9.10.

Table 9.10 Forms and Structure hint tables, continued

Item Size (bits) Description

5 32 Number of Shared Object references.

March 11, 1999 9.5.1

9: Linearized PDF 377

6 16 Bits needed for each Shared Object reference.

7… (Table 9.3, item 11) Shared Object references, each consisting of a Shared Object identifier. See
Section 9.4.2, “Shared Object hint table.”

9.5 Access Strategies

This section outlines how the client can take advantage of the structure of a
linearized PDF file in order to retrieve and display it efficiently. This material is
not formally a part of the linearized PDF specification, but it may help to explain
the rationale for the organization.

9.5.1 Opening at the first page

As indicated earlier, when a document is initially accessed, a request is issued to
retrieve the entire file, starting at the beginning. Consequently, linearized PDF is
organized so that all the data required to display the first page is at the beginning of
the file. This includes all resources that are referenced from the first page, whether
or not they are also referenced from other pages.

The first page is usually but not necessarily page 0. If the Catalog contains an
OpenAction that specifies opening at some page other than page 0, that page will
be the one physically located at the beginning of the document. Thus, opening a
document at the default place (rather than a specific destination) requires simply
waiting for the first page data to arrive; no additional transactions are required.

In an ordinary PDF viewer, opening a document requires first positioning to the
end to obtain the startxref line. Since a linearized PDF file has the first page’s
cross-reference table at the beginning, reading the startxref line is not necessary.
All that is required is to verify that the file length given in the Linearized
dictionary at the beginning of the file matches the actual length of the file,
indicating that no updates have been appended to the PDF file.

The Primary Hint Stream is located either before or after the First Page objects.
This means that it will also be retrieved as part of the initial sequential read of the
file. The client is expected to interpret and retain all the information in the hint
tables. They are reasonably compact and are not designed to be obtained from the
file in random pieces.

The client must now decide whether to continue reading the remainder of the
document sequentially or to abort the initial transaction and access subsequent
pages using separate transactions requesting byte ranges. This decision is a
function of the size of the file, the data rate of the channel, and the overhead cost of
a transaction.

9.5.2 Opening at an arbitrary page

The viewer may be requested to open a PDF file at an arbitrary page. The page can
be specified in one of three ways:

9: Linearized PDF March 11, 1999

378 Adobe Systems Inc.

• by page number (GoToR link action, integer page specifier)

• by named destination (GoToR link action, name or string page specifier)

• by thread (Thread link action).

Additionally, an indexed search results in opening a document by page number.
Handling this case efficiently is considered especially important.

As indicated above, when the document is initially opened, it is retrieved
sequentially starting at the beginning. As soon as the hint tables have been
received, the client has sufficient information to request retrieval of any page of the
document given its page number. Therefore, it can abort the initial transaction and
issue a new transaction for the target page, as described in Section 9.5.3, “Going to
another page of an open document.”

The position of the Primary Hint Stream (Part 5) with respect to the First Page
objects (Part 6) determines how quickly this can be done. If the Primary Hint
Stream precedes the First Page objects, the initial transaction can be aborted very
quickly. However, this is at the cost of increased delay when opening the document
at the first page. On the other hand, if the Primary Hint Stream follows the First
Page objects, displaying the first page is quicker (since the hint tables are not
needed for that), but opening at an arbitrary page is delayed by the time required to
receive the first page.

At the time a PDF file is linearized, one must decide whether to favor opening at
the first page or opening at an arbitrary page.

If an Overflow Hint Stream exists, obtaining it requires issuing an additional
transaction. For this reason, inclusion of an Overflow Hint Stream in linearized
PDF, although permitted, is not recommended. The feature exists to allow the
linearizer to write the PDF file with space reserved for a Primary Hint Stream of an
estimated size, then go back and fill in the hint tables. If the estimate is too small,
the linearizer can append an overflow stream containing the remaining hint table
data. This allows writing the PDF file in one pass, which may be an advantage if
the performance of writing PDF is considered important.

Opening at a named destination requires the viewer first to read the entire Dests
or Names dictionary, for which a hint is present. Using this information, one can
determine the page containing the specific destination identified by the name.

Opening at a thread requires the viewer first to read the entire Threads array, which
is located with the Catalog at the beginning of the document. Using this
information, one can determine the page containing the first bead of any thread.
Opening at other than the first bead of a thread requires chaining through all the
beads until the desired one is reached; there are no hints to accelerate this.

9.5.3 Going to another page of an open document

Given the information in the hint tables, it is now straightforward for the client to
construct a single request to retrieve any arbitrary page of the document. The
request should include:

March 11, 1999 9.5.4

9: Linearized PDF 379

1. The objects of the page itself, whose byte range can be determined from the entry
in the Page Offset hint table.

2. The portion of the main cross-reference table referring to those objects. This can
be computed from main cross-reference table location (T attribute in the
Linearized dictionary) and the cumulative object number in the Page Offset hint
table.

3. The shared objects referenced from the page, whose byte ranges can be determined
from information in the Shared Object hint table.

4. The portion of the main cross-reference table referring to those objects, as in (2)
above.

The purpose of the fractions in the Page Offset hint table is to enable the client to
schedule retrieval of the page in a way that allows incremental display of the data
as it arrives. It accomplishes this by constructing a request that interleaves pieces
of the page contents with the shared resources that the contents refer to. This
serves much the same purpose as the physical interleaving that is done for the first
page.

9.5.4 Drawing a page incrementally

The ordering of objects in pages and the organization of the hint tables is intended
to allow progressive update of the display and early opportunities for user
interaction when the data is arriving slowly. The viewer must recognize instances
in which the targets of indirect object references haven’t arrived yet and, where
possible, rearrange the order in which it acts on the objects in the page.

The following sequence of actions is recommended:

1. Activate the annotations, but don’t draw them yet. Also activate the cursor
feedback for any article threads in the page.

2. Begin drawing the Contents. Whenever there is a reference to an Image XObject
that hasn’t arrived yet, skip over it. Whenever there is a reference to a font whose
definition is an embedded FontFile that hasn’t arrived yet, draw the text using a
substitute font (if that is possible).

3. Draw the annotations.

4. Draw the images, together with anything that overlaps them.

5. Once the embedded font definitions have arrived, redraw the text using the correct
fonts, together with anything that overlaps the text.

(The last two steps should be done using an off-screen buffer, if possible, to avoid
objectionable flashing during the redraw process.)

9: Linearized PDF March 11, 1999

380 Adobe Systems Inc.

9.5.5 Following an article thread

As indicated earlier, the bead objects for any article thread that visits a given page
are located with that page. This enables the bead rectangles to be activated and
proper cursor feedback to be shown.

If the user follows a thread, the viewer can obtain the object number from the N
(Next) or P (Prev) attribute of the bead. This identifies a target bead object, which
is co-located with the page to which it belongs. Given this object number, the
viewer can perform a binary search in the Page Offset hint table to determine
which page. It can then go to that page, as discussed in Section 9.5.3, “Going to
another page of an open document.”

9.5.6 Accessing an updated file

As stated earlier, if a linearized PDF file subsequently has an incremental update
appended to it, the linearization and hints are no longer valid. Actually, this is not
necessarily true, but the viewer must do some additional work to validate them.

When the viewer sees that the file is longer than the length given in the
Linearized dictionary, it must issue an additional transaction to read everything
that was appended. It must then analyze the objects in that update to see if any of
them modifies objects that are in the first page or that are the targets of hints. If so,
it must augment its internal data structures as necessary to take the updates into
account.

For a PDF file that has received only a small update, this approach may be
worthwhile. Accessing the file this way will be quicker than accessing it without
hints or retrieving the entire file before displaying any of it.

PDF 1.3 Reference Manual March 11, 1999 :

381

Section II

Optimizing PDF Files

: March 11, 1999

382 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 10: General Techniques for Optimizing

383

CHAPTER 10

General Techniques for
Optimizing PDF Files

The first section of this book describes the syntax allowed in a PDF file. In many
cases there is more than one way to represent a particular construct, and the
previous chapters do not indicate which alternative is preferred. This section
describes techniques to optimize PDF files. Most optimizations reduce the size of a
PDF file, reduce the amount of memory needed to display pages, or improve the
speed with which pages are drawn. Some optimizations, such as sharing of
resources, allow a viewer application to display a document when it may not have
otherwise been possible in low memory situations. A few optimizations improve
the appearance of pages.

This chapter contains techniques that can be generally applied to PDF files.
Following chapters discuss optimizations specifically for text, graphics, and
images.

While it may not be possible to take advantage of all the techniques described here,
it is worth taking more time producing a PDF file to improve its viewing
performance. A PDF file will be produced only once but may be viewed many
times.

File size is a good gauge of the level of optimization, but of course the most
accurate measure is the time it takes to view and print the pages of a document.

10.1 Use short names

Names in PDF files specify resources, including fonts, forms, images, and other
objects. Whenever a name is used, it should contain as few characters as possible.
This minimizes the space needed to store references to the object.

Instead of specifying a name as:

/FirstFontInPage4

/SecondImageInPage8

use names such as:

/F1

/Im8

10: General Techniques for Optimizing PDF FilesMarch 11, 1999

384 Adobe Systems Inc.

Resource names need not be unique throughout a document. The names of
resource objects must be unique within a given resource type within a single
marking context. For example, the names of all fonts on a page must be unique.

10.2 Use direct and indirect objects appropriately

As mentioned in Chapter 4, objects contained in composite objects such as arrays
and dictionaries may either be specified directly in the composite object or be
referred to indirectly. Using indirect objects frequently improves performance and
reduces the size of a PDF file. In addition, programs that produce PDF files
sometimes must write a reference to an object into a PDF file before the object’s
value is known. Indirect objects are useful in this situation.

10.2.1 Minimizing object size

Although PDF allows random access to objects in a file, it does not permit random
access to the substructure that may be present in a single object, such as the
individual key–value pairs in a dictionary object. If a PDF viewer application
needs to access a particular piece of information contained in an object, it reads the
entire object. However, if it encounters an indirect object reference, it will not read
the indirect object until needed. Using indirect objects minimizes the amount of
extra data a PDF viewer application must read before locating the desired
information.

As an example, if a PDF viewer application needs to obtain the PostScript
language name of a font, it must search the appropriate Font dictionary object. If
(in that dictionary object) the Widths array is specified directly, the application
must read the entire array. If the Widths array is specified by an indirect
reference, the application only needs to read the few bytes that specify the indirect
reference and can avoid reading the Widths array itself.

In general, using indirect references improves the performance of a PDF file.
However, there is some overhead associated with locating an indirect object, and
an indirect object takes up more space than a direct object in a PDF file. Because
of this, small objects should not be specified indirectly. A rough rule of thumb is
that arrays with more than five elements and dictionaries with more than three
key–value pairs should be stored as indirect objects.

10.2.2 Sharing objects

Indirect objects can be referred to from more than one location in a file. Because of
this, using indirect objects can decrease the size of a PDF file by defining an object
only once and making multiple references to it.

As an example, suppose each page in a document requires the same ProcSets. Each
page’s Resources dictionary can refer to the same ProcSet array indirectly instead
of duplicating the array.

March 11, 1999 10.2.3

10: General Techniques for Optimizing PDF Files 385

10.2.3 Placeholder for an unknown value

Indirect objects can also be used when an object must be written at one location in
a file, but its value will not be known until later in the process of writing the file.
The best example of this situation is the Length key in the dictionary of a Stream
object. The dictionary must be placed in the file ahead of the stream data itself, and
must include the Length key, which specifies the length of the stream that
follows. It may not be possible to know the length of the stream until after the data
has been written, however. By specifying the value of the Length key as an
indirect object, the length of the stream can be written after the stream.

10.3 Take advantage of combined operators

PDF provides several operators that combine the function of two or more other
operators. For example, PDF defines operators that close (h) and stroke (S) a path,
but also provides an operator that performs both operations (s). These combined
operators should be used whenever possible. Table 10.1 lists the combined
operators provided by PDF. Some operators in the table require one or more
operands; the operands have been omitted from the table.

Table 10.1 Optimized operator combinations

Use… Instead of…

s h S

b h B

TD Td TL

TJ Repeated series of Tj and Td operators

' Td Tj or T* Tj

" Tc Tw Td Tj

Note To both fill and stroke a path, the combination operators must be used. Using the
fill operator followed by the stroke operator does not work. The fill operator ends
the path, leaving nothing for the stroke operator to stroke. Unlike the PostScript
language, PDF does not allow you to save the path, fill it, restore the path, and
stroke it, because the current path is not part of the PDF graphics state.

10.4 Remove unnecessary clipping paths

Whenever anything is drawn on a page, all marks are made inside the current
clipping path. When a clipping path other than the default (the crop box) is
specified, rendering speed is reduced. If a portion of a page requires the use of a
clipping path other than the default, the default clipping path should be restored as
soon as possible. Text, graphics, and images are all clipped to the current clipping
path, so it is important for the performance of all three to not use unnecessary
clipping paths.

10: General Techniques for Optimizing PDF FilesMarch 11, 1999

386 Adobe Systems Inc.

Restoration of a clipping path can be accomplished by saving the graphics state
(which includes the clipping path) using the q operator before setting the new
clipping path, and subsequently using the Q operator to restore the previous
clipping path as soon as the new clipping path is no longer needed.

Note Remember that the Q operator restores more than just the clipping path. See
Section 8.3.2, “Special Graphics State operators” for a list of the graphics state
parameters restored by the Q operator.

10.5 Omit unnecessary spaces

Spaces are unnecessary before (, after), and before and after [and]. For
instance an array should be written [1 2 3] instead of [1 2 3]. This
slightly reduces the size of files.

10.6 Omit default values

A number of the parameters that affect drawing have default values that are
initialized at the start of every page. (See Chapter 8.) For example, the default
stroke and fill colors are both black. When drawing, do not explicitly set a drawing
parameter unless the default value is not the desired value.

Similarly, many PDF objects are represented by dictionaries and some of the keys
in these dictionaries have default values. Omit any keys whose default value is the
desired value.

Omitting unnecessary key–value pairs and graphics and text state operators
reduces the size of a PDF file and the time needed to process it.

10.7 Take advantage of Form XObjects

PDF files may contain Form XObjects, which are arbitrary collections of PDF
operators that draw text, graphics, or images. The structure of a Form XObject is
discussed in Section 7.13, “XObjects.” A Form XObject may be used to draw the
same marks in one or more locations on one or more pages.

Form XObjects can be used, for example, to draw a logo, a heading for stationery,
or a traditional form. The location and appearance of a form is controlled by the
CTM in effect when the Form XObject is drawn.

The use of Form XObjects can reduce the size of a PDF file. In addition, Form
XObjects that contain an XUID can be cached by PDF viewer applications and
PostScript printers, improving rendering speed if the Form XObject is used
multiple times.

March 11, 1999 10.2.3

10: General Techniques for Optimizing PDF Files 387

10.8 Limit the precision of real numbers

The pixel size on most monitors is 1/72 of an inch, or 1 unit in default user space.
The dot size on printers and imagesetters generally ranges from 1/300 of an inch
(.24 units) to 1/2400 of an inch (.03 units). For this range of devices, it suffices to
store coordinates to two digits to the right of the decimal point. However, because
coordinates can be scaled, they should be written using more than two digits, but
generally not more than five. Acrobat stores numbers in a fixed format that allows
16 bits for a fraction, which is equivalent to four or five decimal places.

Most monitors and printers cannot produce more than 256 shades of a given color
component. Color component values, which are numbers between 0 and 1, should
not be written using more than four decimal places.

10.9 Write parameters only when they change

Graphics state operators should be written only when the corresponding graphics
state parameters change. Changes to graphics state parameters typically occur both
when the application explicitly changes them and when the graphics state is
restored using the Q operator.

When explicit changes are made to the value of a graphics state parameter, new
and old values of the parameter should be compared with the precision with which
they will be written, not their internal precision.

A pair of q and Q operators is commonly used to bracket a sequence of operators
that uses a non-default clipping path. The q operator saves the default clipping
path, and the Q operator discards the clipping path when it is no longer needed.
However, the q and Q operators save and restore the entire graphics state, not just
the clipping path. To avoid unnecessarily setting all graphics state parameters to
achieve a known state after a Q operator, an application that produces PDF files
may wish to maintain its own graphics state stack, mimicking the PDF graphics
state stack. This enables the application to determine the values of all graphics
state parameters at all times, and only write operators to change graphics state
parameters that do not have the desired value after the Q operator.

10.10 Don’t draw outside the crop box

Objects entirely outside the crop box do not appear on screen or on the final
printout. Nevertheless, if such objects are present in a PDF file, each time the page
is drawn, time is spent determining if any portion of them is visible. Simply omit
any objects that are entirely outside of the crop box, instead of relying on clipping
to keep them from being drawn.

10: General Techniques for Optimizing PDF FilesMarch 11, 1999

388 Adobe Systems Inc.

10.11 Consider target device resolution

When producing a PDF file, it is extremely important to consider the device that is
the primary target of the document contained in the file. A number of decisions
may be made differently depending on whether the document will be primarily
viewed on a low-resolution device such as a computer screen or printed to an
extremely high-resolution device such as an imagesetter.

If the primary target of the document is a computer screen, users are generally
most interested in small file sizes and fast display, and are willing to accept
somewhat reduced resolution in exchange for those. If, on the other hand, the
primary target is a 1200-dpi imagesetter, file size and drawing time are not as
important as obtaining the highest quality possible.

PDF, like the PostScript language, allows graphics objects to be drawn at an
arbitrary size and scaled to the desired size. It is often convenient to design objects
at a standard size and scale them for a particular situation. Greatly reducing the
size of an object, however, can result in unnecessary detail and slow drawing.
Choose a level of detail that is appropriate for both monitors and common printer
resolutions. In some cases it may be appropriate to replace a complex element of a
page with an equivalent image.

Decisions related to the target device primarily affect text, images, and blends.
They are discussed further in the following chapters.

10.12 Share resources

Typically, many pages of a document share the same set of fonts. A PDF file will
be smaller, display faster, and use less memory if the page’s Resources dictionaries
refer to the same Font objects. Similarly, if multiple fonts use the same custom
encoding, one Encoding object should be shared. The same holds true for
ProcSets—if multiple pages require the same combination of ProcSets, they
should refer to the same ProcSet array.

10.13 Store common Page attributes in the Pages object

Several Page attributes need not be specified directly in the Page object, but can be
inherited from a parent Pages object. Attributes that are the same for all pages in a
document may be written once in the root Pages object. If a particular page has a
different value, it can directly specify that value and override its parent’s value. For
example, all pages except one in a document might have the same media box. This
value can be stored in the root Pages object, and the media box for the odd-size
page can be specified directly in its Page object.

March 11, 1999 10.2.3

10: General Techniques for Optimizing PDF Files 389

10.14 Use strings for named destinations

Named destinations (see page 185) can be represented with names stored in the
Catalog’s Dests dictionary, or with strings stored in the Dests name tree in the
Catalog’s Names dictionary. For a small number of named destinations, either
method is acceptable, and for compatibility with PDF 1.0 and 1.1, names are
required. But applications that generate many named destinations should use the
PDF 1.2 feature of storing these as strings, where there are essentially no
implementation limits.

PDF 1.2

10: General Techniques for Optimizing PDF FilesMarch 11, 1999

390 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 11: Optimizing Text

391

CHAPTER 11

Optimizing Text

Most text optimizations relate to using appropriate operators and taking advantage
of the automatic line, character, and word spacing operators supported by PDF. A
few optimizations relate to searching.

11.1 Don’t produce unnecessary text objects

A PDF viewer application initializes the text environment at the beginning of each
text object, and this initialization takes some time. Minimizing the number of text
objects used reduces this overhead and reduces file size.

It is not necessary to end one text object and begin another whenever the text
matrix is changed using the Tm operator. Instead, the text matrix can be changed
inside the text object. For example, to create a text object containing several lines
of text at various rotations, the following text object could be used:

Example 11.1 Changing the text matrix inside a text object

BT

/F13 24 Tf

200 100 Td

(Horizontal text) Tj

0.866 0.5 -0.5 0.866 186 150 Tm

(Text rotated 30 degrees counterclockwise) Tj

0.5 0.866 -0.866 0.5 150 186 Tm

(Text rotated 60 degrees counterclockwise) Tj

0 1 -1 0 100 200 Tm

(Text rotated 90 degrees counterclockwise) Tj

ET

This sequence draws the text in the font whose name in the current Resources
dictionary is F13, at a size of 24 points. Keep in mind that the matrix specified
using the Tm operator replaces the text matrix; it is not concatenated onto the text
matrix.

Similarly, font and most other graphics state parameters can change inside a text
object. There is one exception—if one of the clipping text-rendering modes is
used, the text object must end before changing the text-rendering mode again.

11: Optimizing Text March 11, 1999

392 Adobe Systems Inc.

11.2 Use automatic leading

Several of the text string operators make use of the text leading setting to position
the drawing point at the start of the next line of text. This makes generating
multiple lines of text easy and compact. Use automatic leading whenever possible.
The ' and " operators automatically move to the next line of text, as defined by the
leading, and the T* operator can be used to manually move to the next line of text.
Define leading using either the TD or TL operators.

Note Do not use the TD or TL operator unless you use a text operator that has
automatic leading.

For example, the text object in Example 11.2 can be more efficiently written using
automatic leading and the ' operator as in Example 11.3.

Example 11.2 Multiple lines of text without automatic leading

BT

/F13 12 Tf

200 400 Td

(First line of text) Tj

0 -14 Td

(Second line of text) Tj

0 -14 Td

(Third line of text) Tj

0 -14 Td

(Fourth line of text) Tj

ET

Example 11.3 Multiple lines of text using automatic leading

BT

/F13 12 Tf

200 414 Td

14 TL

(First line of text) '

(Second line of text) '

(Third line of text) '

(Fourth line of text) '

ET

Note in Example 11.3 that the initial point has been offset vertically by one line.
This is because the ' operator moves to the next line before drawing the text.

If it is not possible to use either the ' or " operators to draw a line of text (for
example, because the TJ operator is used to adjust spacing between particular
characters within the line), you can still use the T* operator, which advances the
point to the beginning of the next line, using the current leading. For example, the
text object in Example 11.4 can be more efficiently written using automatic
leading and the T* operator, as in Example 11.5.

March 11, 1999

11: Optimizing Text 393

Example 11.4 TJ operator without automatic leading

BT

/F13 12 Tf

200 700 Td

[(First line) 100 (of text)] TJ

0 -14 Td

[(Second line) 50 (of text)] TJ

0 -14 Td

[(Third line) 40 (of text)] TJ

0 -14 Td

[(Fourth line) 50 (of text)] TJ

ET

Example 11.5 Use of the T* operator

BT

/F13 12 Tf

200 700 Td

14 TL

[(First line) 100 (of text)] TJ

T*

[(Second line) 50 (of text)] TJ

T*

[(Third line) 40 (of text)] TJ

T*

[(Fourth line) 50 (of text)] TJ

ET

Finally, you can set the leading in either of two ways. The TL operator sets the
leading directly, while the TD operator sets the leading as a side effect of moving
the line start position. The methods shown in Example 11.6 and Example 11.7 are
equivalent.

Example 11.6 Using the TL operator to set leading

BT

/F13 12 Tf

200 500 Td

14 TL

[(First line) 100 (of text)] TJ

T*

[(Second line) 50 (of text)] TJ

T*

[(Third line) 40 (of text)] TJ

T*

[(Fourth line) 50 (of text)] TJ

ET

11: Optimizing Text March 11, 1999

394 Adobe Systems Inc.

Example 11.7 Using the TD operator to set leading

BT

/F13 12 Tf

200 500 Td

[(First line) 100 (of text)] TJ

0 -14 TD

[(Second line) 50 (of text)] TJ

T*

[(Third line) 40 (of text)] TJ

T*

[(Fourth line) 50 (of text)] TJ

ET

When using the TD operator to set the leading, keep in mind that any horizontal
component supplied as an operand to TD affects the movement of the drawing
point, but not the leading. As a result, the commands

0 –14 TD

and

10 –14 TD

both set the leading to 14, although in the latter case the drawing point is ten units
to the right of where it is in the former case.

11.3 Take advantage of text spacing operators

The Tc and Tw operators adjust the spacing between characters and the spacing
between words, respectively. Use these operators to make constant adjustments on
one or more lines of text. Example 11.8 shows a text object in which one half unit
of space has been added between characters on a line and two units between
words.

Example 11.8 Character and word spacing using the Tc and Tw operators

BT

/F13 12 Tf

200 514 Td

14 TL

.5 Tc

2 Tw

(Line of text) '

(Line of text) '

ET

Equivalently, the same two lines of text could be produced using the " operator
instead of the Tc, Tw, and ' operators, as shown in Example 11.9.

March 11, 1999

11: Optimizing Text 395

Example 11.9 Character and word spacing using the " operator

BT

/F13 12 Tf

200 514 Td

14 TL

2 .5 (Line of text) "

(Line of text) '

ET

Using the " operator is preferable if entire lines of text are being written, because it
is more compact. If more than one text string operator is used to produce a line of
text, the " operator can be used to position the first string of the line and Tj or TJ
for subsequent strings. Remember that the " operator changes the character and
word spacing settings for subsequent Tj, TJ, and ' operators.

11.4 Don’t replace spaces between words

When deciding how to represent a line of text in a PDF file, keep in mind that text
can be searched. In order to search text accurately, breaks between words must be
found. For this reason, it is best to leave spaces in strings, instead of replacing them
with an operator that moves the drawing point.

For example, text containing three words could be drawn by:

(A few words) Tj

Or, replacing the spaces between words with movements of the drawing point:

[(A) -300 (few) -300 (words)] TJ

The first method is preferred.

11.5 Use the appropriate operator to draw text

In most cases, a line of text can be represented in several ways. When deciding
among the various methods, try to draw the line using as few operations as
possible. Table 11.1 provides guidelines for selecting the appropriate text string
operator.

Table 11.1 Comparison of text string operators

Use… When…

' Complete line of text can be drawn together
No need for individual character spacings

11: Optimizing Text March 11, 1999

396 Adobe Systems Inc.

" Complete line of text can be drawn together
Non-zero character or word spacings on each line
No need for individual character spacings

Tj Multiple text operators per line of text
No need for individual character spacings

TJ Individual character spacings needed

When laying out a line of text with non-default character spacings, such as kerned
text, use the TJ operator rather than a series of pairs of Tj and Td operators. For
example, both of the following lines produce the same output for the Helvetica
Bold Oblique font at a size of 12 points:

(A f) Tj 15.64 0 Td (ew w) Tj 28.08 0 Td (ords) Tj

[(A f) 30 (ew w) 50 (ords)] TJ

The second method is preferred because it minimizes the size of the file and the
number of text operators.

11.6 Use the appropriate operator to position text

The TD, Td, Tm, and T* operators each change the location at which subsequent
text is drawn. Use each of these operators under different circumstances. Table
11.2 provides guidelines for selecting the appropriate text positioning operator.

Table 11.2 Comparison of text positioning operators

Use… When…

Td Changing only the text location

TD Changing text location and leading

Tm Rotating, scaling, or skewing text

T* Moving to start of next line of text, as defined by the
leading

11.7 Remove text clipping

After text has been used as a clipping path through one of the clipping text-
rendering modes (4–7), the original clipping path must be restored. Restoration of
the original clipping path is accomplished using the q and Q operators to save and
subsequently restore the clipping path, respectively.

Neither q nor Q may appear inside a text object. Save the original clipping path
using the q operator before beginning the text object in which a new clipping path
is set. When you want to restore the original clipping path, the text object must be

March 11, 1999

11: Optimizing Text 397

ended using the ET operator. Then, use the Q operator to restore the original
clipping path. Following this, another text object can be entered if more text is to
be drawn.

Example 11.10 illustrates the proper way to save and restore a clipping path when
using one of the clipping text-rendering modes.

Example 11.10 Restoring clipping path after using text as clipping path

q

BT

/F13 48 Tf

200 414 Td

Set clip path
0.25 w

5 Tr

(Clip) Tj

ET

BT

200 450 Td

/F13 6 Tf

0 Tr

6 TL

(ClipClipClipClipClipClipClipClip) '

(ClipClipClipClipClipClipClipClip) '

(ClipClipClipClipClipClipClipClip) '

(ClipClipClipClipClipClipClipClip) '

(ClipClipClipClipClipClipClipClip) '

(ClipClipClipClipClipClipClipClip) '

(ClipClipClipClipClipClipClipClip) '

(ClipClipClipClipClipClipClipClip) '

(ClipClipClipClipClipClipClipClip) '

ET

Q

BT

/F13 12 Tf

175 395 Td

(Default Clipping Restored) Tj

ET

Figure 11.1 shows the output produced by this example when F13 is Helvetica
Bold Oblique. The presence of the words “Default Clipping Restored” at the
bottom of the figure demonstrates that the clipping path has been restored to its
previous value.

11: Optimizing Text March 11, 1999

398 Adobe Systems Inc.

Figure 11.1 Restoring clipping path after clipping to text

11.8 Consider target device resolution

Although text in a PDF file is resolution-independent (unless a document contains
bitmapped Type 3 fonts), there are still reasons to consider the resolution of the
target device. Text positioning, in particular, may depend on the primary target
device.

It is possible to individually position each character in a string using, for example,
the TJ operator. This allows precise layout of text. However, adjusting the location
of each character increases the size of a PDF file because the positioning must be
specified by numbers that are otherwise not needed. In addition, drawing text is
slower when each character is individually positioned. As mentioned in Section
10.11, “Consider target device resolution,” if the primary target is a low-resolution
device such as a computer screen, producing a small file and one that draws
quickly is generally more important than having extremely precise positioning. If
the primary target is an imagesetter, extremely precise positioning is generally the
primary concern.

As an example of the choices that can be made, suppose the positions of each
character on a 60-character line are adjusted from their normal positions by an
amount corresponding to 0.01 pixels on a 72 pixel per inch computer screen. The
total adjustment across the entire line is just over half a pixel on the screen. If the
document is primarily intended to be viewed on a computer screen, omitting the
adjustments would make sense because such a small adjustment is invisible. The
result would be a smaller file that can be drawn more quickly. On the other hand,
the same adjustment corresponds to 10 pixels on a 1200 pixel per inch imagesetter.
If the primary target is such an imagesetter, it may be worthwhile retaining the
individual position adjustment. Note that precise text positioning is most important
for justified text, where positioning errors are easily detected by users.

Default Clipping Restored

p p p p p p p p
ClipClipClipClipClipClipClipClip
ClipClipClipClipClipClipClipClip
ClipClipClipClipClipClipClipClip
ClipClipClipClipClipClipClipClip
ClipClipClipClipClipClipClipClip
ClipClipClipClipClipClipClipClip
ClipClipClipClipClipClipClipClip
ClipClipClipClipClipClipClipClip

PDF 1.3 Reference Manual March 11, 1999 12: Optimizing Graphics

399

CHAPTER 12

Optimizing Graphics

12.1 Use the appropriate color-setting operator

Use 0 g to set the fill color to black, rather than the equivalent, but longer,
0 0 0 rg or 0 0 0 1 k. Similarly, 0 G should be used to set the stroke color
to black instead of 0 0 0 RG or 0 0 0 1 K. In general, if a color contains
equal color components, use either g or G, as appropriate. For example, use .8 G
instead of .8 .8 .8 RG.

12.2 Defer path painting until necessary

When representing graphics in a PDF file, each path segment can be treated as a
separate path, or a number of segments can be grouped together into a single path.
Wherever possible, group segments together into a single path. This reduces the
size of the file and improves drawing speed. However, a path should not contain
more than approximately 1500 segments. For further information, see Appendix B
of the PostScript Language Reference Manual, Third Edition [1].

Because a path can only be filled with a single color and stroked with a single
color, line width, miter limit, and line cap style, a new path must be started
whenever one or more of these values is changed.

As an illustration, Example 12.1 and Example 12.2 produce identical output, but
the technique shown in Example 12.2 is preferred. Note that Example 12.2 still
contains two paths. These paths cannot be combined, because they have different
stroke colors.

12: Optimizing Graphics March 11, 1999

400 Adobe Systems Inc.

Example 12.1 Each path segment as a separate path

.5 0 1 RG

100 100 m

100 200 l

S

100 200 m

200 200 l

S

200 200 m

200 100 l

S

200 100 m

100 100 l

S

0 .2 .4 RG

300 300 m

400 300 l

S

Example 12.2 Grouping path segments into a single path

.5 0 1 RG

100 100 m

100 200 l

200 200 l

200 100 l

s

0 .2 .4 RG

300 300 m

400 300 l

S

12.3 Take advantage of the closepath operator

The h (closepath) operator closes the current subpath by drawing a straight
segment from the endpoint of the last segment drawn to the first point in the
subpath. When the last segment in a path is straight, use the h operator to draw the
final segment and close the path.

Two inefficient ways of closing a path commonly occur. The first, shown in
Example 12.3, uses the l operator to draw the final segment, followed by the h
operator to close the path.

Example 12.3 Using redundant l and h operators to close a path inefficiently

100 100 m

100 200 l

200 200 l

200 100 l

March 11, 1999

12: Optimizing Graphics 401

100 100 l

h

The second, shown in Example 12.4, uses the l operator to draw the final segment
of the path.

Example 12.4 Using the l operator to close a path inefficiently

100 100 m

100 200 l

200 200 l

200 100 l

100 100 l

Example 12.5 shows the correct way of closing a path with a straight segment,
using the h operator.

Example 12.5 Taking advantage of the h operator to close a path

100 100 m

100 200 l

200 200 l

200 100 l

h

If the h operator is not used, the appropriate line join will not occur at the juncture
of the path’s initial and final point.

12.4 Don’t close a path more than once

Close a path only once. Don’t use the h operator before a path painting operator
that implicitly closes the path: the n, b, f, f* and s operators. In addition, the h
operator should not be used with the re operator, because the re operator produces
a path that is already closed.

For example, do not use a sequence as in Example 12.6, because the s operator
automatically closes the path before stroking it.

Example 12.6 Improperly closing a path: multiple path closing operators

150 240.7 m

253.2 200 l

180.4 150 l

75.4 134.5 l

h

s

Instead, use the sequence:

12: Optimizing Graphics March 11, 1999

402 Adobe Systems Inc.

Example 12.7 Properly closing a path: single path closing operator

150 240.7 m

253.2 200 l

180.4 150 l

75.4 134.5 l

s

12.5 Don’t draw zero-length lines

When generating graphics from a computer program, it is not uncommon to
produce line segments of zero length. Such line segments produce no useful output
and should be eliminated before the PDF file is written.

Line segments of zero length may arise when straight line segments are used to
approximate a curve. Generally, the programmer wants to make sure that the
approximation is close to the actual curve, and so takes small steps in
approximating the curve. Occasionally the steps are small enough that they
produce segments of zero length after the coordinates have been converted to the
format in which they are written to the file. (See Section 10.8, “Limit the precision
of real numbers.”)

Zero-length line segments may also be generated when making a two-dimensional
projection of a three-dimensional object. Lines in the three-dimensional object that
go directly into the page have zero length in the two-dimensional projection.

Strictly speaking, a zero-length line with a round end-cap draws a circle whose
diameter is the current linewidth, which may be useful to do in certain
circumstances, but is usually not what you want if you’re drawing line segments to
approximate a curve.

12.6 Make sure drawing is needed

When generating graphics from a computer program, test before writing the
graphics to a PDF file to ensure that the graphics actually make new marks on the
page and do not simply draw over marks already made.

Redundant graphics typically arise when making a two–dimensional projection of
a three–dimensional object. It is possible to end up with several images that lie on
top of one another after being projected.

12.7 Take advantage of rectangle and curve operators

Use the re operator to draw a rectangle, instead of the corresponding sequence of
m and l operators.

March 11, 1999

12: Optimizing Graphics 403

Curves can be drawn in one of two ways; either by approximating the curve with a
sequence of straight segments or by using the curve operators present in PDF.
Although approximating curves using straight segments is easy, it typically results
in a very large amount of data. Use the curve operators (c, v, y) to represent curves
in PDF files. Doing so results in a smaller file that can be rendered more quickly.

An algorithm for automatically fitting an arbitrary set of points with a cubic Bézier
curve, like those used by PDF, can be found in the series of books called Graphics
Gems. The algorithm described in Graphics Gems (see [16], [28], and [31] in the
Bibliography) begins by assuming the points supplied can be fit by a single cubic
Bézier curve, with the two endpoints of the Bézier curve being the first and last
data points, and the Bézier control points calculated from the approximate tangents
at the endpoints of the supplied data. The algorithm minimizes the sum of the
squares of the distances between the data points and the curve being fit by moving
the control points. If a satisfactory fit cannot be obtained, the data points are
separated into two groups at the point with the greatest distance between the curve
being fit and the actual data point, and two separate Bézier curves are fit to the two
sets of points. This fitting and splitting is repeated until a satisfactory fit is
obtained.

12.8 Coalesce operations

Graphics generated by a computer program occasionally contain a group of
operations that can be combined into a single operation. These can arise, for
example, when a curve is approximated by a series of short straight segments.
Significant sections of the curve being approximated may be effectively straight,
but the approximation program typically does not realize this and continues to
approximate the curve as a sequence of small line segments, instead of combining
the collinear segments.

For example, the sequence shown in Example 12.8 contains a number of segments
that should be combined. Specifically, the first four l operators simply draw one
straight line segment and should be combined.

Example 12.8 Portion of a path before coalescing operations

100 100 m

100 101 l

100 102 l

100 103 l

100 104 l

101 105 l

The entire sequence can be replaced by the equivalent and more efficient sequence
in Example 12.9.

Example 12.9 Portion of a path after coalescing operations

100 100 m

100 104 l

101 105 l

12: Optimizing Graphics March 11, 1999

404 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 13: Optimizing Images

405

CHAPTER 13

Optimizing Images

Sampled images typically require more memory and take more time to process and
draw than any other graphics object element of a page. By carefully choosing an
appropriate resolution, number of bits per color component, and compression
filter, it is possible to significantly enhance image performance.

13.1 Preprocess images

PDF provides operators that transform and clip images. These operators should be
used with care. For example, performance often improves if rotation and skewing
of an image is performed before the image is placed in the PDF file, rather than by
the PDF viewer application. Similarly, if an image is clipped, it is best to reduce
the image to the smallest dimensions possible before placing the image in the PDF
file, perhaps eliminating the need for clipping.

13.2 Match image resolution to target device resolution

If a grayscale or color image will primarily be viewed on computer screens (which
typically have resolutions between 70–100 pixels per inch) or printed on typical
color and monochrome printers (which have resolutions of 300 dpi and default
halftone screens of approximately 60 lines per inch), there is no point in producing
the image at 300 samples per inch. Most of the information in the higher resolution
image will never be seen, the image will contain at least nine times as much data as
it needs to (90,000 samples per square inch versus a maximum of 10,000 samples
per square inch), and will draw more slowly.

Monochrome images can be stored at higher resolutions of 200 to 300 dpi. This
resolution can be achieved on typical printers.

13.3 Use the minimum number of bits per color component

The amount of data needed to represent an image increases as the number of bits
per color component increases. This is very important to consider when deciding
how many bits per component to use for an image.

13: Optimizing Images March 11, 1999

406 Adobe Systems Inc.

If an image requires continuous colors, it might very well need to use 8 bits per
color component. However, many graphs, plots, and other types of drawings do not
require continuous tone reproduction and are completely satisfactory with a small
number of bits per color component.

13.4 Take advantage of indexed color spaces

If an image contains a relatively small number of colors, indexed color spaces can
be used to reduce the amount of data needed to represent the image. In an indexed
color space, the number of bits needed to represent each sample in an image is
determined by the total number of colors in the image rather than by the precision
needed to specify a single color.

Most computers currently have displays that support a limited number of colors.
For example, it is very common for color displays on the Macintosh computer to
provide no more than 256 colors, and many computers running the Microsoft
Windows environment provide only 16 colors. On such devices, little loss of image
quality will occur if 24-bit color images are replaced by 8-bit indexed color
images.

As an example of the compression possible using indexed color spaces, suppose an
image contains 256 different colors. Each pixel’s color can then be encoded using
only 8 bits, regardless of whether the colors in the image are 8-bit grayscale, 24-bit
RGB, or 32-bit CMYK. If the colors are 24-bit RGB, using an indexed color space
instead of the RGB values would reduce the amount of data needed to represent the
image by approximately a factor of three: 24 bits per pixel using an RGB color
space versus 8 bits per pixel using an indexed color space. The reduction is not
exactly three because the use of an indexed color space requires that a lookup
table, containing the list of colors used in the image, be written to the file. For a
large image, the size of this lookup table is insignificant compared to the image
and can be ignored. For a small image, the size of the lookup table must be
included in the calculation. The size of the lookup table can be calculated from the
description of indexed color spaces in Section 7.12.10 on page 240.

13.5 Use the DeviceGray color space for monochrome images

For a bitmap (monochrome) image, use the DeviceGray color space instead of
DeviceRGB, DeviceCMYK, or Indexed color space. In addition, the
BitsPerComponent attribute for bitmap images should be 1. These settings
significantly reduce the amount of data used to represent the image.

Using a different color space or a larger BitsPerComponent greatly increases
the amount of image data. As an extreme example, a bitmap image represented
using a DeviceCMYK color space with 8 bits per component contains 32 times as
much data as necessary: four color components with 8 bits per component, instead
of a single color component with 1 bit per component.

March 11, 1999

13: Optimizing Images 407

13.6 Use in-line images appropriately

In-line images occupy less disk space and memory than image resources.
However, image resources give viewer applications more flexibility in managing
memory—the data of an image resource can be read on demand, while an in-line
image must be kept in memory together with the rest of a page’s contents.

Implementation note PDF Writer and the Acrobat Distiller application represent images with less than
4K of data as in-line images until a total of 32K of in-line data are present on a
page. Once this limit is reached, subsequent images on that page are represented
in-line only if they are smaller than 1K.

13.7 Don’t compress in-line images unnecessarily

In-line images should not always be compressed and converted to ASCII.
Specifically, in-line images should not be compressed if the Contents stream of the
page on which the in-line image appears is itself compressed.

Because an in-line image is located completely within the Contents stream of the
page, it is automatically passed through the compression and ASCII conversion
filters specified for the page’s Contents stream. The specification of an additional
compression or ASCII conversion filter in the in-line image itself under these
circumstances results in the in-line image being compressed and converted to
ASCII twice. This does not result in additional compression and slows down the
decoding of the image.

13.8 Choose the appropriate filters

The selection of filters for image streams can be confusing, although a few
relatively simple rules can greatly simplify the task.

The order of filters specified when data is decoded must be the opposite of the
order in which the filters were applied when the data was encoded. For example, if
data is encoded first using LZW and then by ASCII base-85, during decoding the
ASCII base-85 filter must be used before the LZW decoding filter. In a stream
object, the decoding filters and the order in which they are applied are specified by
the Filter key. The example would appear as:

/Filter [/ASCII85Decode /LZWDecode]

As discussed in Section 2.3.2 on page 22, it may be necessary to ensure that a PDF
file contains only 7-bit ASCII characters, so the binary data in the PDF file must be
encoded with one of the two binary-to-ASCII conversion filters supported by PDF:
ASCII hexadecimal and ASCII base-85. Between these two, the ASCII base-85
encoding, which is decoded by the ASCII85Decode filter, is preferred because it
produces a much smaller expansion in the amount of data than ASCII hexadecimal
encoding does.

13: Optimizing Images March 11, 1999

408 Adobe Systems Inc.

PDF supports several compression filters that reduce the size of data written into a
PDF file. The compression filters can be broken down into two classes: lossless
and lossy. A lossless filter is one in which the process of encoding and decoding
results in no loss of information: the decoded data is bit-by-bit identical to the
original data. For a lossy filter, the process of encoding and decoding results in a
loss of information: the decoded data is not bit-by-bit identical to the original data.
Lossy filters can be used when the resulting loss of information is not visually
significant. The JPEG filter supported by PDF is a lossy filter.

JPEG encoding, which can be decoded by the DCTDecode filter, provides very
significant compression of color and grayscale images, but because it is a lossy
compression it is not appropriate in all circumstances. Screenshots, in particular,
are often unacceptable when JPEG encoded. This happens because each pixel in a
screenshot is usually significant, and the loss or alteration of just a few pixels can
drastically alter the appearance of the screenshot.

Figure 13.1 shows the effect of JPEG encoding on screenshots. The images shown
in the figure are magnified by a factor of two to show the changes due to the
compression. The 8×8 pixel blocks used in JPEG encoding appear clearly in the
pattern inside the icon encoded using a high JPEG compression. The definitions of
high, medium, and low JPEG compression are those used by the Acrobat Distiller
program. The amount of data in the image from which the figure is taken is:
153,078 bytes with no JPEG encoding, 28,396 bytes with low compression JPEG
encoding, 16,944 bytes with medium compression JPEG encoding, and 10,679
bytes with high compression JPEG encoding. All these sizes are for the data after it
has been ASCII base-85 encoded.

Figure 13.1 Effect of JPEG encoding on a screenshot

No JPEG compression Low JPEG compression

Medium JPEG compression High JPEG compression

Unlike screenshots, the effect of JPEG encoding on continuous-tone images is
typically acceptable, particularly when high compression is not demanded. Figure
13.2 illustrates the effect. The image shown in the figure has been magnified by a

March 11, 1999

13: Optimizing Images 409

factor of two to make the effect of JPEG encoding more readily observable. The
version obtained using high compression clearly shows the 8×8 pixel blocks used
in JPEG encoding. As in the previous example, the definitions of high, medium,
and low JPEG compression are those used by the Acrobat Distiller program, and
the sizes shown are for the data after it has been ASCII base-85 encoded.

Figure 13.2 Effect of JPEG encoding on a continuous-tone image

No JPEG compression; 20,707 bytes Low JPEG compression; 7,717 bytes

Medium JPEG compression; High JPEG compression;
3,470 bytes 1,997 bytes

In addition to JPEG, PDF supports several lossless compression filters that may be
used for images. Guidelines for selecting among them are summarized in Table
13.1.

Table 13.1 Comparison of compression filters for images

Use… When…

DCTDecode Image is grayscale or color
Decompressed image doesn’t need to be bit-by-bit
identical to original image

13: Optimizing Images March 11, 1999

410 Adobe Systems Inc.

CCITTFaxDecode Image is monochrome (bitmap)
Group 4 encoding should be used unless the application
generating the file does not support Group 4 encoding

RunLengthDecode Image contains many groups of identical bytes, such as
an 8-bit grayscale image with many areas of same gray
level. Should rarely be used

LZWDecode Images that cannot use DCTDecode and that do not
compress well using either CCITT or run length
encoding

13.9 Use predefined spot functions

A Type-1 halftone screen (see page 276) includes a spot function. In PDF, this is
represented with a Function resource; in PDF 1.2, there are named spot functions
and sampled spot functions. The named spot functions are predefined, so an
application can implement them directly in code. When printing a PDF file to a
PostScript printer or a Postscript language file, an application can insert the
predefined PostScript code for each named function.

Spot functions that do not correspond to any of the predefined set are sampled, and
linear interpolation is used to approximate the function. For most functions, this is
quite adequate, and the error introduced by sampling and interpolating is quite
small.

Spot functions, however, are very sensitive to small errors. They are not used for
their values, but rather for their relative values. In a 5-by-5 halftone cell, for
example, the coordinates of each cell are passed to the spot function. The cell with
the smallest spot value is darkened first, and the cell with the greatest value is
darkened last. If the values for two cells are interchanged because of an error in the
approximation, no matter how small, then they darken in reverse order. This can
produce visible differences in the spot. This is an issue only for high-resolution,
professional publishing applications.

Sampled functions require interpolation, which takes more time than executing a
function directly. The sample values themselves consume space in the PDF file and
the PostScript file that is produced by the viewer. The PostScript file will also
include an interpolation function.

PDF 1.2 predefines several spot functions, intended to cover all of the common
cases of spot functions found in desktop publishing and graphics applications. An
application that uses a spot function that is very close to one of these may benefit
from using the predefined function instead.

Implementation note The Acrobat Distiller samples spot functions over a 33-by-33 grid, producing
about 1K of data (before compression). The Distiller attempts to match the
PostScript language source code of a spot function with the code for the predefined
functions. If it fails to find a match with the source code, it samples the function

PDF 1.2

March 11, 1999

13: Optimizing Images 411

and compares the results with sampled values of the predefined functions, so that a
spot function that computes the same results as, say, InvertedDoubleDot, but uses
different code to do so, will be treated as if the source code had matched.

13: Optimizing Images March 11, 1999

412 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 14: Clipping

413

CHAPTER 14

Clipping

Clipping restricts the areas on a page where marks can be made. It is similar to
using a stencil when painting or airbrushing. A stencil with one or more holes in it
is placed on a page. As long as the stencil remains in place, paint only reaches the
page through the holes in the stencil. After the stencil is removed, paint can again
be applied anywhere on the page. More than one stencil may be used in the
production of a single page, and if a second stencil is added before the first one is
removed, paint only reaches the portion of the page where there are holes in both
stencils.

Similarly, in producing a PDF page, one or more clipping paths may be used. If a
clipping path is not removed before a second clipping path is applied, the resulting
clipping path is the intersection of the two paths.

Clipping paths may be specified in two distinct ways: paths and text. These
provide clipping that affects all subsequent marking operations until the clipping
path is explicitly changed. An example of each type of clipping is provided in the
following sections.

Note Whenever a clipping path is no longer needed, the default clipping path should be
restored, as described in Section 10.4, “Remove unnecessary clipping paths.”

Image masks do not provide clipping as paths and text do, but they can be thought
of as specifying a bitmap clipping template that is placed on the page, painted with
a color, and then immediately removed. The differences between images and
image masks are discussed below.

14.1 Clipping to a path

As described in Section 8.6.3, “Path clipping operators,” the W and W* operators
can make any path a clipping path. To do this, insert the operator between the path
segment operators and one of the path painting operators described in Section
8.6.2, “Path painting operators.”

Figure 14.1 shows the effect of clipping to a region in the shape of a four-pointed
star. In the figure, the graphics are shown with and without the star as a clipping
path. To draw the figure, the star is first stroked and set to be the current clipping
path. A series of lines is then drawn through the star, and the points of the star are
filled using arcs.

14: Clipping March 11, 1999

414 Adobe Systems Inc.

Figure 14.1 Clipping to a path

Without clipping to star With clipping to star

Note When a path is stroked and used as the current clipping path, remember that the
stroke extends half the line width on each side of the path, while subsequent
drawing is clipped to the path itself. Because of this, subsequent clipped drawing
operations can draw over the “inner half” of the stroke.

The PDF operations needed to produce this output are shown in Example 14.1. The
star is first drawn using a series of l operators. It is set to be a clipping path using
the W operator and stroked using the s operator. Next, a series of lines is drawn
across the star using the m and l operators. The lines have different gray levels (set
by the G operator) and line widths (set by the w operator). Because each line has a
different width and color, each must be stroked (using the S operator) individually.
To generate the non-clipped portion of the figure, the only change made to the PDF
files was to remove the W operator.

Example 14.1 Clipping to a path

391 392 m Draw the outline of a star
370 450 l

311 472 l

370 494 l

391 552 l

412 494 l

471 472 l

412 450 l

W

s

.6 G 2 w 311 502 m 471 502 l S Draw lines

.5 G 3 w 311 492 m 471 492 l S

.4 G 4 w 311 482 m 471 482 l S

.3 G 5 w 311 472 m 471 472 l S

.4 G 4 w 311 462 m 471 462 l S

.5 G 3 w 311 452 m 471 452 l S

.6 G 2 w 311 442 m 471 442 l S

0.6 g Draw and fill circles on the endpoints
340 443 m

March 11, 1999

14: Clipping 415

357 460 357 486 341 502 c

311 472 l

f

421 422 m

405 438 379 438 362 421 c

391 392 l

f

442 501 m

425 484 425 458 441 442 c

471 472 l

f

361 522 m

377 506 403 506 420 523 c

391 552 l

f

14.2 Clipping to text

Several of the text rendering modes described in Section 8.7.1.7, “Text rendering
mode” allow text to be used as a clipping path. In particular, modes 4 through 7 can
be used to clip subsequent drawing to the shapes of one or more characters.

Figure 14.2 shows the word “and” used as a clipping path. The word is first drawn
as stroked and clipped text. Following this, a series of lines containing various
ampersands is drawn on top of the word. Only those ampersands contained inside
the clipping path defined by the word are visible. The font used for the word “and”
is Poetica® Chancery III. The font used for the ampersands is Poetica Ampersands.

Figure 14.2 Using text as a clipping path

Example 14.2 shows the page description used to produce Figure 14.2. In the
example, the font named F6 is Poetica Ampersands and the font named F24 is
Poetica Chancery III.

Example 14.2 Using text as a clipping path

BT

and
�������	
��
������������������ !"#$%&'()*+
,-./0123456789:;�������	
��
������������������
 !"#$%&'()*+,-./0123456789:;�������	
��
����
������������ !"#$%&'()*+,-./0123456789:;
�������	
��
������������������ !"#$%&'()*+
,-./0123456789:;�������	
��
������������������
 !"#$%&'()*+,-./0123456789:;�������	
��
����
������������ !"#$%&'()*+,-./0123456789:;
�������	
��
������������������ !"#$%&'()*+
,-./0123456789:;�������	
��
������������������
 !"#$%&'()*+,-./0123456789:;�������	
��
����
������������ !"#$%&'()*+,-./0123456789:;
�������	
��
������������������ !"#$%&'()*+
,-./0123456789:;�������	
��
������������������
 !"#$%&'()*+,-./0123456789:;�������	
��
����
������������ !"#$%&'()*+,-./0123456789:;
�������	
��
������������������ !"#$%&'()*+
,-./0123456789:;�������	
��
������������������
 !"#$%&'()*+,-./0123456789:;�������	
��
����
������������ !"#$%&'()*+,-./0123456789:;

March 11, 1999

14: Clipping 416

100 500 Td

Draw the word "and", stroke it, and use it as a clipping path.
/F24 144 Tf

0.25 w

5 Tr

(and) Tj

ET

BT

/F6 6 Tf Select the Poetica Ampersands font
100 615 Td

0 Tr

6 TL

Draw lines of ampersands
(aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuU) '

(vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO) '

(pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH)'

(jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456) '

(aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuU) '

(vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO) '

(pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH) '

(jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456) '

(aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuU) '

(vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO) '

(pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH) '

(jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456) '

(aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuU) '

(vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO) '

(pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH) '

(jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456) '

(aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuU) '

(vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO) '

(pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH) '

(jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456) '

ET

After beginning a text object by using the BT operator, the point at which text will
be drawn is set using the Td operator. Following this, the font (named F24) and
the size (144 points) are set using the Tf operator, the linewidth for the stroke is set
to 0.25 units using the w operator, and the stroked clipping text rendering mode
(mode 5) is selected using the Tr operator. The word “and” is then drawn using the
Tj operator. Next, the text object is ended using the ET operator. This is necessary
in order to draw text using a different rendering mode. Following this, another text
object is started, the ampersand font (named F6) and the size (6 points) are set, the
position where text will be drawn is moved, the filled text rendering mode (mode
0) is selected, and the line leading is set to 6 points using the TL operator. Finally,
the ampersands are drawn by a series of ' operators, and the text object ends.

March 11, 1999

14: Clipping 417

14.3 Image masks

Although image masks do not provide clipping as described above, they can be
thought of as operating as follows: a bitmap image defines the clipping path, where
1s and 0s are considered to be holes and masks. The rectangle containing the
bitmap is painted with the current fill color. Immediately following this, the
bitmap-derived clipping path is removed.

Image masks differ from images in two ways. First, when an image is drawn, all
pixels in the rectangle of the image are painted. In an image mask, only the pixels
under holes in the mask are painted; all other pixels are left unchanged. Second,
the colors in which an image is painted are encoded inside the image itself, while
an image mask is painted using the current fill color at the time the image mask is
drawn. Because of this, an image mask may appear in different colors each time it
is drawn.

As described in Section 7.13, “XObjects,” the structure of an image mask differs
from that of an image in several ways. First, an image mask must have only one bit
per color component. Second, an image mask must not contain a color space
specification, while an image must. Third, the image mask dictionary must contain
the ImageMask key with a value of true. For both images and image masks, the
array specified as the value of the Decode key in the image can be used to choose
whether bits containing 1s or bits containing 0s are considered to be set.

Figure 14.3 shows examples of images and image masks. The examples also
illustrate how the decode array can be used to invert the image.

Figure 14.3 Images and image masks

Image Inverted image

Image mask Inverted image mask

14: Clipping March 11, 1999

418 Adobe Systems Inc.

Example 14.3 shows the relevant sections from the PDF file used to produce the
figure. Because the only difference between the PDF files used to draw each of the
four examples is in the image object itself, all the drawing operations are common.
The 0.6 g operation appearing just before the image or image mask is drawn has
an effect only when the object being drawn is an image mask, not an image. The
example shows the operations used to draw the image mask portion of the figure.
To produce the image portion of the figure, the line

/ImageMask true

was replaced with the line

/ColorSpace /DeviceGray

For the inverted image and inverted image mask, the line

/Decode [1 0]

was added to the dictionary of the image or image mask.

Example 14.3 Images and image masks

3 0 obj <<

/Type /Page

/Parent 4 0 R

/MediaBox [53 470 198 616]

/Resources <<

/XObject << /Im0 60 0 R >>

/ProcSet [/PDF /ImageC] >>

/Contents 23 0 R

>> endobj

23 0 obj <<

/Length 205

>> stream Draw a circle and fill it
0.8 g

126 472 m

165 472 197 504 197 543 c

197 582 165 614 126 614 c

87 614 55 582 55 543 c

55 504 87 472 126 472 c

f

Draw image or mask
q

100 0 0 100 76 493.2 cm

.6 g

/Im0 Do

Q

endstream

endobj

March 11, 1999

14: Clipping 419

60 0 obj <<

/Type /XObject

/Subtype /Image

/Width 24

/Height 23

/BitsPerComponent 1

/Filter /ASCIIHexDecode

/Length 162

/ImageMask true

>> stream

003b00 002700 002480 0e4940

114920 14b220 3cb650 75fe88

17ff8c 175f14 1c07e2 3803c4

703182 f8edfc b2bbc2 bb6f84

31bfc2 18ea3c 0e3e00 07fc00

03f800 1e1800 1ff800>

endstream

endobj

14: Clipping March 11, 1999

420 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 :

421

APPENDIX A

Example PDF Files

A.1 Minimal PDF file

Although the PDF file shown in this example does not draw anything, it is almost
the minimum PDF file possible. It is not strictly the minimum acceptable file
because it contains an Outlines object, a Contents object, and a Resources
dictionary with a ProcSet resource. These objects were included to make this file
useful as a starting point for developing test files. The objects present in this file
are listed in Table A.1.

Note When using this file as a starting point for creating other files, remember to update
the ProcSet resource as needed (see Section 7.6, “ProcSets”). Also, remember that
the cross-reference table entries may need to have a trailing blank (see Section
5.15, “Cross-reference table.”)

Table A.1 Objects in empty example

Object number Object type

1 Catalog

2 Outlines

3 Pages

4 Page

5 Contents

6 ProcSet array

: March 11, 1999

422 Adobe Systems Inc.

Example A.1 Minimal PDF file

%PDF-1.0

1 0 obj

<<

/Type /Catalog

/Pages 3 0 R

/Outlines 2 0 R

>>

endobj

2 0 obj

<<

/Type /Outlines

/Count 0

>>

endobj

3 0 obj

<<

/Type /Pages

/Count 1

/Kids [4 0 R]

>>

endobj

4 0 obj

<<

/Type /Page

/Parent 3 0 R

/Resources << /ProcSet 6 0 R >>

/MediaBox [0 0 612 792]

/Contents 5 0 R

>>

endobj

5 0 obj

<< /Length 35 >>

stream

Place page marking operators here
endstream

endobj

6 0 obj

[/PDF]

endobj

xref

0 7

March 11, 1999

: 423

0000000000 65535 f

0000000009 00000 n

0000000074 00000 n

0000000120 00000 n

0000000179 00000 n

0000000300 00000 n

0000000384 00000 n

trailer

<<

/Size 7

/Root 1 0 R

>>

startxref

408

%%EOF

A.2 Simple text string

This PDF file is the classic “Hello World.” It displays a single line of text
containing that string. The string is displayed in 24-point Helvetica. Because
Helvetica is one of the base 14 fonts, no font descriptor is needed. This example
illustrates the use of fonts and several text-related PDF operators. The objects
contained in the file are listed in Table A.2.

Table A.2 Objects in “Hello World” example

Object number Object type

1 Catalog

2 Outlines

3 Pages

4 Page

5 Contents

6 ProcSet array

7 Font (Type 1 font)

Example A.2 PDF file for simple text example

%PDF-1.0

1 0 obj

<<

/Type /Catalog

/Pages 3 0 R

/Outlines 2 0 R

>>

endobj

: March 11, 1999

424 Adobe Systems Inc.

2 0 obj

<<

/Type /Outlines

/Count 0

>>

endobj

3 0 obj

<<

/Type /Pages

/Count 1

/Kids [4 0 R]

>>

endobj

4 0 obj

<<

/Type /Page

/Parent 3 0 R

/Resources << /Font << /F1 7 0 R >> /ProcSet 6 0 R

>>

/MediaBox [0 0 612 792]

/Contents 5 0 R

>>

endobj

5 0 obj

<< /Length 44 >>

stream

BT

/F1 24 Tf

100 100 Td (Hello World) Tj

ET

endstream

endobj

6 0 obj

[/PDF /Text]

endobj

7 0 obj

<<

/Type /Font

/Subtype /Type1

/Name /F1

/BaseFont /Helvetica

/Encoding /MacRomanEncoding

>>

March 11, 1999

: 425

endobj

xref

0 8

0000000000 65535 f

0000000009 00000 n

0000000074 00000 n

0000000120 00000 n

0000000179 00000 n

0000000322 00000 n

0000000415 00000 n

0000000445 00000 n

trailer

<<

/Size 8

/Root 1 0 R

>>

startxref

553

%%EOF

A.3 Simple graphics

This PDF file draws a thin black line segment, a thick black dashed line segment, a
filled and stroked rectangle, and a filled and stroked Bézier curve. The file contains
comments showing the various operations. The objects present in this file are listed
in Table A.3.

Note The byte-addresses in the cross-reference table are not necessarily accurate.

Table A.3 Objects in graphics example

Object number Object type

1 Catalog

2 Outlines

3 Pages

4 Page

5 Contents

6 ProcSets

Example A.3 PDF file for simple graphics example

%PDF-1.0

1 0 obj

<<

/Type /Catalog

: March 11, 1999

426 Adobe Systems Inc.

/Pages 3 0 R

/Outlines 2 0 R

>>

endobj

2 0 obj

<<

/Type /Outlines

/Count 0

>>

endobj

3 0 obj

<<

/Type /Pages

/Count 1

/Kids [4 0 R]

>>

endobj

4 0 obj

<<

/Type /Page

/Parent 3 0 R

/Resources << /ProcSet 6 0 R >>

/MediaBox [0 0 612 792]

/Contents 5 0 R

>>

endobj

5 0 obj

<< /Length 612 >>

stream

Draw a black line segment, using the default line width.
150 250 m

150 350 l

S

Draw thicker, dashed line segment.
4 w Set a linewidth of 4 points.
[4 6] 0 d

Set a dash pattern with 4 units on, 6 units off.
150 250 m

400 250 l

S

[] 0 d Reset dash pattern to a solid line
1 w Reset linewidth to 1 unit

Draw a rectangle, 1 unit red border, filled with light blue.
.5 .75 1 rg Light blue for fill color.

March 11, 1999

: 427

1 0 0 RG Red for stroke color.
200 300 50 75 re

B

Draw a curve using a Bézier curve,
filled with gray and with a colored border.

.5 .1 .2 RG

0.7 g

300 300 m

300 400 400 400 400 300 c

b

endstream

endobj

6 0 obj

[

/PDF

]

endobj

xref

0 7

0000000000 65535 f

0000000016 00000 n

0000000086 00000 n

0000000136 00000 n

0000000200 00000 n

0000000328 00000 n

0000000992 00000 n

trailer

<<

/Size 8

/Root 1 0 R

>>

startxref

1110

%%EOF

: March 11, 1999

428 Adobe Systems Inc.

Figure 14.4 Visual representation of Example A.3

A.4 Pages tree

This example is a fragment of a PDF file, illustrating the structure of the Pages tree
for a large document. It contains the Pages objects for a 62-page file. The structure
of the Pages tree for this example is shown in Figure A.1. In the figure, the
numbers are object numbers corresponding to the objects in the PDF document
fragment contained in Example A.4.

Figure A.1 Pages tree for 62-page document example

Example A.4 Pages tree for a document containing 62 pages

337 0 obj

<<

/Kids [335 0 R 336 0 R]

/Count 62

337

335 336

4 43 77 108 139 170 201 232 263 294 325

3

16

21

26

31

37

42

48

53

58

63

70

76

82

87

92

97

102

107

113

118

123

128

133

138

144

149

154

159

164

169

175

180

185

190

195

200

206

211

216

221

226

231

237

242

247

252

257

262

268

273

278

283

288

293

299

304

309

314

319

324

330

March 11, 1999

: 429

/Type /Pages

>>

endobj

335 0 obj

<<

/Kids [4 0 R 43 0 R 77 0 R 108 0 R 139 0 R 170 0 R]

/Count 36

/Type /Pages

/Parent 337 0 R

>>

endobj

336 0 obj

<<

/Kids [201 0 R 232 0 R 263 0 R 294 0 R 325 0 R]

/Count 26

/Type /Pages

/Parent 337 0 R

>>

endobj

4 0 obj

<<

/Kids [3 0 R 16 0 R 21 0 R 26 0 R 31 0 R 37 0 R]

/Count 6

/Type /Pages

/Parent 335 0 R

>>

endobj

43 0 obj

<<

/Kids [42 0 R 48 0 R 53 0 R 58 0 R 63 0 R 70 0 R]

/Count 6

/Type /Pages

/Parent 335 0 R

>>

endobj

77 0 obj

<<

/Kids [76 0 R 82 0 R 87 0 R 92 0 R 97 0 R 102 0 R]

/Count 6

/Type /Pages

/Parent 335 0 R

>>

endobj

: March 11, 1999

430 Adobe Systems Inc.

108 0 obj

<<

/Kids [107 0 R 113 0 R 118 0 R 123 0 R 128 0 R 133 0

R]

/Count 6

/Type /Pages

/Parent 335 0 R

>>

endobj

139 0 obj

<<

/Kids [138 0 R 144 0 R 149 0 R 154 0 R 159 0 R 164 0

R]

/Count 6

/Type /Pages

/Parent 335 0 R

>>

endobj

170 0 obj

<<

/Kids [169 0 R 175 0 R 180 0 R 185 0 R 190 0 R 195 0

R]

/Count 6

/Type /Pages

/Parent 335 0 R

>>

endobj

201 0 obj

<<

/Kids [200 0 R 206 0 R 211 0 R 216 0 R 221 0 R 226 0

R]

/Count 6

/Type /Pages

/Parent 336 0 R

>>

endobj

232 0 obj

<<

/Kids [231 0 R 237 0 R 242 0 R 247 0 R 252 0 R 257 0

R]

/Count 6

/Type /Pages

/Parent 336 0 R

>>

March 11, 1999

: 431

endobj

263 0 obj

<<

/Kids [262 0 R 268 0 R 273 0 R 278 0 R 283 0 R 288 0

R]

/Count 6

/Type /Pages

/Parent 336 0 R

>>

endobj

294 0 obj

<<

/Kids [293 0 R 299 0 R 304 0 R 309 0 R 314 0 R 319 0

R]

/Count 6

/Type /Pages

/Parent 336 0 R

>>

endobj

325 0 obj

<<

/Kids [324 0 R 330 0 R]

/Count 2

/Type /Pages

/Parent 336 0 R

>>

endobj

A.5 Outline

This section from a PDF file illustrates the structure of an outline tree with six
entries. Example A.5 shows the outline with all entries open, as illustrated in
Figure A.2.

: March 11, 1999

432 Adobe Systems Inc.

Figure A.2 Example of outline with six items, all open

Example A.5 Six entry outline, all items open

21 0 obj

<<

/Count 6

/Type /Outlines

/First 22 0 R

/Last 29 0 R

>>

endobj

22 0 obj

<<

/Parent 21 0 R

/Dest [3 0 R /Top 0 792 0]

/Title (Document)

/Next 29 0 R

/First 25 0 R

/Last 28 0 R

/Count 4

>>

endobj

25 0 obj

<<

/Dest [3 0 R /FitR -38 255 650 792]

/Parent 22 0 R

/Title (Section 1)

/Next 26 0 R

>>

endobj

26 0 obj

<<

Document

Section 1

Section 2

Subsection 1

Section 3

Summary

Onscreen appearance
Object
number Count

22

25

26

27

28

29

4

0

1

0

0

0

621

March 11, 1999

: 433

/Dest [3 0 R /FitR -38 255 650 792]

/Prev 25 0 R

/Next 28 0 R

/Parent 22 0 R

/Title (Section 2)

/First 27 0 R

/Last 27 0 R

/Count 1

>>

endobj

27 0 obj

<<

/Dest [3 0 R /FitR -38 255 650 792]

/Parent 26 0 R

/Title (Subsection 1)

>>

endobj

28 0 obj

<<

/Dest [3 0 R /FitR 3 255 622 792]

/Prev 26 0 R

/Parent 22 0 R

/Title (Section 3)

>>

endobj

29 0 obj

<<

/Prev 22 0 R

/Parent 21 0 R

/Dest [3 0 R /FitR 3 255 622 792]

/Title (Summary)

>>

endobj

Example A.6 is the same as Example A.5, except that one of the outline items has
been closed in the display. The outline appears as shown in Figure A.3.

: March 11, 1999

434 Adobe Systems Inc.

Figure A.3 Example of outline with six items, five of which are open

Example A.6 Six entry outline, five entries open

21 0 obj

<<

/Count 5

/Type /Outlines

/First 22 0 R

/Last 29 0 R

>>

endobj

22 0 obj

<<

/Parent 21 0 R

/Dest [3 0 R /Top 0 792 0]

/Title (Document)

/Next 29 0 R

/First 25 0 R

/Last 28 0 R

/Count 3

>>

endobj

25 0 obj

<<

/Dest [3 0 R /FitR -38 255 650 792]

/Parent 22 0 R

/Title (Section 1)

/Next 26 0 R

>>

endobj

26 0 obj

<<

/Dest [3 0 R /FitR -38 255 650 792]

Onscreen appearance
Object
number Count

Document

Section 1

Section 2

Section 3

Summary

22

25

26

28

29

3

0

–1

0

0

521

March 11, 1999

: 435

/Prev 25 0 R

/Next 28 0 R

/Parent 22 0 R

/Title (Section 2)

/First 27 0 R

/Last 27 0 R

/Count -1

>>

endobj

27 0 obj

<<

/Dest [3 0 R /FitR -38 255 650 792]

/Parent 26 0 R

/Title (Subsection 1)

>>

endobj

28 0 obj

<<

/Dest [3 0 R /FitR 3 255 622 792]

/Prev 26 0 R

/Parent 22 0 R

/Title (Section 3)

>>

endobj

29 0 obj

<<

/Prev 22 0 R

/Parent 21 0 R

/Dest [3 0 R /FitR 3 255 622 792]

/Title (Summary)

>>

endobj

A.6 Updated file

This example shows the structure of a PDF file as it is updated several times;
multiple body sections, cross-reference sections, and trailers. In addition, it
illustrates the fact that once an object ID has been assigned to an object, it keeps
the ID until it is deleted, even if the object is altered. Finally, it illustrates the re-use
of cross-reference entries for objects that have been deleted, along with the
incrementing of the generation number after an object has been deleted.

: March 11, 1999

436 Adobe Systems Inc.

The original file is that used in Section A.1, “Minimal PDF file.” This file is not
shown again here. First, four text annotations are added and the file saved. Next,
the text of one of the annotations is altered, and the file saved. Following this, two
of the text annotations are deleted, and the file saved again. Finally, three text
annotations are added, and the file saved again.

The segments added to the file at each stage are shown separately. Throughout this
example, objects are referred to by their object IDs, made up of the object number
and generation number, rather than simply by the object number, as was done in
earlier examples. This is necessary because objects are re-used in this example, so
that the object number is not a unique identifier.

Note The tables in this section show only the objects that are modified at some point
during the updating process. Objects from the example file in Section A.1,
“Minimal PDF file” that are never altered during the update are not shown.

A.6.1 Add four text annotations

Four text annotations were added to the initial file and the file saved. Table A.4
lists the objects in this update.

Table A.4 Object use after adding four text annotations

Object ID Object type

4 0 Page

7 0 Annots array

8 0 Text annotation

9 0 Text annotation

10 0 Text annotation

11 0 Text annotation

Example A.7 shows the lines added to the file by this update. The Page object is
updated because an Annots key has been added. Note that the file’s trailer now
contains a Prev key, which points to the original cross-reference section in the file,
while the startxref value at the end of the file points to the cross-reference section
added by the update.

Example A.7 Update section of PDF file when four text annotations are added

4 0 obj

<<

/Type /Page

/Parent 3 0 R

/Resources << /ProcSet 6 0 R >>

/MediaBox [0 0 612 792]

/Contents 5 0 R

/Annots 7 0 R

>>

March 11, 1999

: 437

endobj

7 0 obj

[8 0 R 9 0 R 10 0 R 11 0 R]

endobj

8 0 obj

<<

/Type /Annot

/Subtype /Text

/Open true

/Rect [44 616 162 735]

/Contents (Text #1)

>>

endobj

9 0 obj

<<

/Type /Annot

/Subtype /Text

/Open false

/Rect [224 668 457 735]

/Contents (Text #2)

>>

endobj

10 0 obj

<<

/Type /Annot

/Subtype /Text

/Open true

/Rect [239 393 328 622]

/Contents (Text #3)

>>

endobj

11 0 obj

<<

/Type /Annot

/Subtype /Text

/Open false

/Rect [34 398 225 575]

/Contents (Text #4)

>>

endobj

xref

0 1

: March 11, 1999

438 Adobe Systems Inc.

0000000000 65535 f

4 1

0000000612 00000 n

7 5

0000000747 00000 n

0000000792 00000 n

0000000897 00000 n

0000001004 00000 n

0000001111 00000 n

trailer

<<

/Size 12

/Root 1 0 R

/Prev 408

>>

startxref

1218

%%EOF

A.6.2 Modify text of one annotation

The lines shown in Example A.8 were added to the file when it was saved after
modifying one text annotation. Note that the file now contains two copies of the
object with ID 10 0 (the text annotation that was modified), and that the cross-
reference section added points to the more recent version of the object. The cross-
reference section added contains one subsection. The subsection contains an entry
only for the object that was modified. In addition, the Prev key in the file’s trailer
has been updated to point to the cross-reference section added by the previous
update, while the startxref value at the end of the file points to the newly added
cross-reference section.

Example A.8 Update section of PDF file when one text annotation is modified

10 0 obj

<<

/Type /Annot

/Subtype /Text

/Open true

/Rect [239 393 328 622]

/Contents (Modified Text #3)

>>

endobj

xref

10 1

0000001444 00000 n

trailer

<<

/Size 12

March 11, 1999

: 439

/Root 1 0 R

/Prev 1218

>>

startxref

1560

%%EOF

A.6.3 Delete two annotations

Table A.5 lists the objects updated when two text annotations were deleted and the
file saved.

Table A.5 Object use after deleting two text annotations

Object ID Object type

7 0 Annots array

8 0 Free

9 0 Free

The Annots array is the only object that is written in this update. It is updated
because it now contains two fewer annotations.

Example A.9 shows the lines added when the file was saved. Note that objects with
IDs 8 0 and 9 0 have been deleted, as can be seen from the fact that their entries in
the cross-reference section end with an f. The cross-reference section added in this
step contains four entries, corresponding to object number 0, the Annots array, and
the two deleted text annotations. The cross-reference entry for object number 0 is
updated because it is the head of the linked list of free objects, and must now point
to the newly freed entry for object number 8. The entry for object number 8 points
to the entry for object number 9 (the next free entry), while the entry for object
number 9 is the last free entry in the cross-reference table, indicated by the fact that
it points to object number 0. The entries for the two deleted text annotations are
marked as free, and as having generation numbers of 1, which will be used for any
objects that re-use these cross-reference entries. Keep in mind that, although the
two objects have been deleted, they are still present in the file. It is the cross-
reference table that records the fact that they have been deleted.

The Prev key in the trailer dictionary has again been updated, so that it points to
the cross-reference section added in the previous step, and the startxref value
points to the newly added cross-reference section.

Example A.9 Update section of PDF file when two text annotations are deleted

7 0 obj

[10 0 R 11 0 R]

endobj

xref

0 1

: March 11, 1999

440 Adobe Systems Inc.

0000000008 65535 f

7 3

0000001658 00000 n

0000000009 00001 f

0000000000 00001 f

trailer

<<

/Size 12

/Root 1 0 R

/Prev 1560

>>

startxref

1691

%%EOF

A.6.4 Add three annotations

Finally, three text annotations were added to the file. Table A.6 lists the objects
involved in this update.

Table A.6 Object use after adding three text annotations

Object ID Object type

7 0 Annots array

8 1 Text annotation

9 1 Text annotation

12 0 Text annotation

Object numbers 8 and 9, which were the object numbers used for the two
annotations deleted in the previous step, have been re-used. The new objects have
been given a generation number of 1, however. In addition, the third text
annotation added was assigned the previously unused object ID of 12 0.

Example A.10 shows the lines added to the file by this update. The cross-reference
section added in this step contains five entries, corresponding object number 0, the
Annots array, and the three annotations added. The entry for object number zero is
updated because the previously free entries for object numbers 8 and 9 have been
re-used. The entry for object number zero now shows that there are no free entries
in the cross-reference table. The Annots array is updated to reflect the addition of
the three new text annotations.

As in previous updates, the trailer’s Prev key and startxref value have been
updated.

The annotation with object ID 12 0 illustrates the splitting of a long text string
across multiple lines, as well as the technique for including non-standard
characters in a string. In this case, the character is an ellipsis (…), which is
character code 203 (octal) in the PDFDocEncoding used for text annotations.

March 11, 1999

: 441

Example A.10 Update section of PDF file after three text annotations are added

7 0 obj

[10 0 R 11 0 R 8 1 R 9 1 R 12 0 R]

endobj

8 1 obj

<<

/Type /Annot

/Subtype /Text

/Open true

/Rect [58 657 172 742]

/Contents (New Text #1)

>>

endobj

9 1 obj

<<

/Type /Annot

/Subtype /Text

/Open false

/Rect [389 459 570 537]

/Contents (New Text Annotation #2)

>>

endobj

12 0 obj

<<

/Type /Annot

/Subtype /Text

/Open true

/Rect [44 253 473 337]

/Contents (A longer annotation which we'll call, \

for lack of a better name\203New T\

ext #3)

>>

endobj

xref

0 1

0000000000 65535 f

7 3

0000001853 00000 n

0000001905 00001 n

0000002014 00001 n

12 1

0000002136 00000 n

trailer

<<

: March 11, 1999

442 Adobe Systems Inc.

/Size 13

/Root 1 0 R

/Prev 1691

>>

startxref

2315

%%EOF

PDF 1.3 Reference Manual March 11, 1999 :

443

APPENDIX B

Summary of Page Marking
Operators

Following is a list of all page marking operators used in PDF files, arranged
alphabetically. For each operator, a brief description is given, along with a
reference to the page in this document where the operator is discussed in detail.
Words shown in boldface in the summary column are PostScript language
operators.

Table B.1 PDF page marking operators

Operator Summary Page

b closepath, fill, and stroke path 320

B fill and stroke path 338

b* closepath, eofill, and stroke path 338

B* eofill and stroke path 338

BDC begin marked content, with a dictionary 353

BI begin image 350

BMC begin marked content 353

BT begin text object 345

BX begin section allowing undefined operators 351

c curveto 335

cm concat. Concatenates the matrix to the current transformation
matrix.

323

cs setcolorspace for fill 331

CS setcolorspace for stroke 332

d setdash 325

d0 setcharwidth for Type 3 font 351

d1 setcachedevice for Type 3 font 351

Do execute the named XObject 348

PDF 1.2

PDF 1.2

PDF 1.1

PDF 1.1

PDF 1.1

: March 11, 1999

444 Adobe Systems Inc.

DP mark a place in the content stream, with a dictionary 353

EI end image 350

EMC end marked content 353

ET end text object 345

EX end section that allows undefined operators 351

f fill path 338

F fill path 338

f* eofill path 338

g setgray (fill) 331

G setgray (stroke) 331

gs set parameters in the extended graphics state 327

h closepath 336

i setflat 323

ID begin image data 350

j setlinejoin 326

J setlinecap 324

k setcmykcolor (fill) 331

K setcmykcolor (stroke) 331

l lineto 335

m moveto 335

M setmiterlimit 327

MP mark a place in the content stream 353

n end path without fill or stroke 338

q save graphics state 323

Q restore graphics state 323

re rectangle 336

rg setrgbcolor (fill) 331

RG setrgbcolor (stroke) 331

Table B.1 PDF page marking operators

Operator Summary Page

PDF 1.2

PDF 1.2

PDF 1.1

PDF 1.2

PDF 1.2

March 11, 1999

: 445

ri set the rendering intent 333

s closepath and stroke path 338

S stroke path 338

sc setcolor (fill) 332

SC setcolor (stroke) 332

scn setcolor (fill, in pattern and separation color spaces) 333

SCN setcolor (stroke, in pattern and separation color spaces) 333

sh shfill (shaded fill) 338

Tc set character spacing 340

Td move text current point 345

TD move text current point and set leading 345

Tf set font name and size 342

Tj show text 347

TJ show text, allowing individual character positioning 347

TL set leading 342

Tm set text matrix 345

Tr set text rendering mode 343

Ts set super/subscripting text rise 344

Tw set word spacing 341

Tz set horizontal scaling 341

T* move to start of next line 346

v curveto 335

w setlinewidth 326

W clip 339

W* eoclip 339

y curveto 335

' move to next line and show text 347

" move to next line and show text 347

Table B.1 PDF page marking operators

Operator Summary Page

PDF 1.1

PDF 1.1

PDF 1.2

PDF 1.2

PDF 1.3

: March 11, 1999

446 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 :

447

APPENDIX C

Predefined Font
Encodings

PDF provides several predefined font encodings:

• MacRomanEncoding, MacExpertEncoding, and WinAnsiEncoding
may be used in Font and Encoding objects.

• PDFDocEncoding is the encoding used in outline entries, text annotations,
and strings in the Info dictionary.

• StandardEncoding is the built-in encoding for many fonts.

This appendix contains three tables describing these encodings. The first table
shows all encodings except MacExpertEncoding and is arranged alphabetically
by character name. The second table is similar, except that it is arranged
numerically by character code. The third table shows the encoding for
MacExpertEncoding, which is shown in a separate table because it has a
substantially different character set than the other encodings.

: March 11, 1999

448 Adobe Systems Inc.

C.1 Predefined encodings sorted by character name

Char Name
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal Decimal Octal Decimal Octal Decimal Octal

A A 65 101 65 101 65 101 65 101

Æ AE 225 341 174 256 198 306 198 306

Á Aacute — — 231 347 193 301 193 301

Â Acircumflex — — 229 345 194 302 194 302

Ä Adieresis — — 128 200 196 304 196 304

À Agrave — — 203 313 192 300 192 300

Å Aring — — 129 201 197 305 197 305

Ã Atilde — — 204 314 195 303 195 303

B B 66 102 66 102 66 102 66 102

C C 67 103 67 103 67 103 67 103

Ç Ccedilla — — 130 202 199 307 199 307

D D 68 104 68 104 68 104 68 104

E E 69 105 69 105 69 105 69 105

É Eacute — — 131 203 201 311 201 311

Ê Ecircumflex — — 230 346 202 312 202 312

Ë Edieresis — — 232 350 203 313 203 313

È Egrave — — 233 351 200 310 200 310

Fi Eth — — — — 208 320 208 320

Euro — — — — 128 200 160 240

F F 70 106 70 106 70 106 70 106

G G 71 107 71 107 71 107 71 107

H H 72 110 72 110 72 110 72 110

I I 73 111 73 111 73 111 73 111

Í Iacute — — 234 352 205 315 205 315

Î Icircumflex — — 235 353 206 316 206 316

Ï Idieresis — — 236 354 207 317 207 317

Ì Igrave — — 237 355 204 314 204 314

J J 74 112 74 112 74 112 74 112

K K 75 113 75 113 75 113 75 113

L L 76 114 76 114 76 114 76 114

Lslash 232 350 — — — — 149 225

M M 77 115 77 115 77 115 77 115

N N 78 116 78 116 78 116 78 116

Ñ Ntilde — — 132 204 209 321 209 321

O O 79 117 79 117 79 117 79 117

Œ OE 234 352 206 316 140 214 150 226

Ó Oacute — — 238 356 211 323 211 323

Ô Ocircumflex — — 239 357 212 324 212 324

Ö Odieresis — — 133 205 214 326 214 326

Ò Ograve — — 241 361 210 322 210 322

Ø Oslash 233 351 175 257 216 330 216 330

Õ Otilde — — 205 315 213 325 213 325

P P 80 120 80 120 80 120 80 120

PDF 1.3

March 11, 1999

: 449

Q Q 81 121 81 121 81 121 81 121

R R 82 122 82 122 82 122 82 122

S S 83 123 83 123 83 123 83 123

Š Scaron — — — — 138 212 151 227

T T 84 124 84 124 84 124 84 124

Þ Thorn — — — — 222 336 222 336

U U 85 125 85 125 85 125 85 125

Ú Uacute — — 242 362 218 332 218 332

Û Ucircumflex — — 243 363 219 333 219 333

Ü Udieresis — — 134 206 220 334 220 334

Ù Ugrave — — 244 364 217 331 217 331

V V 86 126 86 126 86 126 86 126

W W 87 127 87 127 87 127 87 127

X X 88 130 88 130 88 130 88 130

Y Y 89 131 89 131 89 131 89 131

Ý Yacute — — — — 221 335 221 335

Ÿ Ydieresis — — 217 331 159 237 152 230

Z Z 90 132 90 132 90 132 90 132

Zcaron — — — — 142 216 153 231

a a 97 141 97 141 97 141 97 141

á aacute — — 135 207 225 341 225 341

â acircumflex — — 137 211 226 342 226 342

´ acute 194 302 171 253 180 264 180 264

ä adieresis — — 138 212 228 344 228 344

æ ae 241 361 190 276 230 346 230 346

à agrave — — 136 210 224 340 224 340

& ampersand 38 46 38 46 38 46 38 46

å aring — — 140 214 229 345 229 345

^ asciicircum 94 136 94 136 94 136 94 136

~ asciitilde 126 176 126 176 126 176 126 176

* asterisk 42 52 42 52 42 52 42 52

@ at 64 100 64 100 64 100 64 100

ã atilde — — 139 213 227 343 227 343

b b 98 142 98 142 98 142 98 142

\ backslash 92 134 92 134 92 134 92 134

| bar 124 174 124 174 124 174 124 174

{ braceleft 123 173 123 173 123 173 123 173

} braceright 125 175 125 175 125 175 125 175

[bracketleft 91 133 91 133 91 133 91 133

] bracketright 93 135 93 135 93 135 93 135

breve 198 306 249 371 — — 24 30

¦ brokenbar — — — — 166 246 166 246

• bullet 183 267 165 245 149 225 128 200

c c 99 143 99 143 99 143 99 143

ÿ caron 207 317 255 377 — — 25 31

Char Name
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal Decimal Octal Decimal Octal Decimal Octal

PDF 1.3

: March 11, 1999

450 Adobe Systems Inc.

ç ccedilla — — 141 215 231 347 231 347

¸ cedilla 203 313 252 374 184 270 184 270

¢ cent 162 242 162 242 162 242 162 242

ˆ circumflex 195 303 246 366 136 210 26 32

: colon 58 72 58 72 58 72 58 72

, comma 44 54 44 54 44 54 44 54

© copyright — — 169 251 169 251 169 251

¤ currency 168 250 219 333 164 244 164 244

d d 100 144 100 144 100 144 100 144

† dagger 178 262 160 240 134 206 129 201

‡ daggerdbl 179 263 224 340 135 207 130 202

° degree — — 161 241 176 260 176 260

¨ dieresis 200 310 172 254 168 250 168 250

÷ divide — — 214 326 247 367 247 367

$ dollar 36 44 36 44 36 44 36 44

• dotaccent 199 307 250 372 — — 27 33

• dotlessi 245 365 245 365 — — 154 232

e e 101 145 101 145 101 145 101 145

é eacute — — 142 216 233 351 233 351

ê ecircumflex — — 144 220 234 352 234 352

ë edieresis — — 145 221 235 353 235 353

è egrave — — 143 217 232 350 232 350

8 eight 56 70 56 70 56 70 56 70

… ellipsis 188 274 201 311 133 205 131 203

— emdash 208 320 209 321 151 227 132 204

– endash 177 261 208 320 150 226 133 205

= equal 61 75 61 75 61 75 61 75

ð eth — — — — 240 360 240 360

! exclam 33 41 33 41 33 41 33 41

¡ exclamdown 161 241 193 301 161 241 161 241

f f 102 146 102 146 102 146 102 146

? fi 174 256 222 336 — — 147 223

5 five 53 65 53 65 53 65 53 65

? fl 175 257 223 337 — — 148 224

ƒ florin 166 246 196 304 131 203 134 206

4 four 52 64 52 64 52 64 52 64

⁄ fraction 164 244 218 332 — — 135 207

g g 103 147 103 147 103 147 103 147

ß germandbls 251 373 167 247 223 337 223 337

` grave 193 301 96 140 96 140 96 140

> greater 62 76 62 76 62 76 62 76

« guillemotleft 171 253 199 307 171 253 171 253

» guillemotright 187 273 200 310 187 273 187 273

‹ guilsinglleft 172 254 220 334 139 213 136 210

› guilsinglright 173 255 221 335 155 233 137 211

Char Name
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal Decimal Octal Decimal Octal Decimal Octal

March 11, 1999

: 451

h h 104 150 104 150 104 150 104 150

″ hungarumlaut 205 315 253 375 — — 28 34

- hyphen 45 55 45 55 45 55 45 55

i i 105 151 105 151 105 151 105 151

í iacute — — 146 222 237 355 237 355

î icircumflex — — 148 224 238 356 238 356

ï idieresis — — 149 225 239 357 239 357

ì igrave — — 147 223 236 354 236 354

j j 106 152 106 152 106 152 106 152

k k 107 153 107 153 107 153 107 153

l l 108 154 108 154 108 154 108 154

< less 60 74 60 74 60 74 60 74

¬ logicalnot — — 194 302 172 254 172 254

lslash 248 370 — — — — 155 233

m m 109 155 109 155 109 155 109 155

¯ macron 197 305 248 370 175 257 175 257

minus — — — — — — 138 212

µ mu — — 181 265 181 265 181 265

³ multiply — — — — 215 327 215 327

n n 110 156 110 156 110 156 110 156

9 nine 57 71 57 71 57 71 57 71

ñ ntilde — — 150 226 241 361 241 361

numbersign 35 43 35 43 35 43 35 43

o o 111 157 111 157 111 157 111 157

ó oacute — — 151 227 243 363 243 363

ô ocircumflex — — 153 231 244 364 244 364

ö odieresis — — 154 232 246 366 246 366

œ oe 250 372 207 317 156 234 156 234

• ogonek 206 316 254 376 — — 29 35

ò ograve — — 152 230 242 362 242 362

1 one 49 61 49 61 49 61 49 61

½ onehalf — — — — 189 275 189 275

¼ onequarter — — — — 188 274 188 274

¹ onesuperior — — — — 185 271 185 271

ª ordfeminine 227 343 187 273 170 252 170 252

º ordmasculine 235 353 188 274 186 272 186 272

ø oslash 249 371 191 277 248 370 248 370

õ otilde — — 155 233 245 365 245 365

p p 112 160 112 160 112 160 112 160

¶ paragraph 182 266 166 246 182 266 182 266

(parenleft 40 50 40 50 40 50 40 50

) parenright 41 51 41 51 41 51 41 51

% percent 37 45 37 45 37 45 37 45

. period 46 56 46 56 46 56 46 56

· periodcentered 180 264 225 341 183 267 183 267

Char Name
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal Decimal Octal Decimal Octal Decimal Octal

: March 11, 1999

452 Adobe Systems Inc.

‰ perthousand 189 275 228 344 137 211 139 213

+ plus 43 53 43 53 43 53 43 53

± plusminus — — 177 261 177 261 177 261

q q 113 161 113 161 113 161 113 161

? question 63 77 63 77 63 77 63 77

¿ questiondown 191 277 192 300 191 277 191 277

" quotedbl 34 42 34 42 34 42 34 42

„ quotedblbase 185 271 227 343 132 204 140 214

“ quotedblleft 170 252 210 322 147 223 141 215

” quotedblright 186 272 211 323 148 224 142 216

‘ quoteleft 96 140 212 324 145 221 143 217

’ quoteright 39 47 213 325 146 222 144 220

‚ quotesinglbase 184 270 226 342 130 202 145 221

’ quotesingle 169 251 39 47 39 47 39 47

r r 114 162 114 162 114 162 114 162

® registered — — 168 250 174 256 174 256

° ring 202 312 251 373 176 260 30 36

s s 115 163 115 163 115 163 115 163

š scaron — — — — 154 232 157 235

§ section 167 247 164 244 167 247 167 247

; semicolon 59 73 59 73 59 73 59 73

7 seven 55 67 55 67 55 67 55 67

6 six 54 66 54 66 54 66 54 66

/ slash 47 57 47 57 47 57 47 57

space 32 40 32, 202 40,312 32 40 32 40

£ sterling 163 243 163 243 163 243 163 243

t t 116 164 116 164 116 164 116 164

þ thorn — — — — 254 376 254 376

3 three 51 63 51 63 51 63 51 63

? threequarters — — — — 190 276 190 276

? threesuperior — — — — 179 263 179 263

˜ tilde 196 304 247 367 152 230 31 37

™ trademark — — 170 252 153 231 146 222

2 two 50 62 50 62 50 62 50 62

² twosuperior — — — — 178 262 178 262

u u 117 165 117 165 117 165 117 165

ú uacute — — 156 234 250 372 250 372

û ucircumflex — — 158 236 251 373 251 373

ü udieresis — — 159 237 252 374 252 374

ù ugrave — — 157 235 249 371 249 371

_ underscore 95 137 95 137 95 137 95 137

v v 118 166 118 166 118 166 118 166

w w 119 167 119 167 119 167 119 167

x x 120 170 120 170 120 170 120 170

y y 121 171 121 171 121 171 121 171

Char Name
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal Decimal Octal Decimal Octal Decimal Octal

March 11, 1999

: 453

Note In the WinAnsiEncoding, the hyphen character can also be accessed using a
character code of 173, the space using 160, and bullets are used for the otherwise
unused character codes 127, 129, 141, 143, 144, and 157.

Note Note that in the WinAnsiEncoding, character codes 142 and 158 are now used
for Zcaron and zcaron, respectively, and that character code 128 is used for Euro.
Position 219 in the MacRomanEncoding is still used for currency even though
Apple has redefined it to be Euro. Documents that wish to access Euro using
MacRomanEncoding must explicitly re-encode the font.

C.2 Predefined encodings sorted by character code

Note Character codes 0 through 23 are not used in any of the predefined encodings.

ý yacute — — — — 253 375 253 375

ÿ ydieresis — — 216 330 255 377 255 377

¥ yen 165 245 180 264 165 245 165 245

z z 122 172 122 172 122 172 122 172

zcaron — — — — 158 236 158 236

0 zero 48 60 48 60 48 60 48 60

Code
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal

24 30 — — — breve

25 31 — — — caron

26 32 — — — circumflex

27 33 — — — dotaccent

28 34 — — — hungarumlaut

29 35 — — — ogonek

30 36 — — — ring

31 37 — — — tilde

32 40 space space space space

33 41 exclam exclam exclam exclam

34 42 quotedbl quotedbl quotedbl quotedbl

35 43 numbersign numbersign numbersign numbersign

36 44 dollar dollar dollar dollar

37 45 percent percent percent percent

38 46 ampersand ampersand ampersand ampersand

39 47 quoteright quotesingle quotesingle quotesingle

40 50 parenleft parenleft parenleft parenleft

41 51 parenright parenright parenright parenright

42 52 asterisk asterisk asterisk asterisk

43 53 plus plus plus plus

44 54 comma comma comma comma

45 55 hyphen hyphen hyphen hyphen

46 56 period period period period

47 57 slash slash slash slash

48 60 zero zero zero zero

Char Name
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal Decimal Octal Decimal Octal Decimal Octal

PDF 1.3

PDF 1.3

: March 11, 1999

454 Adobe Systems Inc.

49 61 one one one one

50 62 two two two two

51 63 three three three three

52 64 four four four four

53 65 five five five five

54 66 six six six six

55 67 seven seven seven seven

56 70 eight eight eight eight

57 71 nine nine nine nine

58 72 colon colon colon colon

59 73 semicolon semicolon semicolon semicolon

60 74 less less less less

61 75 equal equal equal equal

62 76 greater greater greater greater

63 77 question question question question

64 100 at at at at

65 101 A A A A

66 102 B B B B

67 103 C C C C

68 104 D D D D

69 105 E E E E

70 106 F F F F

71 107 G G G G

72 110 H H H H

73 111 I I I I

74 112 J J J J

75 113 K K K K

76 114 L L L L

77 115 M M M M

78 116 N N N N

79 117 O O O O

80 120 P P P P

81 121 Q Q Q Q

82 122 R R R R

83 123 S S S S

84 124 T T T T

85 125 U U U U

86 126 V V V V

87 127 W W W W

88 130 X X X X

89 131 Y Y Y Y

90 132 Z Z Z Z

91 133 bracketleft bracketleft bracketleft bracketleft

92 134 backslash backslash backslash backslash

93 135 bracketright bracketright bracketright bracketright

94 136 asciicircum asciicircum asciicircum asciicircum

95 137 underscore underscore underscore underscore

96 140 quoteleft grave grave grave

97 141 a a a a

Code
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal

March 11, 1999

: 455

98 142 b b b b

99 143 c c c c

100 144 d d d d

101 145 e e e e

102 146 f f f f

103 147 g g g g

104 150 h h h h

105 151 i i i i

106 152 j j j j

107 153 k k k k

108 154 l l l l

109 155 m m m m

110 156 n n n n

111 157 o o o o

112 160 p p p p

113 161 q q q q

114 162 r r r r

115 163 s s s s

116 164 t t t t

117 165 u u u u

118 166 v v v v

119 167 w w w w

120 170 x x x x

121 171 y y y y

122 172 z z z z

123 173 braceleft braceleft braceleft braceleft

124 174 bar bar bar bar

125 175 braceright braceright braceright braceright

126 176 asciitilde asciitilde asciitilde asciitilde

127 177 — — bullet —

128 200 — Adieresis Euro bullet

129 201 — Aring bullet dagger

130 202 — Ccedilla quotesinglbase daggerdbl

131 203 — Eacute florin ellipsis

132 204 — Ntilde quotedblbase emdash

133 205 — Odieresis ellipsis endash

134 206 — Udieresis dagger florin

135 207 — aacute daggerdbl fraction

136 210 — agrave circumflex guilsinglleft

137 211 — acircumflex perthousand guilsinglright

138 212 — adieresis Scaron minus

139 213 — atilde guilsinglleft perthousand

140 214 — aring OE quotedblbase

141 215 — ccedilla bullet quotedblleft

142 216 — eacute Zcaron quotedblright

143 217 — egrave bullet quoteleft

144 220 — ecircumflex bullet quoteright

145 221 — edieresis quoteleft quotesinglbase

146 222 — iacute quoteright trademark

Code
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal

PDF 1.3

PDF 1.3

: March 11, 1999

456 Adobe Systems Inc.

147 223 — igrave quotedblleft fi

148 224 — icircumflex quotedblright fl

149 225 — idieresis bullet Lslash

150 226 — ntilde endash OE

151 227 — oacute emdash Scaron

152 230 — ograve tilde Ydieresis

153 231 — ocircumflex trademark Zcaron

154 232 — odieresis scaron dotlessi

155 233 — otilde guilsinglright lslash

156 234 — uacute oe oe

157 235 — ugrave bullet scaron

158 236 — ucircumflex zcaron zcaron

159 237 — udieresis Ydieresis —

160 240 — dagger space Euro

161 241 exclamdown degree exclamdown exclamdown

162 242 cent cent cent cent

163 243 sterling sterling sterling sterling

164 244 fraction section currency currency

165 245 yen bullet yen yen

166 246 florin paragraph brokenbar brokenbar

167 247 section germandbls section section

168 250 currency registered dieresis dieresis

169 251 quotesingle copyright copyright copyright

170 252 quotedblleft trademark ordfeminine ordfeminine

171 253 guillemotleft acute guillemotleft guillemotleft

172 254 guilsinglleft dieresis logicalnot logicalnot

173 255 guilsinglright — hyphen —

174 256 fi AE registered registered

175 257 fl Oslash macron macron

176 260 — — degree degree

177 261 endash plusminus plusminus plusminus

178 262 dagger — twosuperior twosuperior

179 263 daggerdbl — threesuperior threesuperior

180 264 periodcentered yen acute acute

181 265 — mu mu mu

182 266 paragraph — paragraph paragraph

183 267 bullet — periodcentered periodcentered

184 270 quotesinglbase — cedilla cedilla

185 271 quotedblbase — onesuperior onesuperior

186 272 quotedblright — ordmasculine ordmasculine

187 273 guillemotright ordfeminine guillemotright guillemotright

188 274 ellipsis ordmasculine onequarter onequarter

189 275 perthousand — onehalf onehalf

190 276 — ae threequarters threequarters

191 277 questiondown oslash questiondown questiondown

192 300 — questiondown Agrave Agrave

193 301 grave exclamdown Aacute Aacute

194 302 acute logicalnot Acircumflex Acircumflex

195 303 circumflex — Atilde Atilde

Code
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal

PDF 1.3

PDF 1.3

March 11, 1999

: 457

196 304 tilde florin Adieresis Adieresis

197 305 macron — Aring Aring

198 306 breve — AE AE

199 307 dotaccent guillemotleft Ccedilla Ccedilla

200 310 dieresis guillemotright Egrave Egrave

201 311 — ellipsis Eacute Eacute

202 312 ring space Ecircumflex Ecircumflex

203 313 cedilla Agrave Edieresis Edieresis

204 314 — Atilde Igrave Igrave

205 315 hungarumlaut Otilde Iacute Iacute

206 316 ogonek OE Icircumflex Icircumflex

207 317 caron oe Idieresis Idieresis

208 320 emdash endash Eth Eth

209 321 — emdash Ntilde Ntilde

210 322 — quotedblleft Ograve Ograve

211 323 — quotedblright Oacute Oacute

212 324 — quoteleft Ocircumflex Ocircumflex

213 325 — quoteright Otilde Otilde

214 326 — divide Odieresis Odieresis

215 327 — — multiply multiply

216 330 — ydieresis Oslash Oslash

217 331 — Ydieresis Ugrave Ugrave

218 332 — fraction Uacute Uacute

219 333 — currency Ucircumflex Ucircumflex

220 334 — guilsinglleft Udieresis Udieresis

221 335 — guilsinglright Yacute Yacute

222 336 — fi Thorn Thorn

223 337 — fl germandbls germandbls

224 340 — daggerdbl agrave agrave

225 341 AE periodcentered aacute aacute

226 342 — quotesinglbase acircumflex acircumflex

227 343 ordfeminine quotedblbase atilde atilde

228 344 — perthousand adieresis adieresis

229 345 — Acircumflex aring aring

230 346 — Ecircumflex ae ae

231 347 — Aacute ccedilla ccedilla

232 350 Lslash Edieresis egrave egrave

233 351 Oslash Egrave eacute eacute

234 352 OE Iacute ecircumflex ecircumflex

235 353 ordmasculine Icircumflex edieresis edieresis

236 354 — Idieresis igrave igrave

237 355 — Igrave iacute iacute

238 356 — Oacute icircumflex icircumflex

239 357 — Ocircumflex idieresis idieresis

240 360 — — eth eth

241 361 ae Ograve ntilde ntilde

242 362 — Uacute ograve ograve

243 363 — Ucircumflex oacute oacute

244 364 — Ugrave ocircumflex ocircumflex

Code
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal

: March 11, 1999

458 Adobe Systems Inc.

245 365 dotlessi dotlessi otilde otilde

246 366 — circumflex odieresis odieresis

247 367 — tilde divide divide

248 370 lslash macron oslash oslash

249 371 oslash breve ugrave ugrave

250 372 oe dotaccent uacute uacute

251 373 germandbls ring ucircumflex ucircumflex

252 374 — cedilla udieresis udieresis

253 375 — hungarumlaut yacute yacute

254 376 — ogonek thorn thorn

255 377 — caron ydieresis ydieresis

Code
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal

March 11, 1999

: 459

C.3 MacExpert encoding

Char Name
Code

Char Name
Code

Decimal Octal Decimal Octal

æ AEsmall 190 276 ¬ Lslashsmall 194 302

á Aacutesmall 135 207 l Lsmall 108 154

â Acircumflexsmall 137 211 Ù Macronsmall 244 364

' Acutesmall 39 47 m Msmall 109 155

ä Adieresissmall 138 212 n Nsmall 110 156

à Agravesmall 136 210 ñ Ntildesmall 150 226

å Aringsmall 140 214 œ OEsmall 207 317

a Asmall 97 141 ó Oacutesmall 151 227

ã Atildesmall 139 213 ô Ocircumflexsmall 153 231

Û Brevesmall 243 363 ö Odieresissmall 154 232

b Bsmall 98 142 Ú Ogoneksmall 242 362

Æ Caronsmall 174 256 ò Ogravesmall 152 230

ç Ccedillasmall 141 215 ø Oslashsmall 191 277

… Cedillasmall 201 311 o Osmall 111 157

^ Circumflexsmall 94 136 õ Otildesmall 155 233

c Csmall 99 143 p Psmall 112 160

¨ Dieresissmall 172 254 q Qsmall 113 161

• Dotaccentsmall 250 372 ° Ringsmall 251 373

d Dsmall 100 144 r Rsmall 114 162

é Eacutesmall 142 216 ß Scaronsmall 167 247

ê Ecircumflexsmall 144 220 s Ssmall 115 163

ë Edieresissmall 145 221 ¼ Thornsmall 185 271

è Egravesmall 143 217 ~ Tildesmall 126 176

e Esmall 101 145 t Tsmall 116 164

D Ethsmall 68 104 ú Uacutesmall 156 234

f Fsmall 102 146 û Ucircumflexsmall 158 236

` Gravesmall 96 140 ü Udieresissmall 159 237

g Gsmall 103 147 ù Ugravesmall 157 235

h Hsmall 104 150 u Usmall 117 165

" Hungarumlautsmall 34 42 v Vsmall 118 166

í Iacutesmall 146 222 w Wsmall 119 167

î Icircumflexsmall 148 224 x Xsmall 120 170

ï Idieresissmall 149 225 ¥ Yacutesmall 180 264

ì Igravesmall 147 223 ÿ Ydieresissmall 216 330

i Ismall 105 151 y Ysmall 121 171

j Jsmall 106 152 ¾ Zcaronsmall 189 275

k Ksmall 107 153 z Zsmall 122 172

& ampersandsmall 38 46 Ò lsuperior 241 361

Å asuperior 129 201 ˜ msuperior 247 367

• bsuperior 245 365 ª nineinferior 187 273

© centinferior 169 251 9 nineoldstyle 57 71

centoldstyle 35 43 · ninesuperior 225 341

Ç centsuperior 130 202 ˆ nsuperior 246 366

: colon 58 72 + onedotenleader 43 53

: March 11, 1999

460 Adobe Systems Inc.

{ colonmonetary 123 173 J oneeighth 74 112

, comma 44 54 | onefitted 124 174

ð commainferior 178 262 H onehalf 72 110

¯ commasuperior 248 370 ¡ oneinferior 193 301

¹ dollarinferior 182 266 1 oneoldstyle 49 61

$ dollaroldstyle 36 44 G onequarter 71 107

% dollarsuperior 37 45 ⁄ onesuperior 218 332

Î dsuperior 235 353 N onethird 78 116

• eightinferior 165 245 Ø osuperior 175 257

8 eightoldstyle 56 70 [parenleftinferior 91 133

° eightsuperior 161 241 (parenleftsuperior 40 50

‰ esuperior 228 344] parenrightinferior 93 135

÷ exclamdownsmall 214 326) parenrightsuperior 41 51

! exclamsmall 33 41 . period 46 56

V ff 86 126 Š periodinferior 179 263

Y ffi 89 131 • periodsuperior 249 371

Z ffl 90 132 ¿ questiondownsmall 192 300

W fi 87 127 ? questionsmall 63 77

– figuredash 208 320 Â rsuperior 229 345

L fiveeighths 76 114 } rupiah 125 175

× fiveinferior 176 260 ; semicolon 59 73

5 fiveoldstyle 53 65 M seveneighths 77 115

fivesuperior 222 336 ¶ seveninferior 166 246

X fl 88 130 7 sevenoldstyle 55 67

¢ fourinferior 162 242 ‡ sevensuperior 224 340

4 fouroldstyle 52 64 § sixinferior 164 244

› foursuperior 221 335 6 sixoldstyle 54 66

/ fraction 47 57 ? sixsuperior 223 337

- hyphen 45 55 space 32 40

_ hypheninferior 95 137 Í ssuperior 234 352

— hyphensuperior 209 321 K threeeighths 75 113

È isuperior 233 351 £ threeinferior 163 243

3 threeoldstyle 51 63

I threequarters 73 111

= threequartersemdash 61 75

‹ threesuperior 220 334

Ê tsuperior 230 346

* twodotenleader 42 52

™ twoinferior 170 252

2 twooldstyle 50 62

¤ twosuperior 219 333

O twothirds 79 117

º zeroinferior 188 274

0 zerooldstyle 48 60

‚ zerosuperior 226 342

Char Name
Code

Char Name
Code

Decimal Octal Decimal Octal

March 11, 1999

: 461

: March 11, 1999

462 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 :

463

APPENDIX D

Implementation Limits

In general, PDF does not restrict the size or quantity of things described in the file
format, such as numbers, arrays, images, and so on. However, a PDF viewer
application running on a particular processor and in a particular operating
environment does have such limits. If a viewer application attempts to perform an
action that exceeds one of the limits, it will display an error.

PostScript interpreters also have implementation limits, listed in Appendix B of
the PostScript Language Reference Manual, Third Edition [1]. It is possible to
construct a PDF file that does not violate viewer application limits but will not
print on a PostScript printer. Keep in mind that these limits vary according to the
PostScript language level, interpreter version, and the amount of memory available
to the interpreter.

All limits are sufficiently large that most PDF files should never approach them.
However, using the techniques described in Chapters 10 through 14 of this book
will further reduce the chance of reaching these limits.

This appendix describes typical limits for Acrobat. These limits fall into two main
classes:

• Architectural limits. The hardware on which a viewer application executes
imposes certain constraints. For example, an integer is usually represented in 32
bits, limiting the range of allowed integers. In addition, the design of the
software imposes other constraints, such as a limit of 65,535 elements in an
array or string.

• Memory limits. The amount of memory available to a viewer application limits
the number of memory-consuming objects that can be held simultaneously.

PDF itself has one architectural limit. Because ten digits are allocated to byte
offsets, the size of a file is limited to 1010 bytes (approximately 10GB).

Table D.1 describes the architectural limits for most PDF viewer applications
running on 32-bit machines. These limits are likely to remain constant across a
wide variety of implementations. However, memory limits will often be exceeded
before architectural limits, such as the limit on the number of PDF objects, are
reached.

: March 11, 1999

464 Adobe Systems Inc.

Table D.1 Architectural limits

Quantity Limit Explanation

integer 2,147,483,647 Largest positive value, 231 − 1.

−2,147,483,648 Largest negative value, −231.

real ±32,767 Approximate range of values.

±1/65,536 Approximate smallest non-zero value.

5 Approximate number of decimal digits of precision in fractional part.

array 8,191 Maximum number of elements in an array.

dictionary 4,095 Maximum number of key–value pairs in a dictionary.

string 65,535 Maximum number of characters in a string.

name 127 Maximum number of characters in a name.

indirect object 250,000 Maximum number of indirect objects in a PDF file.

Memory limits cannot be characterized so precisely, because the amount of
available memory and the way in which it is allocated vary from one
implementation to another.

Memory is automatically reallocated from one use to another when necessary.
When more memory is needed for a particular purpose, it can be taken away from
memory allocated to another purpose if that memory is currently unused or its use
is non-essential (a cache, for example). Also, data is often saved to a temporary file
when memory is limited. Because of this behavior, it is not possible to state limits
for such items as the number of pages, number of text annotations or hypertext
links on a page, number of graphics objects on a page, or number of fonts on a
page or in a document.

Acrobat has some additional architectural limits:

• Thumbnails may be no larger than 106×106 samples, and should be created at
one-eighth scale for 8.5×11 inch and A4 size pages. Thumbnails should use
either the DeviceGray or direct or indexed DeviceRGB color space.

• The minimum allowed page size is 0.25 X 0.25 inch (18×18 units in the default
user space coordinate system), and the maximum allowed page size is 200×200
inches (14,400×14,400 units in the default user space coordinate system).

• The zoom factor of a view is constrained to be between approximately 8% and
3,200%. These limits aren't fixed, they vary with the size of the page being
displayed, as well as with the size of the pages previously viewed within the
file.

March 11, 1999

: 465

• When Acrobat reads a PDF file with a damaged or missing cross-reference
table, it attempts to rebuild the table by scanning all the objects in the file.
However, the generation numbers of deleted entries are lost if the cross-
reference table is missing or severely damaged. Reconstruction fails if any
object identifiers do not occur at the start of a line or if the endobj keyword
does not appear at the start of a line. Also, reconstruction fails if a stream
contains a line beginning with the word endstream, aside from the required
endstream that delimits the end of the stream.

Implementation limits affecting Web Capture

The data structures constructed by Web Capture (see page 148) depend on the
maximum size of an array, k, which is 8,191 in the Acrobat 4 implementation.

• A Web Capture Content Set array can associate at most k Spider Content Sets
with a given name.

• A Web Capture Content Set can reference at most k objects.

• There may be at most k Source Info objects associated with a Web Capture
Content Set.

• An Aliased URLs Object can contain at most k chains, and each chain can
contain at most k URLs.

• A total of k Web Capture Command objects can be stored in the Commands
array of the Web Capture Info dictionary.

• There may be at most k/2 Conversion Settings dictionaries stored in a Web
Capture Command Settings dictionary.

PDF 1.3

: March 11, 1999

466 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 :

467

APPENDIX E

Obtaining XUIDs and
Technical Notes

Creators of widely distributed forms who wish to use the XUID mechanism must
obtain an organization ID from Adobe Systems Incorporated at the addresses listed
below. XUID organization IDs are held by Adobe in a public registry. The registry
is mechanism for preventing conflict among products of different developers.

Technical notes, technical support, and periodic mailings are available to members
of the Adobe Developers Association. In particular, the PostScript language
software development kit (SDK) contains all the technical notes mentioned in this
book. The Adobe Developers Association can be contacted at the addresses listed
below:

Europe:

Adobe Developers Association
PO Box 12356
Edinburgh EH11 4GJ
United Kingdom
ADA Helpdesk: +44.131.458 6801
E-mail: euroADA@adobe.com

U.S. and the rest of the world:

Adobe Developers Association
Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110
Telephone: (408) 536-9000

In addition, some technical notes and other information may be available from
Adobe’s World Wide Web server

http://www.adobe.com

and from an anonymous ftp site

ftp.adobe.com

When accessing the anonymous ftp site, use anonymous as the user name, and
provide your E-mail address as the password (for example, smith@acme.com).

http://www.adobe.com

: March 11, 1999

468 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 :

469

APPENDIX F

PDF Name Registry

With the introduction of Adobe Acrobat 2.0, it has become easy for third parties to
add private data to PDF documents and to add plug-ins that change viewer
behavior based on this data. However, Acrobat users have certain expectations
when opening a PDF document, no matter what plug-ins are available. PDF
enforces certain restrictions on private data in order to meet these expectations.

A PDF producer or Acrobat viewer plug-in may define new action, destination,
annotation, and security handler types. If a user opens a PDF document and the
plug-in that implements the new type of object is unavailable, the viewers will
behave as described in Appendix G.

A PDF producer or Acrobat plug-in may also add keys to any PDF object that is
implemented as a dictionary except the trailer dictionary. In addition, a PDF
producer or Acrobat plug-in may create tags that indicate the role of Marked
Content operators, as described in Section 8.10.3 on page 351. The names of such
tags have additional requirements beyond those specified below.

To avoid conflicts with third-party names and with future versions of PDF, Adobe
maintains a registry, similar to the registry it maintains for Document Structuring
Conventions. Third-party developers must only add private data that conforms to
the registry rules. The registry includes three classes:

• First-class — Names and data of value to a wide range of developers. All the
names defined in PDF 1.0 and 1.1 are first-class names. Plug-ins that are
publicly available should often use first-class names for their private data. First
class names and data formats must be registered with Adobe, and will be made
available for all developers to use. To submit a private data name and format for
consideration as first-class, contact Adobe’s Developer Support group, as
described later in this section.

• Second-class — Names that are applicable to a specific developer. (Adobe does
not register second-class data formats.) Adobe distributes second-class names
by registering developer-specific prefixes, which must be used as the first
characters in the names of all private data added by the developer. Adobe will
not register the same prefix to two different developers, ensuring that different
developers’ second-class names will not conflict. It is up to each developer to
ensure that they do not use the same name in conflicting ways themselves. To
request a prefix for second-class names, contact Adobe’s Developer Support
group, as described later in this section.

PDF 1.1

PDF 1.2

: March 11, 1999

470 Adobe Systems Inc.

• Third-class — Names that can be used only in files that will never be seen by
other third parties, because they may conflict with third-class names defined by
others. Third-class names all begin with a specific prefix reserved by Adobe for
private plug-ins; this prefix is XX. This prefix must be used as the first
characters in the names of all private data added by the developer. It it not
necessary to contact Adobe to register third-class names.

Note New keys for the Info dictionary in the Catalog and in Threads need not be
registered.

To register either first- or second-class names, contact Adobe’s Developer Support
group at (408) 536-9000, or send e-mail to

devsup-person@adobe.com

PDF 1.3 Reference Manual March 11, 1999 :

471

APPENDIX G

Compatibility and
Implementation Notes

The goal of the Adobe Acrobat family of products is to enable people to exchange
and view electronic documents easily and reliably. Ideally, that means that any
Acrobat viewer should be able to display the contents of any PDF file, even if the
PDF file was created long before or long after the viewer. Of course, new versions
of viewers are introduced to provide additional capabilities not present before.
Furthermore, beginning with Acrobat 2.0, viewers may accept plug-in extensions,
making some Acrobat 2.0 viewers more capable than others depending on what
extensions are present.

Both the viewers and PDF itself have been designed to enable users to view
everything in the document that the viewer understands and to ignore or inform the
user about objects not understood. The decision whether to ignore or inform the
user is made on a feature-by-feature basis.

The original PDF specification did not specify how a viewer should behave when it
reads a file that does not conform to the specification. This appendix provides this
information. The PDF version number associated with a file determines how it
should be treated when a viewer encounters a problem.

In addition, this appendix includes notes on the Adobe Acrobat implementation for
details that are not strictly defined by the PDF specifications.

G.1 Version numbers

The PDF version number consists of a major and minor version. The version
number is part of the PDF header, the first line of the file. This header takes the
form:

%PDF-M.m

where M is the major number and m is the minor number.

If PDF changes in a way that current viewers will be unlikely to read a document
without a serious error, the major version number will be incremented. A serious
error is an error that prevents pages from being viewed.

If PDF changes in a way that a viewer will display an error message but continue
its work, the minor version number will change. Adding new page description
operators would require a change in the minor version number.

PDF 1.1

: March 11, 1999

472 Adobe Systems Inc.

If PDF changes in a way that current viewers are unlikely to detect, the version
number need not change.This includes the addition of private data that can be
gracefully ignored by consumers that do not understand that data. An example is
adding a key to a dictionary object such as the Catalog.

An Acrobat viewer will try to read any file with a valid PDF header, even if the
version number is newer than the viewer itself. It will read without errors any file
that does not require a plug-in, even if the version number is older than the viewer.
Some documents may require a plug-in to display an annotation, follow a link, or
execute an action. Viewer behavior in this situation is described below. However, a
plug-in is never required to display the contents of a page.

If a viewer opens a document with a newer major version number than it expects, it
warns the user that it is unlikely to be able to read the document successfully and
that the user will not be able to change or save the document. At the first error
related to document processing, the viewer notifies the user that an error has
occurred but that no further errors will be reported. (Some errors are always
reported, including file I/O errors, extension loading errors, out-of-memory errors,
and notification that a command failed.) Processing continues if possible. Acrobat
Exchange does not permit a document with a newer major version number to be
inserted into another document.

If a viewer opens a document with a newer minor version number than it expects, it
silently remembers the version number. Only if it encounters an error does it alert
the user. At this point it notifies the user that the document is newer than expected,
that an error has occurred, and that no further errors will be reported. The
document may not be incrementally saved but can be saved to a new file. The
saved file will continue to have the new version number. A user may insert a
document with a newer minor version into another document. The resulting
document can be saved. Its version number will be the greater of the version
number of the original document and the documents inserted into the original.

When opening a file, the Acrobat viewers are very liberal in their check for a valid
PDF header. All viewers allow the header to appear anywhere in the first 1,000
bytes of the file. The 1.0 viewers require only that “%PDF-” appear in the header,
but ignore the rest of the header. Subsequent viewers search for a header of the
form described above. However, they also accept a header of the form:

%!PS-Adobe-N.n PDF-M.m

where N.n is an Adobe Document Structuring Conventions version number and
M.m is a PDF version number. (See PostScript Language Document Structuring
Conventions Specification Version 3.0 [14] for more information).

G.2 Dictionary keys

Adding key-value pairs not described in the PDF specification to dictionary objects
usually does not affect the behavior of 1.0 viewers and never affects the behavior
of subsequent viewers. These keys are ignored. If a dictionary object such as an
annotation is copied into another document during a page insertion (or in Acrobat

March 11, 1999

: 473

2.0 and 3.0 viewers during a page extraction), all key-value pairs are copied. If a
value is an indirect reference to another object, that object may be copied as well,
depending on the key.

In some cases a 1.0 viewer displays an error if it finds an unknown key in a
dictionary. These cases are keys in image dictionaries (both XObjects and in-line
images) and keys in DecodeParms dictionaries for filters.

See Appendix F for information on how to choose key names that are compatible
with future versions of PDF.

G.3 Implementation notes

The following sections give details of the implementation of Adobe Acrobat. They
are presented in the same order in which they appear in the main text.

Section 4.4, “Strings and text”

All Acrobat viewers can read strings that include non-printable ASCII.

Section 7.2, “Date”

Acrobat 1.0 viewers report date strings as ordinary strings. Later viewers report
date strings as dates when used as the value of the CreationDate or ModDate in
the Info dictionary or as the value of the Date key in annotations. The viewers
ignore the GMT information.

Section 4.5, “Names”

In cases where a PostScript name must be preserved, or where a string is permitted
in PostScript but not in PDF, the Acrobat Distiller application uses the #
convention as necessary. When an Acrobat viewer generates PostScript, it
“inverts” the convention by writing a string, where that is permitted, or a name
otherwise. For example, if the string (Adobe Green) were used as a key in a
dictionary, the Distiller program would use the name /Adobe#20Green, and the
viewer would generate (Adobe Green).

Section 4.8, “Streams” (Filters)

PDF uses stream objects to encapsulate the data in images, indexed color spaces,
thumbnails, and many other objects. These streams usually use filters to compress
their data. The legal PDF 1.0 filters are the same as those available in PostScript
Level 2. The 1.0 viewer behavior when encountering an unknown filter depends on
its context, as described in Table G.1.

Table G.1 Acrobat 1.0 Viewer behavior with unknown filters

Context Behavior

Image resource The image does not appear but no error is reported.

: March 11, 1999

474 Adobe Systems Inc.

In-line image (An in-line image is specified directly in a page description, while an image
resource is specified outside of a page and referenced from the page.) An error is
reported, and page processing stops.

Indexed color space An error is reported, but page processing continues.

Thumbnail An error is reported, no more thumbnails are displayed, but the thumbnails can be
deleted and created again.

Embedded font An error is reported, and the viewer behaves as if the font is not embedded.

Page description An error is reported, and page processing stops.

Form description An error is reported, and page processing stops.

Type 3 character description
An error is reported, and page processing stops.

Subsequent viewers do not allow plug-ins to provide additional filters. If an
unrecognized filter is encountered, these viewers specify the context in which the
filter was found. If an error occurs while displaying a page, only the first error is
reported. Subsequent behavior depends on the context, as described in Table G.2.

Table G.2 Acrobat 2.0 Viewer behavior with unknown filters

Context Behavior

Image resource The image does not appear but page processing continues.

In-line image Page processing stops.

Indexed color space The image does not appear but page processing continues.

Thumbnail An error is reported, no more thumbnails are displayed, but the thumbnails can be
deleted and created again.

Embedded font The viewer behaves as if the font had not been embedded.

Page description Page processing stops.

Form description The form does not appear but page processing continues.

Type 3 character description
The character does not appear but page processing continues. The current point is
adjusted based on the character’s width.

Operations that process pages, such as Find and Create Thumbnails, stop as soon
as an error occurs.

March 11, 1999

: 475

Versions of the Acrobat viewer prior to 3.0 do not understand the FlateDecode
filter. They display an error message indicating that they are unable to process a
page.

When a stream specifies an external file, PDF 1.0 and PDF 1.1 parsers ignore the
file and always use the characters between stream and endstream.

Section 4.8.9, “DCTDecode filter”

Acrobat 4.0 viewers do not support the combination of the DCTDecode filter with
any other filter if the encoded data uses progressive JPEG format.

If an Acrobat viewer earlier than version 4.0 encounters DCTDecode data encoded
in progressive JPEG encoding, an error will occur that will be handled according to
Table G.1.

Section 5.12, “PDF files”

The Acrobat 1.0 viewers successfully read files that contain binary data. The
restriction on line length is not enforced by any Acrobat viewer.

The Acrobat 1.0 products on the Apple Macintosh computer create files with type
'TEXT'. Later Acrobat products create files with type 'PDF '. A user can open
these documents from a 1.0 viewer but not from the Finder.

Section 5.18, “Encryption”

On opening a protected document, a version 1.0 Acrobat viewer displays a blank
page or reports that an error was found while processing a page. Subsequent
viewers report that a plug-in is required to open the document if the security
handler for the document is not available.

Section 6.2.1, “Viewer preferences”

The Direction key is ignored by Acrobat 3.0 and earlier versions of the Acrobat
viewer.

Section 6.2.2, “PageLabel dictionaries

Older viewers will ignore the PageLabels tree and label pages using decimal
numbers starting at 1, as is implemented in Acrobat 3.0 and earlier viewers.
Manipulating such a PDF file in an older viewer may cause the PageLabels array
to become out-of-date; at worst this could confuse readers using a more up-to-date
viewer.

Section 6.4, “Page objects”

Acrobat viewers rebuild the Beads array for all pages of a document containing
beads if the first page with a bead does not have a Beads array.

Section 6.6, “Annotations”

: March 11, 1999

476 Adobe Systems Inc.

An annotation is a dictionary element of a page’s Annots array. Its Subtype
specifies the type of annotation. Only Text and Link are defined by PDF 1.0. If a
1.0 viewer reads a page with an annotation whose Subtype is not Text or Link, it
displays an error. It displays one error per page no matter how many annotations
are present.

Subsequent viewers display unknown annotations in a closed form similar to text
annotations, with an icon containing a question mark. If the user opens the
annotation, an alert appears with a message giving the annotation type and
explaining that an unavailable plug-in is required to open it. An unknown
annotation can be selected, moved, and deleted. Every annotation type must
specify its position and size using the Rect key.

Acrobat viewers ignore the first two numbers in the Border array of an
annotation.

Acrobat viewers support a maximum of 10 entries in the dash array (the fourth
element of the Border array).

Acrobat viewers update the ModDate string only for text annotations.

If an Acrobat viewer encounters an annotation type it does not understand (i.e., for
which there is no annotation handler), the viewer displays it as an unknown
annotation unless the annotation’s F (Flags) key specifies that the “invisible” flag
is set. The C, T, M, and F keys are ignored by Acrobat 1.0 viewers. The H, BS,
AP, and AS keys are ignored by Acrobat 2.0 and 2.1 viewers.

The use of the Hidden and Print flags (bits 2 and 3) in an annotation has no effect
on Acrobat viewers prior to 3.0. Annotations that should be hidden are shown;
annotations that should be printed are not printed.

In version 3.0 of Acrobat, neither text annotations nor link annotations respect the
Print flag.

Section 6.6.1, “Annotation borders”

Acrobat viewers prior to 3.0 ignore the BS key.

If an Acrobat 3.0 viewer encounters a border subtype it doesn’t recognize, the
border defaults to S (solid).

Section 6.6.2, “Annotation highlighting”

Acrobat viewers prior to 3.0 ignore highlighting modes. The Acrobat 3.0 viewer
uses highlighting modes only for Link and Widget annotations.

Section 6.6.3, “Annotation appearances”

The presence of an appearance dictionary has no effect in versions of Acrobat prior
to 3.0. The additional functionality provided by this construct is not available in
older viewers.

Section 6.6.5, “Link annotations”

March 11, 1999

: 477

Acrobat 1.0 viewers do not report an error when a user activates a link or outline
entry that has an unknown destination type or is missing a destination. Links and
outline entries with an A key will appear to have no destination. Subsequent
viewers report an error when the destination or action type is unknown.

Section 6.6.5, “Link annotations”

A link or a bookmark in PDF 1.0 is a dictionary that contains a Dest key whose
value specifies a view of the document that is displayed when the link or bookmark
is activated. A destination is an array. Its first element is a name that serves as
destination type; it determines the interpretation of subsequent array elements. If a
1.0 viewer encounters an unknown destination type, no action is performed and no
error is reported when the user activates the link or bookmark. Subsequent viewers
display a message when they find an unknown destination type.

An Acrobat 1.0 viewer does nothing if it does not find a Dest key in a link or
bookmark.

Section 6.6.6, “Movie Player annotations”

Acrobat 1.0 viewers report the following error when they encounter an annotation
of type Movie: “An error occurred while reading a note or link. Unknown
annotation type.” The annotation does not appear on the document. Subsequent
viewers report the following error when they encounter an annotation of type
Movie: “The Plug-in required by this ‘Movie’ annotation is unavailable.” The
annotation is displayed as a gray rectangle with a question mark.

Section 6.6.16, “PDF Trapping”

Older viewers may fail to maintain the TrapNet annotation’s required position at
the end of the Annots array.

Older viewers may fail to validate trapping networks before printing.

Section 6.8, “Actions”

Action has superseded destinations in PDF 1.1. An Acrobat 1.0 viewer ignores
actions.

The existence of the Next key in an action dictionary has no effect in Acrobat
viewers prior to version 3.0.

Section 6.8.1, “Action Trigger Points”

The existence of an Additional Actions dictionary in an annotation, page, outline,
or document has no effect in Acrobat viewers prior to 3.0.

In Acrobat 3.0, the Open and Close actions are disabled if the display is not in a
page-oriented mode (e.g., if it is in multi-column mode). This prevents actions for
multiple pages from being executed simultaneously, which would be confusing to
the user.

: March 11, 1999

478 Adobe Systems Inc.

In PDF 1.2, the actions associated with the FP, PP, NP, and LP keys were not
implemented. As of PDF 1.3, these keys are obsolete.

Section 6.8.3, “GoToR action”

The NewWindow attribute is ignored by Acrobat viewers prior to 3.0.

Section 6.8.4, “Launch action”

Some implementations of Acrobat viewers may check for alternative keys whose
values provide platform-specific parameters for the Launch action. For example,
the Acrobat viewer for Windows uses the dictionary corresponding to the Win key
to determine its launch parameters.

The Acrobat viewer for Windows use the Windows function ShellExecute to
launch an application. The Win dictionary entries correspond to the parameters of
ShellExecute.

The NewWindow attribute is ignored by Acrobat viewers prior to 3.0.

Section 6.8.6, “URI action”

Acrobat 1.0 viewers report no error when a link annotation that uses the URI
action is invoked. The link inverts its color and performs no action. Subsequent
viewers report the following error when a link annotation that uses the URI action
is invoked: “The plug-in required by this URI action is not available.”

When resolving the fragment identifier, the WebLink plug-in checks all named
destinations defined for the document. If one is found whose name matches the
fragment identifier, that destination is invoked.

Section 6.8.8, “Movie Player actions”

Acrobat viewers prior to version 3.0 report an error when they encounter an action
of type Movie.

Section 6.8.9, “SetState action”

Acrobat viewers prior to 3.0 report the following error when encountering an
action of type SetState: “The plug-in needed for this SetState action is not
available.”

In Acrobat Viewer 3.0 the effect of a SetState action is temporary in nature in the
same manner that opening or closing text annotations is temporary. If the user
saves the document, the changes become permanent. Otherwise, the user is not
prompted to save the document and the change in state is not permanent.

Section 6.8.10, “Hide action”

Acrobat viewers prior to 3.0 report the following error when encountering an
action of type Hide: “The plug-in needed for this Hide action is not available.”

March 11, 1999

: 479

In Acrobat 3.0, the effect of the Hide action is temporary in nature in the same
manner that opening or closing text annotations is temporary. If the user saves the
document, the changes become permanent. Otherwise, the user is not prompted to
save the document and the hiding/showing of the annotation is not permanent.

Section 6.8.11, “Named actions”

Acrobat viewers prior to 3.0 report the following error when encountering an
action of type Named: “The plug-in needed for this Named action is not
available.”

The Acrobat 3.0 viewer extends the list of Named Actions in Table 6.49 on page
118 by allowing most viewer menu item names to be specified. For further details,
see the listing of menu item names in the Acrobat Plug-In Developer’s SDK.

Section 6.8.12, “NOP action”

Acrobat 1.0 viewers ignore all actions, including NOP. If an Acrobat 2.0 viewer
attempts to perform a NOP action, it displays a warning that says that the plug-in
required for this action is not present. It is unlikely, however, that such a warning
would occur, as this type of action is defined only in places where behavior may be
inherited, and there are no such places in Acrobat 2.0.

Section 6.11, “Articles”

The thread array and dictionary objects are invisible to 1.0 viewers. Consequently,
operations that insert or delete pages do not carry along any threads.

Section 6.12, “File ID”

Although the ID key is not required, all Adobe applications that produce PDF
include this key. Acrobat Exchange adds this key when saving a file if it is not
present.

Section 6.13, “Encryption dictionary”

In Acrobat 2.0 and 2.1 viewers, the standard security handler uses the empty string
if there is no owner password in step 1 of Algorithm 6.8.

Section 6.14.3, “Field dictionaries”

In Acrobat 3.0, partial field names may not contain a period.

Section 6.14.10, “Choice”

In Acrobat 3.0, the Opt array in a Choice field must be homogenous: the elements
must be either all strings or all arrays.

Section 6.14.13.1, “SubmitForm Action”

In Acrobat 3.0, if the response to a SubmitForm action uses Forms Data Format,
then the URL must end in #FDF so that it is recognized as such by the Acrobat
software and handled properly. Conversely, if the response is anything else, then
the URL should not end in #FDF.

: March 11, 1999

480 Adobe Systems Inc.

Section 6.14.13.3, “ImportData Action”

Acrobat 3.0 puts a relative file specification (of the FDF with respect to the Form)
as the value of F. When performing the action, if the FDF is not found, then
Acrobat 3.0 tries to locate the file in a few “well-known” platform-dependent
locations. For example, on the Windows platform, it looks in the directory from
which Acrobat loaded, the current directory, the System directory, the Windows
directory, and the directories that are listed in the PATH environment variable; on
the Macintosh, it looks in the Preferences folder, and in the Acrobat folder.

When executing the ImportData action, Acrobat 3.0 imports the FDF into the
current Form, ignoring the F and ID keys inside the FDF.

Section 7.6, “ProcSets”

Each page includes a ProcSet resource that describe the PostScript procedure sets
required to print the page. A 1.0 viewer ignores requests for unknown procedure
sets. An Acrobat 2.0 viewer warns the user that a procedure set is unavailable and
cancels printing.

Section 7.7, “Fonts”

All Acrobat viewers ignore the Name key in a Font resource.

Section 7.7.6, “Type 3 fonts”

For compatibility with Acrobat 1.0, 2.0, and 2.1, the names of resources in a Type
3 font’s Resources dictionary must match the names of resources in the Page’s
Resources dictionary. If backwards compatibility is not required, then any valid
names may be used.

Section 7.11, “Font descriptors”

Acrobat viewers prior to version 3.0 ignore the FontFile3 value. If a font uses the
Adobe Standard Roman Character CharSet, then Acrobat creates a substitute font.
Otherwise, Acrobat displays an error message (once per document), and
substitutes any characters in the font with the bullet character.

Section 7.11.1, “Font files”

Embedded TrueType fonts are ignored by Acrobat 1.0 viewers.

Section 7.12, “Color spaces”

An image has a ColorSpace key. A 1.0 viewer displays an error each time it finds
an image with a color space that is not one of the PDF 1.0 color spaces. Color
spaces may not be added by plug-ins. If an Acrobat 2.0 viewer encounters an
unknown color space, such as the special color spaces defined in PDF 1.2
(Pattern, Separation, and some uses of Indexed), it will be in a document with
a PDF version number greater than 1.1. The viewer displays an error specifying the
type of color space but it reports no further errors.

March 11, 1999

: 481

PDF 1.1 defines three additional color spaces: CalGray, CalRGB, and Lab. To
be more compatible with 1.0 viewers, PDF 1.1 allows an image color space to be
specified indirectly through the Resources dictionary. When an Acrobat 2.0 viewer
processes an image and the image’s ColorSpace key specifies DeviceRGB, the
viewer looks in the page’s resources for a color space called DefaultRGB. If this
key is present, the color space associated with it is used instead of DeviceRGB.
Similarly, if an image’s ColorSpace key specifies DeviceGray, the viewer looks
for DefaultGray. The 1.0 viewer ignores DefaultRGB and DefaultGray.

See page 230 for an explanation of the use of color spaces in page descriptions.
The presence of DefaultRGB or DefaultGray change the interpretation of some
color operators.

Acrobat viewers allow a user to approximate device-independent colors on screen
with device-dependent colors with no transformation. CalGray colors are viewed
as DeviceGray, and CalRGB colors are viewed as DeviceRGB.

Section 7.12.8, “Separation color spaces”

The Acrobat 3.0 viewer applies the tintTransform function, as specified in this
section, for displaying graphics that use separation color spaces.

Section 7.12.9, “DeviceN color spaces”

Acrobat 4.0 supports up to 10 color components for DeviceN color spaces.

Section 7.13, “XObjects”

An XObject is a stream or dictionary that is referred to by name from a page
description by the Do operator. The effect of the operator is determined by the type
of the XObject. A 1.0 viewer displays an error for each XObject of a different type,
no matter how many are on a page.

Plug-ins may not add XObject types, since they are considered part of the page and
a viewer without plug-ins should always be able to display a page. If an Acrobat
2.0 viewer encounters an unknown XObject type, it will be in a document with a
PDF version number greater than 1.1. The viewer displays an error specifying the
type of XObject but it reports no further errors.

Section 7.13.1, “Images”

The Name key in an Image resource is ignored by all Acrobat viewers.

Image XObjects in PDF 1.2 and earlier versions are all implicitly unmasked
images. A PDF consumer that does not recognize the Mask key will treat the
image as unmasked, and no error will be raised.

Section 7.13.4, “Color rendering intent”

The Acrobat 1.0 viewers display an error if an image specifies an Intent.

: March 11, 1999

482 Adobe Systems Inc.

Because of the large gamut of most displays, Acrobat viewers ignore the Intent
key when displaying a PDF file and always use RelativeColorimetric. When
printing to a PostScript printer, the Acrobat viewers do not specify an intent unless
one was explicitly specified.

Section 7.13.5, “Masking images by position”

Masked images are a feature of PostScript Level 3. Acrobat 4.0 does not attempt to
emulate the effect of masked images when printing to Level 1 or Level 2 printers;
it prints the base image without the mask.

The Acrobat 4.0 viewer will display masked images, but only when the amount of
data in the imagemask is below a certain limit. Above that, the viewer will display
the base image without the mask.

Section 7.13.9, “OPI dictionary”

The Acrobat 3.0 Distiller program converts OPI comments into OPI dictionaries,
and when the Acrobat 3.0 Viewer prints a PDF file to a PostScript file or printer, it
converts the OPI dictionary to OPI comments. However, the OPI information has
no effect on the displayed XObject (form or image).

In Acrobat 3.0, the value of the F key in an OPI dictionary must be a string.

The Acrobat 3.0 Distiller application and the Acrobat 3.0 Viewer do not support
OPI 2.0.

Section 7.14.1, “Sampled functions (Function Type 0)”

Acrobat 3.0 supports only linear interpolation (Order 1).

Section 7.14.4, “PostScript Calculator Function (FunctionType 4)”

Functions of types 2, 3, and 4 are not compatible with PDF 1.2 or earlier versions.
Acrobat will report an error, “Invalid Function Resource,” if it encounters a
function of this type. The syntax of numbers in Type 4 functions is the same as in
the rest of PDF; this is slightly different from the syntax for numbers in PostScript.

Section 7.16.3, “Predefined spot functions”

If the Acrobat 3.0 Distiller encounters a call to setscreen or sethalftone, and if
that call includes a spot function, the Distiller examines the code for the spot
function. If the code matches the PostScript shown in Table 7.51 on page 277, then
the Distiller puts the corresponding name in the halftone dictionary, and Acrobat
uses that PostScript code when printing the PDF file to a PostScript printer.
Otherwise, the Distiller samples the spot function and generate a function for the
halftone dictionary; when printing to a PostScript printer, Acrobat generates a spot
function that interpolates values from that function.

Section 7.17, “Patterns”

The Acrobat 3.0 does not display patterns on the screen, but it does print them to
PostScript.

March 11, 1999

: 483

Chapter 8, “Page Descriptions”

A 1.0 viewer reports an error the first time it finds an unknown operator or an
operator with too few operands, but it continues processing the marking context
(e.g., page or form). If it finds ten errors on a page, it reports back to the user and
asks whether to continue processing. No further errors are reported. Each time an
error occurs, the operand stack is cleared. Later Acrobat viewers behave the same,
although there is no additional warning if ten errors are encountered.

PDF 1.1 provides new page description operators for specifying device-
independent color and pass-through PostScript fragments. Since these operators
are incompatible with 1.0 viewers, PDF 1.1 provides alternative compatible
methods as well.

PDF 1.2 defines new operators for setting parameters in the graphics state (gs) and
for setting the color in Pattern and Separation color spaces. There is no
compatible mechanism for these operators in viewers prior to Acrobat 3.0.

Section 8.5.2, “Color operators”

For compatibility with PDF 1.0 viewers, it is recommended that device-dependent
colors be specified using the 1.0 operators and that device-independent colors be
specified using the color space substitution method defined in Section 7.12.12 on
page 245.

If an Acrobat 1.0 viewer reads a page containing any of the setcolorspace,
setcolor, or intent operators (cs, CS, sc, SC, scn, SCN, or ri), it reports an
error. Errors can be ignored by the user and objects are displayed, but colors will
most likely be black (the default).

The scn and SCN operators are not compatible with versions of Acrobat prior to
3.0.

Section 8.7.5, “Text string operators”

In versions of Acrobat prior to 3.0, when using the TJ operator, the x-coordinate of
the current point after drawing a character and moving by any specified offset must
not be less than the x-coordinate of the current point before the character was
drawn.

Section 8.8.1, “XObject operators”

If an Acrobat 1.0 viewer reads a page containing the PS operator, it reports an
error. The operator is otherwise ignored.

Section 8.10.2, “Compatibility operators”

If an Acrobat 1.0 viewer reads a page containing the BX or EX operators, it reports
an error. The operators are otherwise ignored.

Section 9.3.2, “Header and linearization information”

: March 11, 1999

484 Adobe Systems Inc.

In the Acrobat 3.0 viewer, linearization is an option that is available when a PDF
file is saved. It rewrites the entire file (a “full save”) and always uses version 1.2 in
the header: %PDF-1.2.

PDF 1.3 Reference Manual March 11, 1999 :

485

APPENDIX H

Forms Data Format

This appendix describes FDF, the file format used for Acrobat Forms data. FDF is
used when submitting Form data to a server, receiving the response, and
incorporating it into the Form. It can also be used to generate (i.e. “export”) stand-
alone files containing Form data that can be stored, transmitted electronically (e.g.,
via e-mail), and imported back into the corresponding Form.

FDF can also be used to control more of the document structure. That is, constructs
within FDF allow it to control which Acrobat Forms are used in the creation of a
new PDF document. This functionality can be used to create complex documents
dynamically.

FDF is also used to define a container for annotations that are separate from the
PDF document to which the annotations apply. (See Section H.5 on page 492 for
an example.)

• FDF is based on PDF, and uses the same syntax and set of basic object types as
PDF.

• FDF also has the same file structure as PDF, except for the fact that the cross-
reference is optional.

• The document structure is much simpler than PDF, since the body of an FDF
document consists of only one required object.

• Objects in FDF can only be of generation 0; no two objects can have the same
object number, and FDF files cannot have updates appended to them.

• The value of the Length attribute in the dictionary of any stream object
appearing inside an FDF document must be a direct object.

• FDF uses the MIME type application/vnd.fdf. On Windows and
UNIX it uses the *.fdf extension, and on the Mac it has the 'FDF ' file
type.

H.1 File Structure

An FDF file consists of a one-line header, a body, and a trailer. It can optionally
contain a cross-reference table. In other words, FDF is structured in the same way
as PDF, but need only contain those elements required for Acrobat Forms data
export and import, which are described below.

PDF 1.2

PDF 1.3

PDF 1.3

: March 11, 1999

486 Adobe Systems Inc.

Figure 14.5 FDF File Structure

H.1.1 Header

The first line of an FDF file specifies the version number of the PDF specification
that FDF is a part of. The current version of PDF is 1.3; therefore the first line of an
FDF file is

%FDF-1.3

H.1.2 Body

The body consists of one Catalog object and any additional indirect objects that it
may reference. The Catalog object is a dictionary with only one (required) key in
it, FDF. Its value is a dictionary, whose entries are described in Section H.2, “The
FDF Catalog Object.”

It is legal for the body to contain additional objects, and for the Catalog object to
contain additional key-value pairs. Comments can appear anywhere in the body
section of an FDF file.

Just as in PDF, objects in FDF can be direct or indirect.

H.1.3 Trailer

The trailer consists of a trailer dictionary, followed by the last line of the FDF file,
containing the end-of-file marker, %%EOF. The trailer dictionary consists of the
keyword trailer, followed by at least one key-value pair enclosed in double angle
brackets. The only required key is Root, and its value is an indirect reference to
the Catalog object in the FDF body.

FDF File Structure

Header

Body

Cross Reference Table (optional)

Trailer

March 11, 1999

: 487

It is legal for the trailer dictionary to contain the additional key-value pairs
described in the PDF specification.

H.2 The FDF Catalog Object

The value of the FDF key in the Catalog object is a dictionary whose entries are
described in the following table.

Table H.1 FDF attributes

Key Type Semantics

Fields array (Optional) This array contains the root fields being exported or imported. A root
field is one with no parent (i.e., it is not in the Kids array of another field). The
attributes of the fields are described in Section H.2.1, “FDF fields.”

Status string (Optional) A status to be displayed indicating the result of an action, typically a
SubmitForm action (see Section 6.14.13.1 on page 143). This string is encoded
with PDFDocEncoding.

Implementation note The Acrobat 3.0 implementation of Forms displays the Status, if any, in an Alert
Note, when importing an FDF.

F File specification (Optional) File specification for the PDF document that this FDF was exported
from, or is meant to be imported into.

ID array (Optional) The value of the ID field in the trailer dictionary of the PDF document
that this FDF was exported from, or is meant to be imported into.

Pages array (Optional) This array causes new pages to be added to a PDF document. See
Section H.2.3 on page 489 for a description of the elements in this array. Use of the
Pages key precludes the use of the Fields and Status keys.

Encoding name (Optional) The encoding to be used for any FDF field value (V key) or option (Opt
key) that is a string and does not begin with the Unicode prefix <FE FF>. The
default is PDFDocEncoding.

Implementation note The only Encoding value supported by Acrobat 4.0 is Shift-JIS. All other values
will use the default, PDFDocEncoding.

Annot array (Optional) An array of FDF annotation dictionaries. See Section H.2.4 on page
491.

H.2.1 FDF fields

Table H.2 describes the attributes of each field in the FDF. The majority of the
attributes described in this table represent the same information and have the same
semantics as the attributes of the same name described in Section 6.14.3 on page
131.

PDF 1.3

PDF 1.3

PDF 1.3

: March 11, 1999

488 Adobe Systems Inc.

Table H.2 Field attributes

Key Type Semantics

T string (Required) The partial field name.

Kids array (Optional) Contains the child field dictionaries.

V various (Optional) Field value.

Opt array (Optional) Options.

Ff integer (Optional) Field flags. When imported into an Acrobat Form, it replaces the
current value of the Ff key in the corresponding field inside the Form. If SetFf
and/or ClrFf are also present, they are ignored.

SetFf integer (Optional) Field flags. When imported into an Acrobat Form, it is OR’ed with the
current value of the Ff key in the corresponding field inside the Form.

ClrFf integer (Optional) Field flags. When imported into an Acrobat Form, for each bit that is
set to one in this value, sets the corresponding bit in the Form field's Ff flags to
zero. If SetFf is also present, ClrFf is applied after SetFf.

F integer (Optional) Widget annotation flags. When imported into an Acrobat Form, it
replaces the current value of the F key in the corresponding field inside the Form.
If SetF and/or ClrF are also present, they are ignored.

SetF integer (Optional) Widget annotation flags. When imported into an Acrobat Form, it is
OR’ed with the current value of the F key in the corresponding field inside the
Form.

ClrF integer (Optional) Widget annotation flags. When imported into an Acrobat Form, for
each bit that is set to one in this value, sets the corresponding bit in the Form's F
flags to zero. If SetF is also present, ClrF is applied after SetF.

AP dictionary (Optional) Dictionary containing the appearances for a Push Button field (see
Section 6.14.7 on page 135). Similar to Table 6.13 on page 88, except that the
values of the N, R, and D keys must all be streams.

AS name (Optional) Appearance state.

A dictionary (Optional) Action to be performed on activation of this Widget annotation.

AA dictionary (Optional) Additional actions.

APRef dictionary (Optional) Dictionary that includes references to external PDF files containing the
pages to use for the appearances for a Push Button field. Similar to Table 6.13 on
page 88, except that the values of the N, R, and D keys must all be named page
reference dictionaries, described in Table H.6. If both an AP and an APRef are
provided, the AP is used.

IF dictionary (Optional) See Section H.2.2, “Icon-fit dictionary.”

PDF 1.3

PDF 1.3

March 11, 1999

: 489

H.2.2 Icon-fit dictionary

The Icon-fit dictionary controls how the button icon is to be manipulated within
the boundaries of the button. The icon-fit dictionary, if provided, must contain
three keys, described in Table H.3.

Table H.3 Icon-fit attributes

Key Type Semantics

SW (Scale When) name (Required) Indicates when the icon should be scaled inside the button. The value is
one of:

B Scale when icon is too big, or only scale down.
S Scale when icon is too small, or only scale up.
N Never scale.
A Always scale. This is the default value, used if no icon-fit

dictionary is provided.

S (Scaling) name (Required) Indicates how the icon should be scaled inside the button. Possible
values are:

A (Anamorphic)
Always exactly fills the BBox for the button. Anamorphic scaling
does not maintain the aspect ratio of the icon.

P (Proportional)
Aspect ratio is maintained. The icon is scaled until the contents
fill the BBox for the field annotation. This is the default value,
used if no icon-fit dictionary is provided.

A (Align) array (Required) An array of two numbers between 0 and 1 indicating the fraction of
leftover space to assign to the left and bottom location of the icon. A value of
[0.5 0.5] centers the icon in the Bbox, and a value of [0 0] makes the icon
appear in the lower left corner of the Bbox.

This array is not used if the icon is scaled anamorphically. If no icon-fit dictionary
is provided, a value of [0.5 0.5] is used.

H.2.3 FDF Pages object

Table H.4 Pages-object attributes

Key Type Semantics

Templates array (Required) An array of named page dictionaries that describe the named pages that
serve as templates on a page. The Templates dictionary attributes are described
in Table H.5.

PDF 1.3

PDF 1.3

: March 11, 1999

490 Adobe Systems Inc.

Info dictionary (Optional) Contains other information about the page described by this dictionary.
Currently there are no attributes defined.

Table H.5 Templates dictionary attributes

Key Type Semantics

TRef dictionary (Required) A named page reference dictionary that describes the location of the
template. The named page reference dictionary attributes are described in Table
H.6.

Fields array (Optional) This array contains the root fields being imported. A root field is one
with no parent (i.e., it is not in the Kids array of another field). The attributes of
the fields are described in Table H.2.

Rename boolean (Optional) If false, prevents the fields from being renamed during FDF importing.
The default value is true. Rename affects the fields described in the same
dictionary and their children. The effect of Rename is described more fully
below.

The Rename key is used when a new page is being added to a PDF document
under the control of the FDF, and a new field on the new page has the same name
as an existing field. This can occur if the same template page is imported more
than once, or if two different templates are imported, but have fields with the same
names.

If Rename is true, fields from the document being imported are renamed to
guarantee their uniqueness. If Rename is false, the fields are not renamed, and
each time the FDF provides keys for that field, all fields with that name will be
updated.

Implementation note Acrobat Exchange renames fields by prepending a page number, a template name,
and an ordinal number to the field name. The template ordinal number
corresponds to the order in which the template is applied to a page, with 0 being
the first template specified for the page. For example, suppose the first template
used on the fifth page has the name Template and has Rename set to true. In
this case, the fields defined in that template will be renamed by prepending the
character string P5.Template_0. to the field names.

Implementation note Adobe Extreme™ printing systems require that the Rename key have a value of
true.

The named page reference dictionary describes the location of external templates
or page elements, as shown in Table H.6.

PDF 1.3

March 11, 1999

: 491

Table H.6 Named page reference dictionary attributes

Key Type Semantics

F File specification (Optional) Refers to an external PDF file. If the F key is omitted, it is assumed that
the Name refers to a page in the document being imported into.

Name string (Required) The name of the referenced named page (template or page element) in
the document specified by the F key.

H.2.4 FDF Annotation dictionaries

Each annotation dictionary in an FDF file must have a Page key indicating the
page of the source document to which the annotation is attached.

Table H.7 FDF annotation attributes (in addition to those in Table 6.10 on page
82)

Key Type Semantics

Page integer (Required for annotations in FDF files) The ordinal page number on which this
annotations should appear. Page 0 is the first page.

H.3 Use of FDF

For most of the keys, unless otherwise indicated in Table H.2, importing consists
of taking the value of each key as received in the FDF, and using it to replace the
value of the corresponding key in the field inside the Form with the same fully
qualified name.

Implementation note Of all the possible keys shown in Table H.2, Acrobat 3.0 will export only the V key
of a field when generating FDF, and Acrobat 4.0 will export only the V and AP
keys. It will, however, import FDF files containing fields using any of the described
keys.

Implementation note Acrobat, when importing an FDF that came back as a result of a SubmitForm
action, if the Form currently being displayed is not the one specified in the F key of
the FDF dictionary (which, as stated in Table H.1, is an optional key), then that
Form is first fetched, and then the FDF gets imported.

Implementation note When exporting FDF, Acrobat computes a relative path from the location the FDF
is being stored, to the location the Form is in, and uses that as the value of the F
key in the FDF dictionary.

Implementation note Under Acrobat, if an FDF being imported contains fields whose fully qualified
names are not present in the Form, those fields will be discarded. This feature can
be useful, among other cases, if an FDF containing commonly used fields (such as
name, address, etc.) is used to populate various types of Acrobat Forms, each of
which does not necessarily include all the fields available in the FDF.

PDF 1.3

PDF 1.3

PDF 1.3

: March 11, 1999

492 Adobe Systems Inc.

Note As shown in Table H.2, the only required key in the field dictionary is T. One
possible use for exporting FDF with fields that only contain T but no V, is as an
indication to a server of which fields are desired in the FDF coming back as a
response. For example, a server accessing a database might choose between
sending all fields in a record, vs. just some selected ones, based on the use of this
feature in the request FDF. The implementation of Acrobat Forms will ignore,
during import, fields in the FDF that do not exist in the Form.

Implementation note The Acrobat implementation of Forms allows the choice for a SubmitForm action
to send the data using HTML format. This is for the benefit of existing server
scripts written to process such forms. Note, however, that any such existing scripts
that generate new HTML forms as a response will need to be modified to generate
FDF instead.

H.4 Sample FDF

%FDF-1.2

1 0 obj <<

/FDF <<

/Fields

[

<<

/T (My Children)

/V (Tali)

/Opt [(Maya) (Adam) (Tali)]

>>

]

/F (Dependents.pdf)

>>

>>

endobj

trailer

<</Root 1 0 R>>

%%EOF

H.5 FDF for annotations

The following example shows an FDF file used to express a set of annotations for a
separate PDF document.

%FDF-1.3

%\342\343\317\323

1 0 obj

/FDF <<

/Annot

[

<<

/Type /Annot

March 11, 1999

: 493

/Subtype /Text

/Page 0

/Rect [88 370 359 442]

/Contents (Converted to Word for Windows)

/M (D:19970620115631)

/T (Joe Carousel)

>>

<<

/Type /Annot

/Subtype /Circle

/Page 0

/Rect [232 282 341 444]

/Contents (Was Macintosh version 5.1a)

/M (D:19970616124809)

/T (Joe Carousel)

>>

]

>>

endobj

%%EOF

: March 11, 1999

494 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 :

495

APPENDIX I

ISO 639 Language Codes

code language

aa Afar

ab Abkhazian

af Afrikaans

am Amharic

ar Arabic

as Assamese

ay Aymara

az Azerbaijani

ba Bashkir

be Byelorussian

bg Bulgarian

bh Bihari

bi Bislama

bn Bengali;
Bangla

bo Tibetan

br Breton

ca Catalan

co Corsican

cs Czech

cy Welsh

da Danish

de German

dz Bhutani

el Greek

en English

eo Esperanto

es Spanish

et Estonian

eu Basque

fa Persian

fi Finnish

fj Fiji

fo Faeroese

fr French

fy Frisian

ga Irish

gd Scots Gaelic

gl Galician

code language

gn Guarani

gu Gujarati

ha Hausa

hi Hindi

hr Croatian

hu Hungarian

hy Armenian

ia Interlingua

ie Interlingue

ik Inupiak

in Indonesian

is Icelandic

it Italian

iw Hebrew

ja Japanese

ji Yiddish

jw Javanese

code language

: March 11, 1999

496 Adobe Systems Inc.

ka Georgian

kk Kazakh

kl Greenlandic

km Cambodian

kn Kannada

ko Korean

ks Kashmiri

ku Kurdish

ky Kirghiz

la Latin

ln Lingala

lo Laothian

lt Lithuanian

lv Latvian, Let-
tish

mg Malagasy

mi Maori

mk Macedonian

ml Malayalam

mn Mongolian

mo Moldavian

mr Marathi

ms Malay

mt Maltese

my Burmese

na Nauru

ne Nepali

code language

nl Dutch

no Norwegian

oc Occitan

om (Afan) Oromo

or Oriya

pa Punjabi

pl Polish

ps Pashto, Pushto

pt Portuguese

qu Quechua

rm Rhaeto-
Romance

rn Kirundi

ro Romanian

ru Russian

rw Kinyarwanda

sa Sanskrit

sd Sindhi

sg Sangro

sh Serbo-Croat-
ian

si Singhalese

sk Slovak

sl Slovenian

sm Samoan

sn Shona

code language

so Somali

sq Albanian

sr Serbian

ss Siswati

st Sesotho

su Sundanese

sv Swedish

sw Swahili

ta Tamil

te Tegulu

tg Tajik

th Thai

ti Tigrinya

tk Turkmen

tl Tagalog

tn Setswanato
Tonga

tr Turkish

ts Tsonga

tt Tatar

tw Twi

uk Ukrainian

ur Urdu

uz Uzbek

vi Vietnamese

vo Volapuk

code language

March 11, 1999

: 497

wo Wolof

xh Xhosa

yo Yoruba

zh Chinese

zu Zulu

code language

: March 11, 1999

498 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 :

499

APPENDIX J

ISO 3166 Country Codes

country code

AFGHANISTAN AF

ALBANIA AL

ALGERIA DZ

AMERICAN SAMOA AS

ANDORRA AD

ANGOLA AO

ANGUILLA AI

ANTARCTICA AQ

ANTIGUA AND BARBUDA AG

ARGENTINA AR

ARMENIA AM

ARUBA AW

AUSTRALIA AU

AUSTRIA AT

AZERBAIJAN AZ

BAHAMAS BS

BAHRAIN BH

BANGLADESH BD

BARBADOS BB

BELARUS BY

BELGIUM BE

BELIZE BZ

BENIN BJ

BERMUDA BM

BHUTAN BT

BOLIVIA BO

BOSNIA AND HERZEGOWINA BA

BOTSWANA BW

BOUVET ISLAND BV

BRAZIL BR

BRITISH INDIAN OCEAN TERRI-
TORY

IO

BRUNEI DARUSSALAM BN

BULGARIA BG

BURKINA FASO BF

BURUNDI BI

CAMBODIA KH

CAMEROON CM

CANADA CA

CAPE VERDE CV

CAYMAN ISLANDS KY

CENTRAL AFRICAN REPUBLIC CF

CHAD TD

CHILE CL

country code

: March 11, 1999

500 Adobe Systems Inc.

CHINA CN

CHRISTMAS ISLAND CX

COCOS (KEELING) ISLANDS CC

COLOMBIA CO

COMOROS KM

CONGO CG

COOK ISLANDS CK

COSTA RICA CR

COTE D'IVOIRE CI

CROATIA (local name: Hrvatska) HR

CUBA CU

CYPRUS CY

CZECH REPUBLIC CZ

DENMARK DK

DJIBOUTI DJ

DOMINICA DM

DOMINICAN REPUBLIC DO

EAST TIMOR TP

ECUADOR EC

EGYPT EG

EL SALVADOR SV

EQUATORIAL GUINEA GQ

ERITREA ER

ESTONIA EE

ETHIOPIA ET

FALKLAND ISLANDS (MALVINAS) FK

FAROE ISLANDS FO

FIJI FJ

FINLAND FI

FRANCE FR

country code

FRANCE, METROPOLITAN FX

FRENCH GUIANA GF

FRENCH POLYNESIA PF

FRENCH SOUTHERN TERRITORIES TF

GABON GA

GAMBIA GM

GEORGIA GE

GERMANY DE

GHANA GH

GIBRALTAR GI

GREECE GR

GREENLAND GL

GRENADA GD

GUADELOUPE GP

GUAM GU

GUATEMALA GT

GUINEA GN

GUINEA-BISSAU GW

GUYANA GY

HAITI HT

HEARD AND MC DONALD ISLANDS HM

HONDURAS HN

HONG KONG HK

HUNGARY HU

ICELAND IS

INDIA IN

INDONESIA ID

IRAN (ISLAMIC REPUBLIC OF) IR

IRAQ IQ

IRELAND IE

country code

March 11, 1999

: 501

ISRAEL IL

ITALY IT

JAMAICA JM

JAPAN JP

JORDAN JO

KAZAKHSTAN KZ

KENYA KE

KIRIBATI KI

KOREA, DEMOCRATIC PEOPLE'S
REPUBLIC OF

KP

KOREA, REPUBLIC OF KR

KUWAIT KW

KYRGYZSTAN KG

LAO PEOPLE'S DEMOCRATIC
REPUBLIC

LA

LATVIA LV

LEBANON LB

LESOTHO LS

LIBERIA LR

LIBYAN ARAB JAMAHIRIYA LY

LIECHTENSTEIN LI

LITHUANIA LT

LUXEMBOURG LU

MACAU MO

MACEDONIA, THE FORMER YUGO-
SLAV REPUBLIC OF

MK

MADAGASCAR MG

MALAWI MW

MALAYSIA MY

MALDIVES MV

MALI ML

country code

MALTA MT

MARSHALL ISLANDS MH

MARTINIQUE MQ

MAURITANIA MR

MAURITIUS MU

MAYOTTE YT

MEXICO MX

MICRONESIA, FEDERATED STATES
OF

FM

MOLDOVA, REPUBLIC OF MD

MONACO MC

MONGOLIA MN

MONTSERRAT MS

MOROCCO MA

MOZAMBIQUE MZ

MYANMAR MM

NAMIBIA NA

NAURU NR

NEPAL NP

NETHERLANDS NL

NETHERLANDS ANTILLES AN

NEW CALEDONIA NC

NEW ZEALAND NZ

NICARAGUA NI

NIGER NE

NIGERIA NG

NIUE NU

NORFOLK ISLAND NF

NORTHERN MARIANA ISLANDS MP

NORWAY NO

country code

: March 11, 1999

502 Adobe Systems Inc.

OMAN OM

PAKISTAN PK

PALAU PW

PANAMA PA

PAPUA NEW GUINEA PG

PARAGUAY PY

PERU PE

PHILIPPINES PH

PITCAIRN PN

POLAND PL

PORTUGAL PT

PUERTO RICO PR

QATAR QA

REUNION RE

ROMANIA RO

RUSSIAN FEDERATION RU

RWANDA RW

SAINT KITTS AND NEVIS KN

SAINT LUCIA LC

SAINT VINCENT AND THE GRENA-
DINES

VC

SAMOA WS

SAN MARINO SM

SAO TOME AND PRINCIPE ST

SAUDI ARABIA SA

SENEGAL SN

SEYCHELLES SC

SIERRA LEONE SL

SINGAPORE SG

SLOVAKIA (Slovak Republic) SK

country code

SLOVENIA SI

SOLOMON ISLANDS SB

SOMALIA SO

SOUTH AFRICA ZA

SPAIN ES

SRI LANKA LK

ST. HELENA SH

ST. PIERRE AND MIQUELON PM

SUDAN SD

SURINAME SR

SVALBARD AND JAN MAYEN
ISLANDS

SJ

SWAZILAND SZ

SWEDEN SE

SWITZERLAND CH

SYRIAN ARAB REPUBLIC SY

TAIWAN, PROVINCE OF CHINA TW

TAJIKISTAN TJ

TANZANIA, UNITED REPUBLIC OF TZ

THAILAND TH

TOGO TG

TOKELAU TK

TONGA TO

TRINIDAD AND TOBAGO TT

TUNISIA TN

TURKEY TR

TURKMENISTAN TM

TURKS AND CAICOS ISLANDS TC

TUVALU TV

UGANDA UG

country code

March 11, 1999

: 503

UKRAINE UA

UNITED ARAB EMIRATES AE

UNITED KINGDOM GB

UNITED STATES US

UNITED STATES MINOR OUTLYING
ISLANDS

UM

URUGUAY UY

UZBEKISTAN UZ

VANUATU VU

VATICAN CITY STATE (HOLY SEE) VA

VENEZUELA VE

VIET NAM VN

VIRGIN ISLANDS (BRITISH) VG

VIRGIN ISLANDS (U.S.) VI

WALLIS AND FUTUNA ISLANDS WF

WESTERN SAHARA EH

YEMEN YE

YUGOSLAVIA YU

ZAIRE ZR

ZAMBIA ZM

ZIMBABWE ZW

country code

: March 11, 1999

504 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 :

505

Bibliography

Adobe Technical Notes are available online at the following URL:
http://partners.adobe.com/supportservice/devrelations/
technotes.html

Documents in the Acrobat Software Development Kit (SDK) are available at the
following URL:
http://partners.adobe.com/supportservice/devrelations/
nonmember/acrosdk/main.html
In addition, developers can find these documents on the Acrobat SDK CD, in the
Docs/OtherDocs folder.

[1] Adobe Systems Incorporated, PostScript Language Reference Manual, Third
Edition, Addison-Wesley, 1990, ISBN 0-201-37922-8. Reference manual
describing the imaging model used in the PostScript language and the language
itself.

http://partners.adobe.com/supportservice/

devrelations/PDFS/TN/PLRM.pdf

[2] Adobe Systems Incorporated, Supporting Data Compression in PostScript
Level 2 and the Filter Operator, Adobe Developer Support Technical Note 5115.

[3] Adobe Systems Incorporated, Supporting the DCT Filters in PostScript
Level 2, Adobe Developer Support Technical Note 5116. Contains errata for the
JPEG discussion in the PostScript Language Reference Manual, Second Edition.
Also describes the compatibility of the JPEG implementation with various
versions of the JPEG standard.

[4] Adobe Systems Incorporated, Adobe CMap and CIDfont File Specification,
version 1, Adobe Developer Support Technical Note 5014.

[5] Adobe Systems Incorporated, Adobe Type 1 Font Format, Addison-Wesley,
1990, ISBN 0-201-57044-0. Explains the internal organization of a PostScript
language Type 1 font program.

[6] Adobe Systems Incorporated, Type 1 Font Format Supplement, Adobe
Developer Support Technical Note 5015.

[7] Adobe Systems Incorporated, The Compact Font Format Specification,
Adobe Developer Support Technical Note 5176. Describes the additions made to
the Type 1 font format to support Type1C fonts.

http://partners.adobe.com/supportservice/devrelations/
http://partners.adobe.com/supportservice/devrelations/
http://partners.adobe.com/supportservice/

: March 11, 1999

506 Adobe Systems Inc.

[8] Adobe Systems Incorporated. The Type 2 Charstring Format. Adobe
Developer Support Technical Note 5176.

[9] Adobe Systems Incorporated, Portable Job Ticket (PJTF) Specification. To
be published.

[10] Adobe Systems Incorporated, Adobe Acrobat Forms JavaScript Object
Specification. To be published.

[11] Adobe Systems Incorporated, PDF Public-Key Digital Signature and
Encryption Specification. This is available on the Acrobat SDK Web site.

[12] Adobe Systems Incorporated, Standard Element Types for Logical Structure
in PDF. This is available on the Acrobat SDK Web site.

[13] Adobe Systems Incorporated, Adobe Font Metrics File Format Specification.
Adobe Developer Support Technical Note 5004. Adobe Font Metrics (AFM) files
are available at
ftp://ftp.adobe.com/pub/adobe/type/mac/all/afmfiles/ and
ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles/.

[14] Adobe Systems Incorporated, PostScript Language Document Structuring
Conventions Specification Version 3.0, Adobe Developer Support technical Note
5001.

[15] Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman, Data Structures
and Algorithms, Addison-Wesley, 1983, ISBN 0-201-00023-7. Includes a
discussion of balanced trees.

[16] Arvo, James (ed.), Graphics Gems II, Academic Press, 1991, ISBN 0-12-
064480-0. The section “Geometrically Continuous Cubic Bézier Curves” by Hans-
Peter Seidel describes the mathematics used to smoothly join two cubic Bézier
curves.

[17] Berners-Lee, T., and D. Connolly. Internet RFC 1866, Hypertext Markup
Language 2.0 Proposed Standard. November 1995.

<URL:ftp://ds.internic.net/rfc/rfc1866.txt;type=a>

For updates, see

http://www.w3.org/pub/WWW/MarkUp/html-spec

[18] Berners-Lee, T., Masinter, McCahill, and the Network Working Group.
Internet RFC 1738, Uniform Resource Locators.

<URL:ftp://ds.internic.net/rfc/rfc1738.txt;type=a>

[19] CCITT, Blue Book, Volume VII.3, 1988. ISBN 92-61-03611-2.
Recommendations T.4 and T.6 are the CCITT standards for Group 3 and Group 4
facsimile encoding. This document may be purchased from Global Engineering
Documents, P.O. Box 19539, Irvine, California 92713.

ftp://ftp.adobe.com/pub/adobe/type/mac/all/afmfiles/
ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles/
ftp://ds.internic.net/rfc/rfc1866.txt;type=a
http://www.w3.org/pub/WWW/MarkUp/html-spec
ftp://ds.internic.net/rfc/rfc1738.txt;type=a

March 11, 1999

: 507

[20] CCITT, Recommendation X.208: Specification of Abstract Syntax Notation
One (ASN.1), 1988.

[21] Deutsch, L. Peter, and Jean-Loup Gailly. Internet RFC 1950, ZLIB
Compressed Data Format Specification version 3.3.

<URL:ftp://ds.internic.net/rfc/rfc1950.txt;type=a>

[22] Deutsch, L. Peter. Internet RFC 1951, DEFLATE Compressed Data Format
Specification version 1.3.

<URL:ftp://ds.internic.net/rfc/rfc1951.txt;type=a>

[23] Fielding, Network Working Group. Internet RFC 1808, Relative Uniform
Resource Locators.

<URL:ftp://ds.internic.net/rfc/rfc1808.txt;type=a>

[24] Fielding, Gettys, Mogul, Frystyk, Berners-Lee. Internet RFC 2068,
Hypertext Transfer Protocol – HTTP/1.1, January 1997.

<URL:ftp://ds.internic.net/rfc/rfc2068.txt;type=a>

[25] Foley, James D., Andries van Dam, Steven K. Feiner, and John F. Hughes,
Computer Graphics: Principles and Practice, Second Edition, Addison-Wesley,
1990, ISBN 0-201-12110-7. Section 11.2, “Parametric Cubic Curves,” contains a
description of the mathematics of cubic Bézier curves and a comparison of various
types of parametric cubic curves

[26] Freed, N. and N. Borenstein, RFC 2045: Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies, November
1996.

<URL:ftp://ds.internic.net/rfc/rfc2045.txt;type=a>

[27] RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types.

[28] Glassner, Andrew S. (ed.), Graphics Gems, Academic Press, 1990, ISBN 0-
12-286165-5. The section “An Algorithm For Automatically Fitting Digitized
Curves” by Philip J. Schneider describes an algorithm for determining the set of
Bézier curves approximating an arbitrary set of user-provided points. Appendix 2
contains an implementation of the algorithm, written in the C programming
language. Other sections relevant to the mathematics of Bézier curves include
“Solving the Nearest-Point-On-Curve Problem” by Philip J. Schneider, “Some
Properties of Bézier Curves” by Ronald Goldman, and “A Bézier Curve-Based
Root-Finder” by Philip J. Schneider. The source code appearing in the appendix is
available via anonymous ftp, as described in the preface to Graphics Gems III [31].

[29] International Color Consortium. See http://www.color.org. Version
3.4 of the specification for ICC profiles is available at

ftp://ds.internic.net/rfc/rfc1950.txt;type=a
ftp://ds.internic.net/rfc/rfc1951.txt;type=a
ftp://ds.internic.net/rfc/rfc1808.txt;type=a
ftp://ds.internic.net/rfc/rfc2068.txt;type=a
ftp://ds.internic.net/rfc/rfc2045.txt;type=a
http://www.color.org.Version

: March 11, 1999

508 Adobe Systems Inc.

ftp://sgigate.sgi.com/pub/icc/ICC34.pdf

[30] Joint Photographic Experts Group (JPEG) “Revision 8 of the JPEG
Technical Specification,” ISO/IEC JTC1/SC2/WG8, CCITT SGVIII, August 14,
1990. Defines a set of still-picture grayscale and color image data compression
algorithms.

[31] Kirk, David (ed.), Graphics Gems III, Academic Press, 1992, ISBN 0-12-
409670-0 (with IBM Disk) or ISBN 0-12-409671-9 (with Macintosh disk). The
section “Interpolation Using Bézier Curves” by Gershon Elber contains an
algorithm for calculating a Bézier curve that passes through a user-specified set of
points. The algorithm utilizes not only cubic Bézier curves, which are supported in
PDF, but also higher-order Bézier curves. The appendix contains an
implementation of the algorithm, written in the C programming language. All of
the source code appearing in the appendix is available via anonymous ftp, as
described in the preface.

[32] Microsoft Corp., TrueType 1.0 Font Files, Revision 1.00, May 1992.

[33] Netscape Communications Incorporated, Netscape JavaScript Reference
Manual.

http://developer.netscape.com/docs/manuals/

communicator/jsref/index.htm

[34] Pennebaker, W. B. and Joan L. Mitchell, JPEG Still Image Data
Compression Standard, Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.

[35] Ron Rivest, RFC 1321: The MD5 Message-Digest Algorithm, April 1992.

<URL:ftp://ds.internic.net/rfc/rfc1321.txt;type=a>

[36] TrueType Conference Technical Committee, Japanese TrueType Font
Property Selection Guidelines (TrueType Kyougikai Gijutsu Iinkai, Nihongo
TrueTypeFont Shotai Zokusei-chi Sentei Gaidorain)

[37] Warnock, John and D. Wyatt, “A Device Independent Graphics Imaging
Model for Use with Raster Devices,” Computer Graphics (ACM SIGGRAPH),
Volume 16, Number 3, July 1982. Technical background for the imaging model
used in the PostScript language.

ftp://sgigate.sgi.com/pub/icc/ICC34.pdf
http://developer.netscape.com/docs/manuals/
ftp://ds.internic.net/rfc/rfc1321.txt;type=a

March 11, 1999

: 509

Index
Symbols

" 445
40
% 56
%%EOF 59
%PDF-1.3 56
' 445
/ 39
<< 40
>> 40

A

Acrobat Distiller 20
Aliased URLs Object 155
array 40
ASCII85Decode 45
ASCIIHexDecode 44

B

B 443
b 443
B* 443
b* 443
base 14 fonts 202
BaseFont 201, 203, 204, 205
BDC 443
begin image 443
begin image data 444
begin marked content 443
BI 443
blue screen mask 255
BMC 443
bookmark 104
BT 443

C

c 443
Catalog 67
CCITT 23
CCITTFaxDecode 50
chroma-key mask 255
clip 445
closepath 443, 444, 445

: March 11, 1999

510 Adobe Systems Inc.

cm 443
comments 56
compatibility note 15
concat 443
content stream 195, 444
cross-reference table 24, 57
current Resources dictionary 197
curveto 443, 445

D

d 443
d0 443
d1 443
Date (data structure definition) 183
DCTDecode 52
deleted object 58
Destination (data structure definition) 184
dictionary 40
direct object 53
Distiller 20
Do 443
DP 444

E

EBNF 15
Edge flag 309
EI 444
EMC 444
Encryption 62
end image 444
end marked content 444
end path 444
end text object 444
endobj 53
endstream 41
eoclip 445
eofill 443, 444
escape character 38
ET 444
EX 444
Extended Backus–Naur Form 15
extended graphics state 444

F

F 444
f 58, 444

March 11, 1999

: 511

f* 444
false 37
File specification (data structure definition) 186
file specification dictionary 188
fill 443, 444, 445
fill path 444
Flate 23
font

multiple master Type 1 205
subsets 204
TrueType 203
Type 0 207
Type 1 199
Type 3 206

free object 58
full file specification 186

G

G 444
g 444
GDI 20
generation number 53
glyphs 24
gradient 294
gs 444

H

h 444
Header 56

I

i 444
ID 444
implementation note 15
Incremental update 61
indirect object 37, 53
indirect reference 54
inheritance of attributes 72
ITC Zapf Dingbats font 24

J

J 444
j 444
JPEG 23

: March 11, 1999

512 Adobe Systems Inc.

K

K 444
k 444

L

l 444
Lempel-Ziv-Welch compression 23
lineto 444
LZW 23
LZWDecode 45

M

M 444
m 444
moveto 444
MP 444

N

n 57, 444
name 39
named destinations 185
named resources 195
named XObject 443
null 53
numbers 37

O

obj 53
object number 53
operator 443

P

page description 19
page label 70
page marking operators 443
Pages tree 71
path 444, 445
pattern 445
PDF consumer 9
PDF document 19
PDF file 19
PDF generator 9
PDF Writer 20
PostScript 9, 19, 443

March 11, 1999

: 513

procsets 26

Q

Q 444
q 444
QuickDraw 20

R

R 54
RC4 encryption algorithm 63
re 444
rectangle 444
Rectangle (data structure definition) 183
rendering intent 445
Resources dictionary 195
restore graphics state 444
RG 444
rg 444
ri 445
Run Length compression 23
RunLengthDecode 50

S

S 445
s 445
save graphics state 444
SC 445
sc 445
SCN 445
scn 445
section 57
separation color spaces 445
set character spacing 445
set file size 445
set font name 445
set horizontal scaling 445
set leading 445
set text matrix 445
set text rendering mode 445
set text rise 445
set word spacing 445
setcachedevice 443
setcharwidth 443
setcmykcolor 444
setcolor 445
setcolorspace 443

: March 11, 1999

514 Adobe Systems Inc.

setdash 443
setflat 444
setgray 444
setlinecap 444
setlinejoin 444
setlinewidth 445
setmiterlimit 444
setrgbcolor 444
sh 445
shaded fill 445
shfill 445
show text 445
simple file specification 186
snapshot (Multiple Master font) 205
startxref 59
stream 41
string 37
stroke 443, 444, 445
style (TrueType fonts) 204
subsection 57
Symbol font 24

T

T* 445
Tc 445
TD 445
Td 445
text 39
text current point 445
Tf 445
TJ 445
Tj 445
TL 445
Tm 445
Tr 445
trailer 59, 59
Trapping 99
true 37
TrueType 24
Ts 445
Tw 445
Type 41
Type (restrictions on the use of the key name) 14
Type 3 font 443
Tz 445

March 11, 1999

: 515

U

undefined object 54
undefined operators 444
Unicode Byte Order marker 39
URL 194

V

v 445
viewer preferences dictionary 69

W

W 445
w 445
W* 445

X

xref 57

Y

y 445

: March 11, 1999

516 Adobe Systems Inc.

PDF 1.3 Reference Manual March 11, 1999 :

517

Colophon

This book was produced electronically using Adobe FrameMaker® on Macintosh,
Dell Dimension, and Sun™ SPARCstation® computers. Art was produced using
Adobe Photoshop®, Adobe Illustrator®, and Adobe FrameMaker®. The final
version is a PDF 1.2 file produced by Adobe Acrobat Distiller from PostScipt
created by the AdobePS™ print driver.

Authors—Tim Bienz, Richard Cohn, and Jim Meehan

Key Contributors—Nabeel Al-Shamma, Ed Taft

Reviewers—Nabeel Al-Shamma, David Gelphman, Sherri Nichols, Paul Rovner,
Alan Wootton, Jim Pravetz, Dick Sites, Terry O’Donnell and numerous others at
Adobe Systems; and L. Peter Deutsch of Aladdin Enterprises.

Editing—Gary Staas, Diana Wynne, Karl Schmidtmann

Project Management—Tim Oey, Bob Wulff

: March 11, 1999

518 Adobe Systems Inc.

	Introduction
	1.1 About this book
	1.2 Introduction to the Second Edition—PDF 1.1
	1.3 Introduction to the Third Edition—PDF 1.2
	1.4 Introduction to the Fourth Edition—PDF 1.3
	1.5 Conventions used in this book
	1.6 A note on syntax
	1.7 Copyright permission to use PDF

	Portable Document Format
	Overview
	2.1 What is the Portable Document Format?
	2.2 Using PDF
	Figure 2.1 Creating PDF files using PDF Writer
	Figure 2.2 Creating PDF files using the Distiller program
	Figure 2.3 Viewing and printing a PDF document

	2.3 General properties
	2.3.1 Adobe imaging model
	2.3.2 Portability
	2.3.3 Compression
	2.3.4 Font independence
	2.3.5 Single-pass file generation
	2.3.6 Random access
	2.3.7 Incremental update
	2.3.8 Extensibility

	2.4 PDF and the PostScript language
	2.5 Understanding PDF
	Figure 2.4 PDF components

	Coordinate Systems
	3.1 Device space
	Figure 3.1 Device space

	3.2 User space
	Figure 3.2 User space

	3.3 Text space
	3.4 Character space
	3.5 Image space
	3.6 Form space
	3.7 Pattern space
	3.8 Relationships among coordinate systems
	Figure 3.3 Relationships among PDF coordinate systems

	3.9 Transformations between coordinate systems
	Figure 3.4 Effects of coordinate transformations
	Figure 3.5 Effect of the order of transformations

	3.10 Transformation matrices

	Objects
	4.1 Introduction
	4.2 Booleans
	4.3 Numbers
	4.4 Strings and text
	4.4.1 Text

	4.5 Names
	4.6 Arrays
	4.7 Dictionaries
	4.8 Streams
	Table 4.2 Stream attributes
	Table 4.3 Standard filters
	4.8.1 ASCIIHexDecode filter
	4.8.2 ASCII85Decode filter
	4.8.3 LZWDecode filter
	Table 4.4 Optional parameters for LZW filter

	4.8.4 FlateDecode Filter
	Table 4.5 Optional parameters for FlateDecode filter

	4.8.5 LZW and Flate predictor functions
	4.8.6 Comparison of LZW and Flate encoding
	4.8.7 RunLengthDecode filter
	4.8.8 CCITTFaxDecode filter
	Table 4.7 Optional parameters for CCITTFaxDecode filter

	4.8.9 DCTDecode filter

	4.9 The null object
	4.10 Indirect objects
	4.11 Object references

	File Structure
	5.12 PDF files
	Figure 5.1 Structure of a PDF file that has not been updated

	5.13 Header
	5.14 Body
	5.15 Cross-reference table
	5.16 Trailer
	Table 5.1 Trailer attributes

	5.17 Incremental update
	Figure 5.2 Structure of a PDF file after changes have been appended several times

	5.18 Encryption

	Document Structure
	6.1 Introduction
	Figure 6.1 Structure of a PDF document

	6.2 Catalog
	Table 6.1 Catalog attributes
	6.2.1 Viewer preferences
	Table 6.2 Viewer Preferences

	6.2.2 PageLabel dictionaries
	Table 6.3 PageLabel dictionary entries

	6.3 Pages tree
	Table 6.4 Pages attributes
	6.3.1 Inheritance of Attributes

	6.4 Page objects
	Table 6.5 Page attributes
	Figure 6.2 Page object’s media box and crop box
	6.4.1 Presentation mode
	6.4.1.1 Duration
	6.4.1.2 Hidden
	6.4.1.3 Transition
	Table 6.6 Transition attributes

	6.4.1.4 Transition effects
	Table 6.7 Transition Effects
	Table 6.8 Effect parameters

	6.4.2 Separated PDF
	6.4.2.1 Separation Info Dictionary
	Table 6.9 Separation Attributes

	6.5 Thumbnails
	6.6 Annotations
	Table 6.10 Annotation attributes (common to all annotations)
	Figure 6.3 Text annotation with the NoRotate flag
	6.6.1 Annotation borders
	Table 6.11 Border Style attributes

	6.6.2 Annotation highlighting
	Table 6.12 Highlight Modes

	6.6.3 Annotation appearances
	Table 6.13 Appearance dictionary

	6.6.4 Text annotations
	Table 6.14 Text annotation attributes (in addition to those in Table 6.10)

	6.6.5 Link annotations
	Table 6.15 Link annotation attributes (in addition to those in Table 6.10)

	6.6.6 Movie Player annotations
	Table 6.16 Movie Player annotation attributes (in addition to those in Table 6.10)
	Table 6.17 Movie dictionary attributes
	Table 6.18 Movie Activation attributes

	6.6.7 Sound annotations
	Table 6.19 Sound annotation attributes (in addition to those in Table 6.10)

	6.6.8 Free Text annotations
	Table 6.20 Free text annotation attributes (in addition to those in Table 6.10)

	6.6.9 Rubber Stamp annotations
	Table 6.21 Rubber Stamp annotation attributes (in addition to those in Table 6.10)

	6.6.10 Line annotation
	Table 6.22 Line annotation attributes (in addition to those in Table 6.10)

	6.6.11 Square and Circle annotations
	Table 6.23 Square and Circle annotation attributes (in addition to those in Table 6.10)
	Figure 6.4 Square and Circle annotations

	6.6.12 StrikeOut, Highlight, and Underline annotations
	Table 6.24 StrikeOut, Highlight, and Underline annotation attributes (in addition to those in Tab...

	6.6.13 Ink annotations
	Table 6.25 Ink annotation attributes (in addition to those in Table 6.10)

	6.6.14 File Attachment annotations
	Table 6.26 File attachment annotation attributes (in addition to those in Table 6.10)

	6.6.15 Pop-up annotations
	Table 6.27 Pop-up annotation attributes (in addition to those in Table 6.10)
	Figure 6.5 Pop-up annotation for a Text annotation

	6.6.16 PDF Trapping
	6.6.16.1 Discussion of Trapping
	6.6.16.2 Terminology
	Figure 6.6 Trap Network Annotation

	6.6.16.3 Trap Network Definition
	6.6.16.4 TrapNetwork Annotation Attributes
	Table 6.28 TrapNetwork Annotation Attributes (in addition to those in Table 6.10)

	6.6.16.5 TrapNetwork Appearances Attributes
	Table 6.29 TrapNetwork Appearance attributes (in addition to those in Table 6.28)

	6.6.16.6 Version Array
	Table 6.30 Page elements to include in the Version array
	Table 6.31 Page Resources to include in the Version array stream, or all stream
	Table 6.32 XObject Resources to include in the Version array

	6.6.16.7 Separated PDF and trapping

	6.7 Outline tree
	Table 6.33 Outlines attributes
	Table 6.34 Outline entry attributes

	6.8 Actions
	Table 6.35 Types of actions
	Table 6.36 Action attributes (common to all actions)
	6.8.1 Action Trigger Points
	Table 6.37 Additional Actions attributes

	6.8.2 GoTo action
	Table 6.38 GoTo action attributes (in addition to those in Table 6.36)

	6.8.3 GoToR action
	Table 6.39 GoToR action attributes (in addition to those in Table 6.36)

	6.8.4 Launch action
	Table 6.40 Launch action attributes (in addition to those in Table 6.36)
	Table 6.41 Windows-specific launch attributes

	6.8.5 Thread action
	Table 6.42 Thread action attributes (in addition to those in Table 6.36)

	6.8.6 URI action
	Table 6.43 URI action attributes (in addition to those in Table 6.36)
	6.8.6.1 URI dictionary in the Catalog
	Table 6.44 URI attributes

	6.8.7 Sound actions
	Table 6.45 Sound action attributes (in addition to those in Table 6.36)

	6.8.8 Movie Player actions
	Table 6.46 Movie Player attributes (in addition to those in Table 6.36)

	6.8.9 SetState action
	Table 6.47 SetState action attributes (in addition to those in Table 6.36)

	6.8.10 Hide action
	Table 6.48 Hide action attributes (in addition to those in Table 6.36)

	6.8.11 Named actions
	Table 6.49 Named Action Attributes (in addition to those in Table 6.36)

	6.8.12 NOP action
	Table 6.51 NOP Action Attributes (in addition to those in Table 6.36)

	6.9 Names dictionary
	Table 6.52 Names dictionary in the Catalog

	6.10 Info dictionary
	Table 6.53 PDF Info dictionary attributes

	6.11 Articles
	Table 6.54 Thread attributes
	Table 6.55 Bead attributes

	6.12 File ID
	6.13 Encryption dictionary
	Table 6.56 Standard security handler attributes
	Table 6.57 Permission flags

	6.14 Acrobat Forms
	6.14.1 AcroForm
	Table 6.58 AcroForm dictionary attributes

	6.14.2 Fields
	6.14.3 Field dictionaries
	Table 6.59 Attributes common to all types of fields

	6.14.4 Widget annotations
	6.14.5 Fields comprising variable text
	Table 6.60 Attributes common to all types of fields containing variable text

	6.14.6 Button field
	Table 6.61 Field flags (Ff) for Btn fields

	6.14.7 Push button
	6.14.8 Checkbox
	Table 6.62 Checkbox attributes

	6.14.9 Radio button
	Table 6.63 Radio button attributes

	6.14.10 Choice
	Table 6.64 Choice attributes

	6.14.11 Text field
	Table 6.65 Text field attributes

	6.14.12 Signature field
	Table 6.66 Signature field attributes
	Table 6.67 Signature dictionary attributes

	6.14.13 AcroForm actions
	6.14.13.1 SubmitForm Action
	Table 6.68 SubmitForm action attributes (in addition to those in Table 6.36)

	6.14.13.2 ResetForm Action
	Table 6.69 ResetForm action attributes (in addition to those in Table 6.36)

	6.14.13.3 ImportData Action
	Table 6.70 ImportData action attributes (in addition to those in Table 6.36)

	6.14.13.4 JavaScript Action
	Table 6.71 JavaScript action attributes (in addition to those in Table 6.36)

	6.14.14 Named Pages

	6.15 Sounds
	6.15.1 Sound objects
	Table 6.72 Sound attributes

	6.15.2 External sounds

	6.16 Web Capture
	6.16.1 Web Capture Content Database
	Figure 6.12 Simple Web Capture file structure
	Figure 6.13 Complex Web Capture file structure

	6.16.2 Web Capture Content Sets
	Table 6.73 Web Capture Content Set attributes (common to all Web Capture Content Sets)
	6.16.2.1 Web Capture Page Set (subtype of Web Capture Content Set)
	Table 6.74 Web Capture Page Set attributes (in addition to those in Table 6.73)

	6.16.2.2 Source Info Object
	Table 6.75 Source Info attributes

	6.16.2.3 Aliased URLs Object
	Table 6.76 Aliased URLs Object attributes

	6.16.2.4 Web Capture Image Set (subtype of Web Capture Content Set)
	Table 6.77 Web Capture Image Set attributes (in addition to those in Table 6.73)

	6.16.3 Web Capture Info Dictionary
	Table 6.78 Web Capture Info attributes

	6.16.4 Web Capture Command
	Table 6.79 Web Capture Command attributes
	6.16.4.1 Web Capture Command Settings
	Table 6.80 Web Capture Command Settings attributes

	6.16.4.2 Page and Image XObject Attributes
	6.16.4.3 Implementation details

	6.17 Logical Structure in PDF
	6.17.1 Representing logical structure in PDF
	6.17.2 Structure tree root
	Table 6.81 Structure tree root attributes

	6.17.3 Structural elements
	Table 6.82 Structural element attributes
	6.17.3.1 Page description as structural element content
	6.17.3.2 PDF objects as structural element content
	6.17.3.3 Structural elements as structural element content
	6.17.3.4 Optimizing page references from structural elements
	6.17.3.5 Structural element attributes
	6.17.3.6 Structural element class
	6.17.3.7 Structural element alternative text

	6.17.4 Attribute Objects
	Table 6.83 Attribute object attributes

	6.17.5 Marked Content Containers (MCC)
	Table 6.84 Marked content property list attributes

	6.17.6 Parent pointers from streams containing marked content
	Table 6.85 Marked content container dictionary attributes

	6.17.7 Marked Content Reference (MCR)
	Table 6.86 Marked content reference attributes

	6.17.8 Object reference (OBJR)
	Table 6.87 Object reference attributes

	6.17.9 Parent pointers from PDF objects to structural elements
	Table 6.88 PDF object structure pointer attributes

	6.17.10 The role map
	6.17.11 Attaching attributes
	6.17.12 Element class key and class map
	6.17.13 Element Modification Rules
	6.17.14 Extended example of logical structure

	Common Data Structures
	7.1 Rectangle
	7.2 Date
	7.3 Destination
	7.3.1 Explicit destinations
	Table 7.1 Destination specification

	7.3.2 Named destinations

	7.4 File specification
	7.4.1 File specification strings
	Table 7.2 Examples of file specifications

	7.4.2 File specification dictionaries
	Table 7.3 File specification attributes
	7.4.2.1 Related Files array

	7.4.3 Embedded File streams
	Table 7.4 Additional attributes for EmbeddedFile streams
	7.4.3.1 Embedded File Params dictionary
	Table 7.5 Attributes for Params dictionary

	7.4.3.2 Macintosh-specific file information
	Table 7.6 Attributes of a Macintosh Specific File Information dictionary

	7.4.3.3 Finding all the file specifications in a PDF file
	7.4.3.4 Finding all the embedded files within a PDF file
	7.4.3.5 Determining whether a file is embedded

	7.4.4 URL
	7.4.5 Safe path names

	7.5 Resources dictionaries
	Table 7.7 Resources dictionary

	7.6 ProcSets
	7.7 Fonts
	Figure 7.1 Character metrics
	Figure 7.2 Fonts, encodings, CMaps, and FontDescriptors
	Table 7.9 Attributes common to Type 1, Type 3, True Type and Type 0 fonts
	7.7.1 Type 1 fonts
	Table 7.10 Type 1 font attributes (in addition to those in Table 7.9)

	7.7.2 The base 14 Type 1 fonts
	Table 7.11 Base 14 fonts

	7.7.3 TrueType fonts
	Table 7.12 TrueType font attributes (in addition to those in Table 7.9)

	7.7.4 Font Subsets
	7.7.5 Multiple master Type 1 fonts
	Table 7.13 Multiple master Type 1 font attributes (in addition to those in Table 7.9)

	7.7.6 Type 3 fonts
	Table 7.14 Type 3 font attributes (in addition to those in Table 7.9)

	7.7.7 Type 0 Fonts
	Table 7.15 Type 0 font attributes (in addition to those in Table 7.9)

	7.7.8 Vertical Writing
	Figure 7.3 Horizontal and vertical writing metrics

	7.8 CIDFonts
	7.8.1 CIDFontType 0
	Table 7.16 CIDFontType 0 attributes
	Table 7.17 Entries in a CIDSystemInfo dictionary

	7.8.2 CIDFontType 2
	Table 7.18 CIDFontType 2 attributes

	7.8.3 Character widths in CIDFonts

	7.9 Font encodings
	Table 7.19 Font encoding attributes

	7.10 CMaps
	Table 7.20 Predefined CJK CMap names
	Table 7.21 CMap attributes
	7.10.1 ToUnicode CMaps

	7.11 Font descriptors
	Table 7.22 Attributes shared by all font descriptors
	7.11.1 Font files
	Table 7.23 Additional attributes for FontFile stream

	7.11.2 Font descriptor flags
	Figure 7.4 Characteristics represented in the Flags field of a font descriptor

	7.11.3 Font descriptors for CID fonts
	Table 7.25 Additional FontDescriptor attributes
	Table 7.26 Character Subsets in CJK fonts

	7.12 Color spaces
	Figure 7.5 Color space families
	7.12.1 DeviceGray color spaces
	7.12.2 DeviceRGB color spaces
	7.12.3 DeviceCMYK color spaces
	7.12.4 CalGray color spaces
	Table 7.27 CalGray attributes

	7.12.5 CalRGB color spaces
	Table 7.28 CalRGB attributes

	7.12.6 Lab color spaces
	Table 7.29 Lab attributes

	7.12.7 ICCBased color spaces
	Table 7.30 ICCBased attributes
	Table 7.31 ICC profile types

	7.12.8 Separation color spaces
	7.12.9 DeviceN color spaces
	7.12.10 Indexed color spaces
	7.12.10.1 Indexed DeviceN (duotones)

	7.12.11 Pattern color spaces
	7.12.12 Default color spaces

	7.13 XObjects
	7.13.1 Images
	Table 7.33 Image XObject attributes

	7.13.2 Decode arrays
	7.13.3 Alternate images
	Table 7.35 Alternate image dictionary

	7.13.4 Color rendering intent
	Table 7.36 Color rendering intents

	7.13.5 Masking images by position
	7.13.6 Masking images by color
	7.13.7 Form XObjects
	Table 7.37 Form XObject attributes

	7.13.8 PostScript XObjects
	Table 7.38 PostScript XObject attributes

	7.13.9 OPI dictionary
	Table 7.39 OPI dictionary
	Table 7.40 OPI 1.3 dictionary
	Table 7.41 OPI 2.0 dictionary

	7.13.10 Page-Piece Dictionary
	Table 7.42 PieceInfo dictionary
	Table 7.43 Application Data dictionary

	7.14 Functions
	Table 7.44 Attributes shared by all functions
	7.14.1 Sampled functions (Function Type 0)
	Table 7.45 Attributes of sampled functions (FunctionType 0)
	Figure 7.6 Mapping with the Decode array

	7.14.2 Exponential Interpolation Function (FunctionType 2)
	Table 7.46 Entries specific to a type 2 function dictionary

	7.14.3 1-Input Stitching Function (FunctionType 3)
	Table 7.47 Entries specific to a type 3 function dictionary

	7.14.4 PostScript Calculator Function (FunctionType 4)
	Table 7.48 Operators

	7.15 Extended graphics states
	Table 7.49 ExtGState attributes

	7.16 Halftones
	7.16.1 HalftoneName
	7.16.2 Type 1 halftones
	Table 7.50 Entries in a Type 1 halftone dictionary

	7.16.3 Predefined spot functions
	Table 7.51 Predefined spot functions

	7.16.4 Type 5 halftones
	Table 7.52 Entries in a Type 5 halftone dictionary

	7.16.5 Type 6 halftones
	Table 7.53 Type 6 halftone attributes

	7.16.6 Type 10 halftones
	Table 7.54 Type 10 halftone attributes

	7.16.7 Type 16 halftones
	Figure 7.7 Type 16 halftone tiling
	Table 7.55 Type 16 halftone attributes

	7.17 Patterns
	7.17.1 The pattern matrix
	7.17.2 Tiling patterns (PatternType 1)
	Table 7.56 Type 1 Pattern attributes
	Figure 7.8 Bitmapped pattern
	Figure 7.9 Star pattern

	7.17.3 Smooth shading patterns (PatternType 2)
	Table 7.57 Entries in a type 2 pattern dictionary

	7.18 Smooth Shading
	Table 7.58 Entries common in all shading dictionaries
	7.18.1 ColorSpace: Special Considerations
	7.18.2 Shading Dictionary Entries Associated with Each Defined ShadingType
	7.18.2.1 ShadingType 1: Function-Based Shading
	Table 7.59 Entries in a Type 1 Shading dictionary

	7.18.2.2 ShadingType 2: Axial Shading
	Table 7.60 Entries in a Type 2 Shading dictionary

	7.18.2.3 ShadingType 3: Radial Shading
	Table 7.61 Entries in a Type 3 Shading dictionary

	7.18.2.4 ShadingType 4: Free-Form Gouraud-Shaded Triangle Meshes
	Table 7.62 Entries in a Type 4 Shading dictionary
	Figure 7.10 How the value of edge flag, f, affects which edge is used

	7.18.2.5 ShadingType 5: Lattice-Form Gouraud-Shaded Triangle Meshes
	Table 7.63 Entries in a Type 5 Shading dictionary

	7.18.2.6 ShadingType 6: Coons patch meshes
	Figure 7.11 Coons patch meshes: coordinate mapping from a unit square to a four-sided patch
	Table 7.64 Entries in a Type 6 Shading dictionary
	Figure 7.12 Edge flags
	Figure 7.13 Coons patch
	Table 7.65 Data values in a Coons patch mesh

	7.18.2.7 ShadingType 7: Tensor Product Patch Meshes

	7.18.3 Painting With a Pattern Dictionary

	7.19 Property lists
	Table 7.66 Property List attributes

	7.20 Name tree
	Table 7.67 The root node in a name tree
	Table 7.68 An intermediate node in a name tree
	Table 7.69 A leaf node in a name tree

	7.21 Number tree
	Table 7.70 The root node in a number tree
	Table 7.71 An intermediate node in a number tree
	Table 7.72 A leaf node in a number tree

	Page Descriptions
	8.1 Overview
	Figure 8.1 Graphics Objects

	8.2 Graphics state
	8.3 Special Graphics State
	8.3.1 Special Graphics state parameters
	8.3.1.1 Clipping path
	8.3.1.2 Current transformation matrix
	8.3.1.3 Current point

	8.3.2 Special Graphics State operators

	8.4 General Graphics state
	8.4.1 Flatness
	Figure 8.2 Flatness

	8.4.2 Line cap style
	Figure 8.3 Line cap styles

	8.4.3 Line dash pattern
	Figure 8.4 Line dash pattern

	8.4.4 Line join style
	Figure 8.5 Line join styles

	8.4.5 Line width
	8.4.6 Miter limit
	Figure 8.6 Miter length

	8.4.7 Generic Graphics State operator
	8.4.8 Stroke adjustment
	8.4.9 Overprint
	8.4.10 Black generation
	8.4.11 Undercolor removal
	8.4.12 Transfer function
	8.4.13 Halftone
	8.4.14 Halftone phase
	8.4.15 Smoothness

	8.5 Color
	8.5.1 Color parameters
	8.5.1.1 Fill color
	8.5.1.2 Stroke color
	8.5.1.3 Fill color space
	8.5.1.4 Stroke color space
	8.5.1.5 Rendering intent

	8.5.2 Color operators
	8.5.2.1 Device-dependent color space operators
	8.5.2.2 Generic color space operators
	8.5.2.3 Color rendering intent

	8.6 Paths
	Figure 8.7 Bézier curve
	8.6.1 Path segment operators
	Figure 8.8 v operator
	Figure 8.9 y operator

	8.6.2 Path painting operators
	Figure 8.10 Non-zero winding number rule
	Figure 8.11 Even–odd rule

	8.6.3 Path clipping operators

	8.7 Text state
	8.7.1 Text State parameters and operators
	8.7.1.1 Character spacing
	Figure 8.12 Character spacing for horizontal writing

	8.7.1.2 Word spacing
	Figure 8.13 Effect of word spacing in horizontal writing

	8.7.1.3 Horizontal scaling
	Figure 8.14 Horizontal scaling

	8.7.1.4 Leading
	Figure 8.15 Leading

	8.7.1.5 Text font and size
	8.7.1.6 Text matrix
	8.7.1.7 Text rendering mode
	Figure 8.16 Text rendering modes

	8.7.1.8 Text rise
	Figure 8.17 Text rise

	8.7.2 Text Object operators
	8.7.3 Text positioning operators
	8.7.4 Text rendering
	8.7.5 Text string operators
	Figure 8.18 Operation of TJ operator in horizontal writing

	8.7.6 Text strings in multi-byte fonts

	8.8 External objects (XObjects)
	8.8.1 XObject operators

	8.9 In-line image objects
	8.10 Other operators
	8.10.1 Type 3 font operators
	8.10.2 Compatibility operators
	8.10.3 Marked Content operators

	Linearized PDF
	9.1 Introduction
	9.2 Background and Assumptions
	9.3 Linearized PDF document structure specification
	9.3.1 File structure
	9.3.2 Header and linearization information
	Table 9.1 Linearization parameters

	9.3.3 First Page Cross-Reference and Trailer
	9.3.4 Catalog and document-level objects
	9.3.5 Hint Streams
	9.3.6 First Page’s objects
	9.3.7 Objects contained in remaining pages
	9.3.8 Shared objects
	9.3.9 Other objects
	9.3.10 Main cross-reference and trailer

	9.4 Hint Tables
	9.4.1 Page Offset hint table
	Table 9.3 Page Offset hint table, header section
	Table 9.4 Page Offset hint table, per-page entry

	9.4.2 Shared Object hint table
	Table 9.5 Shared Object hint table, header section
	Table 9.6 Shared Object hint table, Shared Object Group entry

	9.4.3 Thumbnails hint table
	Table 9.7 Thumbnails hint table, header section
	Table 9.8 Thumbnails hint table, per-page entry

	9.4.4 Generic hint tables
	Table 9.9 Generic Hint Table

	9.4.5 Outline, Thread Info, Dests, and Info hint tables
	9.4.6 Forms and Logical Structure hint tables
	Table 9.10 Forms and Structure hint tables, continued

	9.5 Access Strategies
	9.5.1 Opening at the first page
	9.5.2 Opening at an arbitrary page
	9.5.3 Going to another page of an open document
	9.5.4 Drawing a page incrementally
	9.5.5 Following an article thread
	9.5.6 Accessing an updated file

	Optimizing PDF Files
	General Techniques for Optimizing PDF Files
	10.1 Use short names
	10.2 Use direct and indirect objects appropriately
	10.2.1 Minimizing object size
	10.2.2 Sharing objects
	10.2.3 Placeholder for an unknown value

	10.3 Take advantage of combined operators
	10.4 Remove unnecessary clipping paths
	10.5 Omit unnecessary spaces
	10.6 Omit default values
	10.7 Take advantage of Form XObjects
	10.8 Limit the precision of real numbers
	10.9 Write parameters only when they change
	10.10 Don’t draw outside the crop box
	10.11 Consider target device resolution
	10.12 Share resources
	10.13 Store common Page attributes in the Pages object
	10.14 Use strings for named destinations

	Optimizing Text
	11.1 Don’t produce unnecessary text objects
	11.2 Use automatic leading
	11.3 Take advantage of text spacing operators
	11.4 Don’t replace spaces between words
	11.5 Use the appropriate operator to draw text
	11.6 Use the appropriate operator to position text
	11.7 Remove text clipping
	Figure 11.1 Restoring clipping path after clipping to text

	11.8 Consider target device resolution

	Optimizing Graphics
	12.1 Use the appropriate color-setting operator
	12.2 Defer path painting until necessary
	12.3 Take advantage of the closepath operator
	12.4 Don’t close a path more than once
	12.5 Don’t draw zero-length lines
	12.6 Make sure drawing is needed
	12.7 Take advantage of rectangle and curve operators
	12.8 Coalesce operations

	Optimizing Images
	13.1 Preprocess images
	13.2 Match image resolution to target device resolution
	13.3 Use the minimum number of bits per color component
	13.4 Take advantage of indexed color spaces
	13.5 Use the DeviceGray color space for monochrome images
	13.6 Use in-line images appropriately
	13.7 Don’t compress in-line images unnecessarily
	13.8 Choose the appropriate filters
	Figure 13.1 Effect of JPEG encoding on a screenshot
	Figure 13.2 Effect of JPEG encoding on a continuous-tone image

	13.9 Use predefined spot functions

	Clipping
	14.1 Clipping to a path
	Figure 14.1 Clipping to a path

	14.2 Clipping to text
	Figure 14.2 Using text as a clipping path

	14.3 Image masks
	Figure 14.3 Images and image masks

	Example PDF Files
	A.1 Minimal PDF file
	A.2 Simple text string
	A.3 Simple graphics
	Figure 14.4 Visual representation of Example A.3

	A.4 Pages tree
	A.5 Outline
	A.6 Updated file
	A.6.1 Add four text annotations
	A.6.2 Modify text of one annotation
	A.6.3 Delete two annotations
	A.6.4 Add three annotations

	Summary of Page Marking Operators
	Predefined Font Encodings
	C.1 Predefined encodings sorted by character name
	C.2 Predefined encodings sorted by character code
	C.3 MacExpert encoding

	Implementation Limits
	Obtaining XUIDs and Technical Notes
	PDF Name Registry
	Compatibility and Implementation Notes
	G.1 Version numbers
	G.2 Dictionary keys
	G.3 Implementation notes

	Forms Data Format
	H.1 File Structure
	Figure 14.5 FDF File Structure
	H.1.1 Header
	H.1.2 Body
	H.1.3 Trailer

	H.2 The FDF Catalog Object
	H.2.1 FDF fields
	H.2.2 Icon-fit dictionary
	H.2.3 FDF Pages object
	H.2.4 FDF Annotation dictionaries

	H.3 Use of FDF
	H.4 Sample FDF
	H.5 FDF for annotations

	ISO 639 Language Codes
	ISO 3166 Country Codes
	Bibliography
	Index
	Colophon

